Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 114 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
114
Dung lượng
4,48 MB
Nội dung
BÀN LUẬN VỀ BÀI TOÁN "BA VỊ THẦN" Chúng ta đều đã biết bài toán thú vị : “Ba vị thần” sau : Ngày xưa, trong một ngôi đền cổ có 3 vị thần giống hệt nhau. Thần thật thà (TT) luôn luôn nói thật, thần dối trá (DT) luôn luôn nói dối và thần khôn ngoan (KN) lúc nói thật lúc nói dối. Các vị thần vẫn trả lời câu hỏi của khách đến lễ đền nhưng không ai xác định được chính xác các vị thần. Một hôm có một nhà hiền triết từ xa đến thăm đền. Để xác định được các vị thần, ông hỏi thần bên trái : - Ai ngồi cạnh ngài ? - Đó là thần TT (1) Ông hỏi thần ngồi giữa : - Ngài là ai ? - Ta là thần KN (2) Sau cùng ông hỏi thần bên phải : - Ai ngồi cạnh ngài ? - Đó là thần DT (3) Nhà hiền triết thốt lên : - Tôi đã xác định được các vị thần. Hỏi nhà hiền triết đã suy luận như thế nào ? Lời giải : Gọi 3 vị thần theo thứ tự từ trái sang phải là : A, B, C. Từ câu trả lời (1) => A không phải là thần TT. Từ câu trả lời (2) => B không phải là thần TT. Vậy C là thần TT. Theo (3) đ B là thần DT đ A là thần KN Nhận xét : Cả 3 câu hỏi đều tập trung xác định thần B, phải chăng đó là cách hỏi “thông minh” của nhà hiền triết để tìm ra 3 vị thần ? Câu trả lời không phải, mà là nhà hiền triết gặp may do 3 vị thần đã trả lời câu hỏi không “khôn ngoan” ! Nếu 3 vị thần trả lời “khôn ngoan” nhất mà vẫn đảm bảo tính chất của từng vị thần thì sau 3 câu hỏi, nhà hiền triết cũng không thể xác định được vị thần nào. Ta sẽ thấy rõ hơn qua phân tích sau về 2 cách hỏi của nhà hiền triết : 1. Hỏi thần X : - Ngài là ai ? Có 3 khả năng trả lời sau : - Ta là thần TT => không xác định được X (Cách trả lời khôn nhất) - Ta là thần KN => X là thần KN hoặc DT - Ta là thần DT => X là KN 2. Hỏi thần X : - Ai ngồi cạnh ngài ? Cũng có 3 khả năng trả lời sau : - Đó là thần TT => thần X khác thần TT - Đó là thần KN => không xác định được X (cách trả lời khôn nhất) - Đó là thần DT => không xác định được X (cách trả lời khôn nhất) Trong cả 2 cách hỏi của nhà hiền triết đều có cách trả lời khiến nhà hiền triết không có được một thông tin nào về ba vị thần thì làm sao mà xác định được các vị thần. Nếu gặp may (do sự trả lời ngờ nghệch) thì chỉ cần sau 2 câu hỏi nhà hiền triết cũng đủ để xác định 3 vị thần. Các bạn tự tìm xem trường hợp đó các câu trả lời của các vị thần là như thế nào nhé. Bài toán cổ này thật là hay và dí dỏm, nhưng nếu các vị thần trả lời theo các phương án “khôn ngoan” nhất thì có cách nào để xác định được 3 vị thần sau 1 số ít nhất câu hỏi được không ? Rõ ràng là không thể đặt câu hỏi như nhà hiền triết được. Phải hỏi như thế nào để thu được nhiều thông tin nhất ? Bây giờ ta đặt vấn đề như sau : 1 Mỗi lần hỏi chỉ được hỏi 1 vị thần và chính vị đó trả lời. Cần hỏi như thế nào để sau một số ít nhất câu hỏi ta xác định được các vị thần. Bài toán rõ ràng là không dễ chút nào, nhưng tôi tin rằng các bạn sẽ tìm ra nhiều phương án tối ưu đấy ! Sau đây là một phương án của tôi. Hỏi thần A : - Ngài là thần KN ? - Nhận được câu trả lời. Hỏi thần B : - Ngài là thần KN ? - Nhận được câu trả lời. Sau đó tôi chỉ cần hỏi thêm 1 hoặc 2 câu nữa là xác định được chính xác 3 vị thần. Như vậy số câu hỏi nhiều nhất là 4. Các bạn có thể rút số câu hỏi xuống dưới 4 được không ? Xin mời các bạn hãy giải trí bài toán này bằng một phương án tuyệt vời nào đó (Nhớ là chỉ hỏi một thần và chính vị đó trả lời) Xin chào tạm biệt. Hẹn gặp lại các bạn ở một số tạp chí khác. Vũ Quốc Lương (THCS Chu Văn An, Hà Nội SỬ DỤNG DIỆN TÍCH TRONG CHỨNG MINH HÌNH HỌC Có nhiều bài toán hình học tưởng như không liên quan đến diện tích, nhưng nếu ta sử dụng diện tích thì lại dễ dàng tìm ra lời giải của bài toán. Bài toán 1 : Tam giác ABC có AC = 2 AB. Tia phân giác của góc A cắt BC ở D. Chứng minh rằng DC = 2 DB. 2 Phân tích bài toán (h.1) Để so sánh DC và DB, có thể so sánh diện tích hai tam giác ADC và ADB có chung đường cao kẻ từ A. Ta so sánh được diện tích hai tam giác này vì chúng có các đường cao kẻ từ D bằng nhau, và AC = 2 AB theo đề bài cho. Giải : Kẻ DI vuông góc với AB, DK vuông góc với AC. Xét ΔADC và ΔADB : các đường cao DI = DK, các đáy AC = 2 AB nên S ADC = 2 S ADB . Vẫn xét hai tam giác trên có chung đường cao kẻ từ A đến BC, do S ADC = 2 S ADB nên DC = 2 DB. Giải tương tự như trên, ta chứng minh được bài toán tổng quát : Nếu AD là phân giác của ΔABC thì DB/DC = AB/AC. Bài toán 2 : Cho hình thang ABCD (AB // CD), các đường chéo cắt nhau tại O. Qua O, kẻ đường thẳng song song với hai đáy, cắt các cạnh bên AC và BC theo thứ tự tại E và F. Chứng minh rằng OE = OF. Giải : Cách 1 : (h.2) Kẻ AH, BK, CM, DN vuông góc với EF. Đặt AH = BK = h 1 , CM = DN = h 2 . Ta có : Từ (1), (2), (3) => : Do đó OE = OF. 3 Cách 2 : (h.3) Kí hiệu như trên hình vẽ. Ta có S ADC = S BDC . Cùng trừ đi S 5 được : S 1 + S 2 = S 3 + S 4 (1) Giả sử OE > OF thì S 1 > S 3 và S 2 > S 4 nên S 1 + S 2 > S 3 + S 4 , trái với (1). Giả sử OE < OF thì S 1 < S 3 và S 2 < S 4 nên S 1 + S 2 < S 3 + S 4 , trái với (1). Vậy OE = OF. Bài toán 3 : Cho hình bình hành ABCD. Các điểm M, N theo thứ tự thuộc các cạnh AB, BC sao cho AN = CM. Gọi K là giao điểm của AN và CM. Chứng minh rằng KD là tia phân giác của góc AKC. Giải : (h.4) Kẻ DH vuông góc với KA, DI vuông góc với KC. Ta có : DH . AN = 2 S ADN (1) DI . CM = 2 S CDM (2) Ta lại có S ADN = 1/2.S ABCD (tam giác và hình bình hành có chung đáy AD, đường cao tương ứng bằng nhau), S CDM = 1/2.S ABCD nên S ADN = S CDM (3) Từ (1), (2), (3) => DH . AN = DI . CM. Do AN = CM nên DH = DI. Do đó KI là tia phân giác của góc AKC. Như vậy khi xét quan hệ giữa độ dài các đoạn thẳng, ta nên xét quan hệ giữa diện tích các tam giác mà cạnh là các đoạn thẳng ấy. Điều đó nhiều khi giúp chúng ta đi đến lời giải của bài toán. Bạn hãy sử dụng diện tích để giải các bài toán sau : 1. Cho tam giác ABC cân tại A. Gọi M là một điểm bất kì thuộc cạnh đáy BC. Gọi MH, MK theo thứ tự là các đường vuông góc kẻ từ M đến AB, AC. Gọi BI là đường cao của tam giác ABC. Chứng minh rằng MH + MK = BI. Hướng dẫn : Hãy chú ý đến S AMB + S AMC = S ABC . 2. Chứng minh rằng tổng các khoảng cách từ một điểm M bất kì trong tam giác đều ABC đến ba cạnh của tam giác không phụ thuộc vị trí của M. Hướng dẫn : Hãy chú ý đến 4 S MBC + S MAC + S MAB = S ABC . 3. Cho tam giác ABC cân tại A. Điểm M thuộc tia đối của tia BC. Chứng minh rằng hiệu các khoảng cách từ điểm M đến đường thẳng AC và AB bằng đường cao ứng với cạnh bên của tam giác ABC. Hướng dẫn : Hãy chú ý đến S MAC - S MAB = S ABC . 4. Cho hình thang ABCD (AB // CD, AB < CD). Các đường thẳng AD và BC cắt nhau tại O. Gọi F là trung điểm của CD, E là giao điểm của OF và AB. Chứng minh rằng AE = EB. Hướng dẫn : Dùng phương pháp phản chứng. NGND. Vũ Hữu Bình MỘT PHƯƠNG PHÁP VẼ ĐƯỜNG PHỤ Trong quá trình học toán ở bậc THCS, có lẽ hấp dẫn nhất và khó khăn nhất là việc vượt qua các bài toán hình học, mà để giải chúng cần phải vẽ thêm các đường phụ. Trong bài báo này, tôi xin nêu một phương pháp thường dùng để tìm ra các đường phụ cần thiết khi giải toán hình học : Xét các vị trí đặc biệt của các yếu tố hình học có trong bài toán cần giải. Bài toán 1 : Cho góc xOy. Trên Ox lấy hai điểm A, B và trên Oy lấy hai điểm C, D sao cho AB = CD. Gọi M và N là trung điểm của AC và BD. Chứng minh đường thẳng MN song song với phân giác góc xOy. 5 Suy luận : Vị trí đặc biệt nhất của CD là khi CD đối xứng với AB qua Oz, phân giác góc xOy. Gọi C 1 và D 1 là các điểm đối xứng của A và B qua Oz ; E và F là các giao điểm của AC 1 và BD 1 với Oz. Khi đó E và F là trung điểm của AC 1 và BD 1 , và do đó vị trí của MN sẽ là EF. Vì vậy ta chỉ cần chứng minh MN // EF là đủ (xem hình 1). Thật vậy, do AB = CD (gt), AB = C 1 D 1 (tính chất đối xứng) nên CD = C 1 D 1 . Mặt khác ME và NF là đường trung bình của các tam giác ACC 1 và BDD 1 nên NF // DD 1 , NF = 1/2DD 1 , ME // CC 1 , ME = 1/2 CC 1 => ME // NF và NE = 1/2 NF => tứ giác MEFN là hình bình hành => MN // EF => đpcm. Bài toán 1 có nhiều biến dạng” rất thú vị, sau đây là một vài biến dạng của nó, đề nghị các bạn giải xem như những bài tập nhỏ ; sau đó hãy đề xuất những “biến dạng” tương tự. Bài toán 2 : Cho tam giác ABC. Trên AB và CD có hai điểm D và E chuyển động sao cho BD = CE. Đường thẳng qua các trung điểm của BC và DE cắt AB và AC tại I và J. Chứng minh ΔAIJ cân. Bài toán 3 : Cho tam giác ABC, AB ≠ AC. AD và AE là phân giác trong và trung tuyến của tam giác ABC. Đường tròn ngoại tiếp tam giác ADE cắt AB và AC tại M và N. Gọi F là trung điểm của MN. Chứng minh AD // EF. Trong việc giải các bài toán chứa các điểm di động, việc xét các vị trí đặc biệt càng tỏ ra hữu ích, đặc biệt là các bài toán “tìm tập hợp điểm”. Bài toán 4 : Cho nửa đường tròn đường kính AB cố định và một điểm C chuyển động trên nửa đường tròn đó. Dựng hình vuông BCDE. Tìm tập hợp C, D và tâm hình vuông. Ta xét trường hợp hình vuông BCDE “nằm ngoài” nửa đường tròn đã cho (trường hợp hình vuông BCDE nằm trong đường tròn đã cho được xét tương tự, đề nghị các bạn tự làm lấy xem như bài tập). Suy luận : Xét trường hợp C trùng với B. Khi đó hình vuông BCDE sẽ thu lại một điểm B và các điểm I, D, E đều trùng với B, trong đó I là tâm hình vuông BCDE. Vậy B là một điểm thuộc các tập hợp cần tìm. Xét trường hợp C trùng với A. Dựng hình vuông BAD 1 E 1 khi đó D trùng với D 1 , E trùng với E 1 và I trùng với I 1 (trung điểm của cung AB ). Trước hết, ta tìm tập hợp E. Vì B và E 1 thuộc tập hợp cần tìm nên ta nghĩ ngay đến việc thử chứng minh Đ BEE 1 không đổi. Điều này không khó vì Đ ACB = 90 o (góc nội tiếp chắn nửa đường tròn) và ΔBEE 1 = ΔBCA (c. g. c) => Đ BEE 1 = Đ BCA = 90 o => E nằm trên nửa đường tròn đường kính BE 1 (1/2 đường tròn này và 1/2 đường tròn đã cho nằm ở hai nửa mặt phẳng khác nhau với “bờ” là đường thằng BE 1 ). Vì Đ DEB = Đ E 1 EB = 90 o nên D nằm trên EE 1 (xem hình 2) => Đ ADE 1 = 90 o = Đ ABE 1 => D nằm trên đường tròn đường kính AE 1 , nhưng ABE 1 D 1 là hình vuông nên đường tròn đường kính AE 1 cũng là đường tròn đường kính BD 1 . Chú ý rằng B và D 1 là các vị trí giới hạn của tập hợp cần tìm, ta => tập hợp D là nửa đường tròn đường kính BD 1 (nửa đường tròn này và điểm A ở về hai nửa mặt phẳng khác nhau với bờ là đường thẳng BD 1 ). Cuối cùng, để tìm tập hợp I, ta cần chú ý II 1 là đường trung bình của ΔBDD 1 nên II 1 // DD 1 => Đ BII 1 = 90 => tập hợp I là nửa đường tròn đường kính BI 1 (đường tròn này và A ở về hai nửa mặt phẳng khác nhau với bờ là BD 1 ). Để kết thúc, xin mời bạn giải bài toán sau đây : 6 Bài toán 5 : Cho nửa đường tròn (O) đường kính AB cố định và 1 điểm C chuyển động trên nửa đường tròn đó. Kẻ CH vuông góc với AB. Trên đoạn thẳng OC lấy điểm M sao cho OM = CH. Tìm tập hợp M. TS. Lê Quốc Hán (ĐH Vinh) 7 LÀM QUEN VỚI BẤT ĐẲNG THỨC TRÊ-BƯ-SEP Các bạn đã từng được làm quen với các bất đẳng thức Cô si, Bunhiacôpski nhưng không ít bạn còn chưa biết về bất đẳng thức Trê - bư - sép. Con đường đi đến bất đẳng thức này thật là giản dị, quá gần gũi với những kiến thức cơ bản của các bạn bậc THCS. Các bạn có thể thấy ngay : Nếu a 1 ≤ a 2 và b 1 ≤ b 2 thì (a 2 - a 1 ) (b 2 - b 1 ) ≥ 0. Khai triển vế trái của bất đẳng thức này ta có : a 1 b 1 + a 2 b 2 - a 1 b 2 - a 2 b 1 ≥ 0 => : a 1 b 1 + a 2 b 2 ≥ a 1 b 2 + a 2 b 1 . Nếu cộng thêm a 1 b 1 + a 2 b 2 vào cả hai vế ta được : 2 (a 1 b 1 + a 2 b 2 ) ≥ a 1 (b 1 + b 2 ) + a 2 (b 1 + b 2 ) => : 2 (a 1 b 1 + a 2 b 2 ) ≥ (a 1 + a 2 ) (b 1 + b 2 ) (*) Bất đẳng thức (*) chính là bất đẳng thức Trê - bư - sép với n = 2. Nếu thay đổi giả thiết, cho a 1 ≤ a 2 và b 1 ≥ b 2 thì tất cả các bất đẳng thức trên cùng đổi chiều và ta có : 2 (a 1 b 1 + a 2 b 2 ) ≤ (a 1 + a 2 ) (b 1 + b 2 ) (**) Các bất đẳng thức (*) và (**) đều trở thành đẳng thức khi và chỉ khi a 1 = a 2 hoặc b 1 = b 2 . Làm theo con đường đi tới (*) hoặc (**), các bạn có thể giải quyết nhiều bài toán rất thú vị. Bài toán 1 : Biết rằng x + y = 2. Chứng minh x 2003 + y 2003 ≤ x 2004 + y 2004 . Lời giải : Do vai trò bình đẳng của x và y nên có thể giả sử x ≤ y. Từ đó => : x 2003 ≤ y 2003 . Do đó (y 2003 - x 2003 ).(y - x) ≥ 0 => : x 2004 + y 2004 ≥ x.y 2003 + y.x 2003 Cộng thêm x 2004 + y 2004 vào hai vế ta có : 2.(x 2004 + y 2004 ) ≥ (x+y) (x 2003 + y 2003 ) = 2.(x 2003 + y 2003 ) => : x 2004 + y 2004 ≥ x 2003 + y 2003 (đpcm). Để ý rằng : Bất đẳng thức vừa chứng minh trở thành đẳng thức khi và chỉ khi x = y = 1 ; các bạn sẽ có lời giải của các bài toán sau : Bài toán 2 : Giải hệ phương trình : Nếu các bạn quan tâm tới các yếu tố trong tam giác thì vận dụng các bất đẳng thức (*) hoặc (**) sẽ dẫn đến nhiều bài toán mới. Bài toán 3 : Cho tam giác ABC có diện tích bằng 1. AH và BK là các đường cao của tam giác. Chứng minh : (BC + CA).(AH + BK) ≥ 8. Lời giải : Ta có AH x BC = BK x CA = 2. Do vai trò bình đẳng của BC và CA nên có thể giả sử rằng BC ≤ CA => 2/BC ≥ 2/CA => AH ≥ BK. Do đó (CA - BC).(BK - AH) ≤ 0 => : CA x BK + BC x AH ≤ BC x BK + CA x AH Cộng thêm CA x BK + BC x AH vào 2 vế ta có : 2.(CA x BK + BC x AH) ≤ (BC + CA) (AH + BK) => : (BC + CA).(AH + BK) ≥ 8. Đẳng thức xảy ra khi và chỉ khi BC = CA hoặc BK = AH tương đương với BC = CA hay tam giác ABC là tam giác cân đỉnh C. Bài toán 4 : Cho tam giác ABC với BC = a, CA = b, AB = c và các đường cao tương ứng của các cạnh này có độ dài lần lượt là h a , h b , h c . Chứng minh : với S là diện tích tam giác ABC. 8 Lời giải : Do vai trò bình đẳng của các cạnh trong tam giác nên có thể giả sử rằng a ≤ b ≤ c => : 2S/a ≥ 2S/b ≥ 2S/c => h a ≥ h b ≥ h c . Làm như lời giải bài toán 3 ta có : (a + b).(ha + hb) ≥ 8S => : 1/(h a + h b ) ≤ (a + b)/(8S) (1) Tương tự ta được : 1/(h b + h b ) ≤ (b + c)/(8S) (2) 1/(h c + h a ) ≤ (c + a)/(8S) (3) Cộng từng vế của (1), (2), (3) dẫn đến : Bất đẳng thức (4) trở thành đẳng thức khi và chỉ khi các bất đẳng thức (1), (2), (3) đồng thời trở thành đẳng thức tương đương với a = b = c hay tam giác ABC là tam giác đều. Bây giờ các bạn thử giải các bài tập sau đây : 1) Biết rằng x 2 + y 2 = 1. Tìm giá trị lớn nhất của F = (x 4 + y 4 ) / (x 6 + y 6 ) 2) Cho các số dương x, y, z thỏa mãn x + y + z = 1. Chứng minh : 3) Cho tam giác ABC có độ dài các cạnh lần lượt là a, b, c và độ dài các đường phân giác trong thuộc các cạnh này lần lượt là l a , l b , l c . Chứng minh : 4) Hãy dự đoán và chứng minh bất đẳng thức Trê - bư - sép với n = 3. Từ đó hãy sáng tạo ra các bài toán. Nếu bạn thấy thú vị với những khám phá của mình ở bài tập này, hãy gửi gấp bài viết về cho chuyên mục EUREKA của TTT2. Lê Võ Việt Khang (Hà Nộ) PHƯƠNG PHÁP HOÁN VỊ VÒNG QUANH Phân tích thành nhân tử là một trong những kĩ năng cơ bản nhất của chương trình đại số bậc THCS. Kĩ năng này được sử dụng khi giải các bài toán : biến đổi đồng nhất các biểu thức toán học, giải phương trình, chứng minh bất đẳng thức và giải các bài toán cực trị . Sách giáo khoa lớp 8 đã giới thiệu nhiều phương pháp phân tích thành nhân tử. Sau đây tôi xin nêu một phương pháp thường sử dụng, dựa vào việc kết hợp các phương pháp quen thuộc như đặt nhân tử chung, nhóm số hạng, hằng đẳng thức . Phương pháp này dựa vào một số nhận xét sau đây : 1/ Giả sử phải phân tích biểu thức F(a, b, c) thành nhân tử, trong đó a, b, c có vai trò như nhau trong biểu thức đó. Nếu F(a, b, c) = 0 khi a = b thì F(a, b, c) sẽ chứa các nhân tử a - b, b - c và c - a. Bài toán 1 : Phân tích thành nhân tử : F(a, b, c) = a 2 (b - c) + b 2 (c - a) + c 2 (a - b). 9 Nhận xét : Khi a = b ta có : F(a, b, c) = a 2 (a - c) + a 2 (c - a) = 0, do đó F(a, b, c) có chứa nhân tử a - b. Tương tự F(a, b, c) chứa các nhân tử b - c, c - a. Vì F(a, b, c) là biểu thức bậc ba, do đó F(a, b, c) = k. (a - b)(b - c)(c - a). Cho a = 1, b = 0, c = -1 ta có : 1 + 1 = k.1.1.(-2) => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a). Bài toán 2 : Phân tích thành nhân tử : F(a, b, c) = a 3 (b - c) + b 3 (c - a) + c 3 (a - b). Nhận xét : Tương tự như bài toán 1, ta thấy F(a, b, c) phải chứa các nhân tử a - b, b - c, c - a. Nhưng ở đây F(a, b, c) là biểu thức bậc bốn, trong khi đó (a - b)(b - c)(c - a) bậc ba, vì vậy F(a, b, c) phải có một thừa số bậc nhất của a, b, c. Do vai trò a, b, c như nhau nên thừa số này có dạng k(a + b + c). Do đó : F(a, b, c) = k(a - b)(b - c)(c - a)(a + b + c) Cho a = 0 ; b = 1 ; c = 2 => k = -1. Vậy : F(a, b, c) = -(a - b)(b - c)(c - a)(a + b + c). 2/ Trong một số bài toán, nếu F(a, b, c) là biểu thức đối xứng của a, b, c nhưng F(a, b, c) ≠ 0 khi a = b thì ta thử xem khi a = -b, F(a, b, c) có triệt tiêu không, nếu thỏa mãn thì F(a, b, c) chứa nhân tử a + b, và từ đó chứa các nhân tử b + c, c + a. Bài toán 3 : Chứng minh rằng : Nếu : 1/x + 1/y + 1/z = 1/(x + y + z) thì 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) với mọi số nguyên lẻ n. Nhận xét : Từ giả thiết 1/x + 1/y + 1/z = 1/(x + y + z) => : (xy + xz + yz)(x + y + z) - xyz = 0 (*) Do đó ta thử phân tích biểu thức F(x, y, z) = (xy + xz + yz)(x + y + z) - xyz thành nhân tử. Chú ý rằng khi x = - y thì F(x, y, z) = - y 2 z + y 2 z = 0 nên F(x, y, z) chứa nhân tử x + y. Lập luận tương tự như bài toán 1, ta có F(x, y, z) = (x + y)(y + z)(x + z). Do đó (*) trở thành : (x + y)(y + z)(x + z) = 0 Tương đương với : x + y = 0 hoặc y + z = 0 hoặc z + x = 0 . Nếu x + y = 0 chẳng hạn thì x = - y và do n lẻ nên x n = (-y) n = -y n . Vậy : 1/x n + 1/y n + 1/z n = 1/(x n + y n + z n ) Tương tự cho các trường hợp còn lại, ta có đpcm. Có những khi ta phải linh hoạt hơn trong tình huống mà hai nguyên tắc trên không thỏa mãn : Bài toán 4 : Phân tích đa thức sau thành nhân tử : F(x, y, z) = x 3 + y 3 + z 3 - 3xyz. Nhận xét : Ta thấy rằng khi x = y hay x = -y thì F(x, y, z) ≠ 0. Nhưng nếu thay x = -(y + z) thì F(x, y, z) = 0 nên F(x, y, z) có nhân tử x + y + z. Chia F(x, y, z) cho x + y + z, ta được thương x 2 + y 2 + z 2 - xy - yz - zx và dư là 0. Do đó : F(x, y, z) = (x + y + z)(x 2 + y 2 + z 2 - xy - yz - zx). Ta có thể thêm bớt vào F(x, y, z) một lượng 3x 2 y + 3xy 2 để nhân được kết quả này. Các bạn hãy dùng các phương pháp và kết quả nêu trên để giải các bài tập sau đây. Bài toán 5 : Tính tổng : 10