86908078 urethane science and technology

512 304 0
86908078 urethane science and technology

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Advances in Urethane Science and Technology Editors: D Klempner K.C Frisch Advances in Urethane Science and Technology Daniel Klempner and Kurt Frisch Rapra Technology Limited Shawbury, Shrewsbury, Shropshire, SY4 4NR, United Kingdom Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 http://www.rapra.net First Published in 2001 by Rapra Technology Limited Shawbury, Shrewsbury, Shropshire, SY4 4NR, UK ©2001, Rapra Technology Limited All rights reserved Except as permitted under current legislation no part of this publication may be photocopied, reproduced or distributed in any form or by any means or stored in a database or retrieval system, without the prior permission from the copyright holder A catalogue record for this book is available from the British Library ISBN: 1-85957-275-8 Typeset by Rapra Technology Limited Printed and bound by Lightning Source UK Dedication In memory of Kurt C Frisch One of the founding Fathers of polyurethanes January 15th 1919 to October 21st 2000 Contents Dimensional Stabilising Additives for Flexible Polyurethane Foams 1.1 Introduction 1.2 Experimental Procedures 1.2.1 Materials 1.2.2 Handmix Evaluations 1.2.3 Machine Evaluation 1.3 TDI - Flexible Moulded Additives 15 1.3.1 Dimensional Stability Additives for TDI 16 1.3.2 Low Emission Dimensional Stability Additives 42 1.4 MDI Flexible Moulded Foam Additives 63 1.4.1 Dimensional Stability Additives for MDI 64 1.4.2 Low Emissions Dimensional Stability Additives in MDI 67 1.5 TDI Flexible Slabstock Low Emission Additives 73 1.5.1 Reactivity 74 1.5.2 Standard Physical Properties 74 1.5.3 TDI Flexible Slabstock Foam Review 74 1.6 Foam Model Tool Discussions 75 1.6.1 TDI and MDI Moulded Foam Model 75 1.6.2 TDI Flexible Slabstock Foam Model 78 1.7 Conclusions 81 Demands on Surfactants in Polyurethane Foam Production with Liquid Carbon Dioxide Blowing 85 2.1 History of Polyurethane Foams 85 2.1.1 Environmental Concerns in Relation to Flexible Foam Density 86 i Advances in Urethane Science and Technology 2.2 Current Liquid Carbon Dioxide Technologies for Flexible Slabstock Polyether Foam Production 88 2.2.1 Machinery 88 2.2.2 The Foaming Process 90 2.2.3 Additional Tasks of Silicone Surfactants in Flexible Slabstock Foam Production 95 2.2.4 Chemistry of a Silicone Surfactant in Flexible Slabstock Foam Production 99 2.2.5 A Surfactant Development Example 101 Polyurethane Processing: Recent Developments 113 3.1 Industrial Solutions for the Production of Automotive Seats Using Polyurethane Multi-Component Formulations 113 3.1.1 Market Requirements 113 3.1.2 Dedicated Solutions: Metering Equipment 114 3.1.3 Dedicated Solutions: Mixing Heads 116 3.1.4 Dedicated Solutions 121 3.2 ‘Foam & Film’ Technology - An Innovative Solution to Fully Automate the Manufacture of Automotive Sound Deadening Parts 130 3.2.1 The Problem 131 3.2.2 The Approach to a Solution 131 3.2.3 The Film 133 3.2.4 Industrial Applications 135 3.2.5 Applications 137 3.2.6 Advantages 138 3.3 InterWet - Polyurethane Co-injection 138 3.3.1 Glass-Reinforced Polyurethanes, a Well-Known Technology 139 Recent Developments in Open Cell Polyurethane-Filled Vacuum Insulated Panels for Super Insulation Applications 157 4.1 Introduction 157 4.2 Some General Properties of Open Cell PU Foams for Vacuum ii Contents Insulated Panels 158 4.3 Vacuum Issues in the Selection of VIP Components 163 4.3.1 Vacuum Properties of the Open Cell Foams 163 4.3.2 Vacuum Properties of the Barrier Film 167 4.3.3 The Getter Device 179 4.4 Vacuum Panel Manufacturing Process and Characterisation 188 4.4.1 Some Manufacturing Issues 188 4.4.2 Characterisation of Vacuum Panels 191 4.5 Insulation Performances of Open Cell PU-Filled Vacuum Panels 196 4.6 Examples of VIP Applications and Related Issues 199 4.6.1 Household Appliances 199 4.6.2 Laboratory and Biomedical Refrigerators 203 4.6.3 Vending Machines 204 4.6.4 Refrigerated/Insulated Transportation 205 4.6.5 Other Applications 206 4.7 Near Term Perspectives and Conclusions 206 Modelling the Stabilising Behaviour of Silicone Surfactants During the Processing of Polyurethane Foam: The Use of Thin Liquid Films 213 5.1 Introduction 213 5.2 Film Drainage Rate: Reynold’s Model and Further Modifications 216 5.2.1 Rigid Film Surfaces 216 5.2.2 Mobile Film Surfaces 217 5.2.3 Surface Viscosity 217 5.2.4 Surface Tension Gradients 218 5.3 Experimental Investigation of Model, Thin Liquid Polyurethane Films and the Development of Qualitative and Semi-Quantitative Models of Film Drainage 219 5.3.1 Experimental Details 221 5.3.2 Qualitative Description of Polyurethane Films 223 iii Advances in Urethane Science and Technology 5.3.3 Quantitative Measurement of Film Drainage Rates: Bulk and Surface Effects 226 5.4 The Development of Theoretical Models of Vertical, Draining Thin Liquid Model PU Films 236 5.4.1 Rigid-Surfaced Collapsing Wedge Model 236 5.4.2 Deforming Film Models 239 5.4.3 Tangentially-Immobile Films 242 5.4.4 Finite Surface Viscosity 245 5.4.5 Adding Surfactant Transport 249 5.5 Summary 254 Synthesis and Characterisation of Aqueous Hybrid Polyurethane-UreaAcrylic/Styrene Polymer Dispersions 261 6.1 Preface 261 6.2 Introduction 261 6.2.1 General Considerations 261 6.2.2 Acrylic Dispersions and Polyurethane Dispersions (DPUR) 264 6.2.3 Hybrid Acrylic-Urethane Dispersions 266 6.3 Concept of the Study 268 6.3.1 Selection of Starting Materials 268 6.3.2 Assumptions for Synthesis of Hybrid Dispersions 269 6.4 Methods of Testing 276 6.4.1 Dispersions 276 6.4.2 Coatings 277 6.4.3 Films 278 6.5 Experimental results 279 6.5.1 Characterisation of Starting Dispersions Used for Synthesis of MDPUR 279 6.5.2 Synthesis of MDPUR and MDPUR-ASD 288 6.5.3 Investigation of the Effect of Various Factors on the Properties of Hybrid Dispersions 290 iv Advances in Urethane Science and Technology Gas 168 Metallised 174, 206 Multilayered plastic 206 Film 167 Vacuum properties 167 Properties 168 Bashore rebound 373 Beamech CO-2 90 Blister detachment 350, 352, 353, 354 Block foaming 161 Blowing agents 4, 87, 88, 136, 178 Alternative 87 Carbon dioxide 87, 88 CFC-11 87 Chloroflurorcarbon 187 Physical 87 Bond strength 337, 360, 361, 364 Boundary 240 Conditions 240, 245 Film-air 240 Bubble coalescence 214 Bubble formation See Nucleation Bulk stability 13 Bulk viscosity 217 Butyl acrylate 269 C Calcium oxide 182 CannOxide 129 Capillary number 241 Carbon dioxide 88, 128, 166 Liquid 88 Carbon monoxide 166 CarDio 88, 89, 90, 92 Carrier 122 Mould 122, 123 Cast elastomers 372, 377, 382, 391, 398402, 409, 411 Hard segment content 401 Heat ageing 409, 411 Mechanical properties 409 484 Preparation 372 Properties 398, 402 Soft segment content 401 Cast poly(ester urethanes) 390 Cast poly(ether urethanes) 375 Cast polyurethanes 379, 380, 392, 393, 397, 401, 404, 413 Analysis 403 Hard segments 379 Hardness 392, 393 Heat aged 413 High hardness 401 HER/HQEE blends 397 Properties 392 Soft segments 379 Tensile properties 380 Catalyst 16, 43, 52, 75, 81 Activity 75 Cell opening 16, 52 Cell opening blowing 43 Non-fugitive 43, 52, 81 Selectivity 75 Cell opening 4, 93-94, 214, 217 Blow off 94 Cell structure 101, 107 Cell wall drainage Chain extenders 370 Chamber 118 Mixing 118 Chem-Trend Chem-Trend PRC-798 Chemical foam model 75 Flexible cellular polyurethane Chicken buckets Chromatography 276, 337 Gel permeation 276 Inverse gas 337, 345 See also IGC Closed cells 162 Coalescing agent 297-300 NMP 297-300 Coating 277 Binder 264 Main Index DPUR 284 Drying time 277 Properties 292-293, 300, 303, 305, 320, 322-326 Coating Coatings 456 Aqueous polyurethane/urea dispersion 456 Coefficient 232 Diffusion 232 Surface partition 232 Cohesion 218, 220 Intermolecular 218 Failure 352 Collapse 23 Collapsing wedge model 226 COMBOGETTER 181-187, 202, 203, 207 for VIP 182 Comfort properties Compression set 373, 380, 390, 401 Tests Container 206 Shipping 206 Contamination 165 System 165 Control 119 Pour pressure 119 Conveyor 126 Oval 126 Cooling 87 Lateral 87 Creep 161 Crosslinking 278 Degree of 278 Density 279 Crusher Black Brothers Roller Cumene hydroperoxide 269 D Dabco 6, 80 Deforming surface 236 Dehydrohalogenation 42 Thermally induced 42 Density 17 Differential scanning calorimetry 373, 381, 393 Diffusion 214, 215, 219, 220, 240 Diffusion coefficient 232, 234 Dimensional stability 11-12 Dispersion 264, 266, 267, 276, 279 Acrylic 264, 267 Characterisation 279 Hybrid 267 Hybrid acrylic-urethane 266 Polyurethane 264 Properties 323, 324, 325 Systems 263 Hybrid 263 DMA see Analysis DMTA 427, 433, 452, 453, 454, 458 DPUR particle 312, 315 Swelling of 312, 315 Drainage rate 218, 219, 220, 229, 236 DSC see Analysis Dynamic creep testing Dynamic fatigue 14, 49 Dynamic mechanical analysis see Analysis E EasyFroth 129 Edge effect 174 Effect 226 Bulk 226 Surface 226 Elastomer processability 424, 438 One-shot 438 Elastomers 385, 424, 433 MDI/BDO cured 424 rebound 433 Thermal stability 385 Electron microscopy 277 485 Advances in Urethane Science and Technology Transmission 277 Embedded sphere 329 Emissions Emulsion polymerisation 265 Energy 218 Cohesive 218 Efficiency 157 Envirocure 87 Environmental concernS 86 Equipment 114 Metering 114, 115 F FEA See Analysis Filler 158 Aerogels 158 Compressed powder 158 Fibre 158 Fibre glass 158 Perlite 158, 189 Precipitated silica 189 Silica 158 Film 134, 178, 213, 215-217, 219, 221, 226, 228, 231, 278, 317 Adhesive 134 Bulk viscosity 215 Crosslink density 327 Drainage rate 216, 217, 226, 227, 228 Formation 223 Formulation 221 Free surface 239 Mechanical properties 278 Mobile surface 217 Models 239 Deforming 239 Outgassing 178 Properties 291, 293, 299, 302, 304, 308-309, 311, 320-321, 323-325 Releasing 134 Rigid surface 216, 228, 231 486 Film rupture 215, 216, 218, 221 Film stability 235 Surface free energy 317 Tangentially-immobile 242 Thin liquid 213 Thin liquid polyurethane 219 Wedge 236 Collapsing 236 Film drainage 219, 255 Rate 227-229, 232, 235 Surface variables 228 Vertical liquid 255 Fingering pattern 223, 254 FipurTec 139 Fire-retardants 96, 97, 98, 108 Flexible moulded foam 14, 46, 63, 73 MDI 14, 68, 73 TDI 63 Flexible slabstock 73-74, 88, 90, 95, 99 Polyether 88 Polyurethane 229 FlexiDrum 126 Flux 219, 227, 230 Foam 74, 76, 78-80, 85, 88, 107, 128, 157159, 161, 163, 177, 179, 201, 213, 254 CFC-free 157 Cooling 87 Density 86 Hardness 86 Minimum 86 Encapsulating 177 Evacuated 161 Flexible slabstock 75 Formation 86 Hardness 87 Soft 87 MDI flexible 79 Moulded 76 Mechanical properties 161 Multi-density 128 Multi-hardness 128 Open cell 163, 179, 201 Main Index Open cell PU 158, 163 Physical properties 163 Polyether 88 Polystyrene 159 Polyurethane 85, 96, 213 Porosity 161 Rise 93 Stabilisation 93 Slabstock 80 TDI flexible 79 Moulded 76 Slabstock 74, 78 Foam & film 133 Foam One 87 Foaming 87, 90, 128 Carousel 128 In situ 128 Liquid carbon dioxide 90 Variable pressure 87 Fogging 14, 62 Force to crush 3, 23, 66, 71, 72 Formulations 72 MDI 72 Fracture energy 390 Freezer 177, 204 Ultra-low temperature 204 Froth 101, 213 Density 101 Gelatinous 213 FTC see Force to crush Full rise time 15 G Gas permeation 168, 176, 177 Flanges 176, 177 Gas transmission 168 Gate Bar 88 Gauge 192 Spinning rotor 192 Gel time 15 Getter 158, 170, 181, 183, 185, 193 Device 179 Material 181 Non-evaporable 170 SpiroTorr 193, 194, 201 Technology 206 Gibbs-Marangoni 93 Global warming 157 Goniometer 336 Rame-Hart 336 GPC See Analysis Gradient 230 Gravitational energy 214 Gravity convection 225 Greenhouse effect 157 Guarded hot-plate 191 H Handmix procedure Mass-loss 18 Flexible moulded foam Flexible slabstock foam Hard segment 378 Content 376, 378 Hardness 86-87, 378, 401, 408 Determination 277 Heat flow meter 191 Heat reflectance 192 Modified hot wire 192 HER materials 369, 370, 371, 373 Characterisation 373 Polyurethane applications 369, 371 Synthesis 373 HER/HQEE blends 397, 398 Freezing point determination 397 High vacuum benches 163 Hot box 191 Guarded-calibrated 191 Hybrid 301, 306 Chemical structure 306, 325 Crosslinking 306, 326 Polyurethane-urea 301 487 Advances in Urethane Science and Technology Hybrid acrylic-urethane dispersions 261 Hybrid dispersion 269, 320 Chemical structure 324 Coalescent 323 Crosslinking 312, 317 Film 328 Initiator 320 Particle size 320, 321 Properties 290, 291, 292, 298, 302, 303, 307, 311, 320, 330 Surface free energy 319 Synthesis 269, 290, 320, 322 Hybrid dispersion particles Morphology 317, 328 Hybrid dispersion system 262 Preparation 262 Hybrid polymer dispersion 262 Hydrogen 166 I IGC See Analysis INSOTEC 135 Instabilities 215, 218, 235 Fluid 215 Benard 215 Marangoni 215, 235 Rayleigh-Taylor 215 Marangoni 218 Insulation 196 Interference fringe 222, 223, 224, 225, 226, 231, 236 Interferometer 221 Interpenetrating polymer network 262 InterWet 138, 143, 144, 145, 146, 147, 150, 153 Advantages 150 Applications 152 Improvements 148 Ionomers 178 Isopach 226 Isophorone diisocyanate 268 488 K Krauss-Maffei 14 Kyoto conference 157 L Laboratory moisture-curing 466 2,4-TDI prepolymers 466 Lamella 214, 215 Laminate 201 Aluminium foil 201 Lamination 161, 162 Lap-shear 337, 344, 347, 352, 353, 354, 362 Liquid carbon dioxide blowing 85 Long fibre injection 139 Long-term vibration Loss compliance 388, 414, 415, 416 Loss modulus 385, 386, 414 Lubrication theory 240, 242, 245, 249 M Machine Hi Tech SureShot MHR-50 Machine evaluation 9, 25, 29, 33 Back formulation utilising TPR 29 Back formulation without TPR 33 Cushion formulation utilising TPR 25 Cushion formulation without TPR 33 TDI flexible moulded foam Marangoni Effect 249, 250, 251, 252, 254 Flows 215, 225 Marginal regeneration 225 Mass spectrometer 163, 164, 189 Quadrupole 163 Mass-loss/rate-of-rise Maze flow mould 10, 56 MDI Prepolymers 459-460, 465 Cured with BDO 459, 460 Main Index Laboratory casting 465 Laboratory preparation 465 Mechanical crushing Mechanical properties 372 Melting points 374 Metal foil 168 Methyl methacrylate 269 Micelles 273 Micro-leaks 191 Microscopy 4, 40 Scanning electron 4, 40 Mill Premier Mill Corporation dispersator Mixing head 116, 120, 142 Variable geometry 120 Molecular sieves 181 Mondur TD-80 Monolayer 218, 226 Monomer 272, 275 as active diluents 275 Polymerisation 272 Montreal Protocol 157 Morphology 262, 264, 267, 272 Dispersion particle 262, 272 Engulfed 264 Fruit-cake 264 Gradient 264 Particle 267 Mould 56, 60, 124 Carrier 129 Carrier exchange 125 Carrying system 126 FlexiDrum 126 Maze flow 56, 57, 58, 59, 60 Temperature control system 124 Moulded foam 3, 68 Low emission 68 Moulded formulation 69, 70 MDI 69, 70, 71 Moulding 127, 130 Flexible foam 127 Polyurethane 130 Multi-component operation 117 N N-methylpyrrolidone 269 Navier-Stokes equation 220, 238, 239 NEG alloy 181 Zirconium-based 181 Newtonian fluid 239 Nitrogen 166 NovaFlex 90 Nucleation 91, 101, 105, 215 Nylon 168 O OEM Specifications One-shot elastomer 436-437, 439-443, 465 Hardness buildup 437 Laboratory casting 465 Processability 436 Properties 438 Open cell 158, 159 PU 159 PU foam 158 Ostwald ripening 214 Outgassing 163, 165, 202 Load 166 Oxyethylene moieties 434 Oxygen transmission 176 P Pail test 13, 56 Panel 158, 177, 207 Encapsulated 177 Lifetime of 158 Open cell foam 207 Partial pressure 164 489 Advances in Urethane Science and Technology Particle 327 Morphology 330 Swelling 327 Particle formation 326 Particle size 277, 313, 314 Distribution 277, 313 PDMS 218 Péclet number 241, 251 Permeation 170, 171, 172 Helium 170, 171, 172 Physical properties 3, 23, 33, 35, 37-39, 47, 66, 68-70, 74, 372 Flexible slabstock foam 75 Foam 23 MDI 69, 70 Machine data 33 Review 39 TPR 35, 37 Plateau borders 93, 214, 225, 226 Gibb’s 93 Polarity Polyacrylonitrile 178 Polycat Polyester 168, 178 Polyether chains 218 Polyethylene 176 Polyethylene terephthalate 168 Polyisocyanate 85 Polymer dispersions 261 Polymerisation 270 Radical 270 Polyol 75, 77, 78, 449 EO-tipped propylene oxide 77 Ethylene oxide tipped 75 Molecular weight distribution 449 Polyolefin tipped 78 Polyol functionality 428 Polyoxyethylene 215 Polyoxypropylene glycol 421 Ultra-low monol 421 Polysilicate 217 Trimethylsilyl-capped 217 490 Polytetramethylene glycol 268 Polyurea 215 Polyurethanes 85, 92, 113, 138, 139, 157, 262, 335, 347, 405, 449 Adhesion 347 Adhesive 335, 360 Formulations 335 IR spectra 341 Silane 356 Silane additives 360 Co-injection 138 Cure 338 Dynamic properties 449 Filled 196 Open cell 196 Film 216, 236 Draining thin liquid 236 Rate of drainage 216 Vertical 236 Foam 166, 200 Closed cell 200 Open cell 166 Insulation 157 Glass-reinforced 139 High thermal stability 405 History 85 Markets 92, 113 Mechanical properties 449 Multi-component formulations 113 Two-component 335 Polyurethane castings 376 Polyurethane catalysts 42 Blowing 42 Non-fugitive gelling 42 Polyurethane elastomer 430, 431 Polyurethane Foams 3, 5, 93 Catalysts Flexible 3, 93 Non-fugitive catalysts Tertiary amine catalysts Main Index Polyurethane-urea 324 Double bonds 324 Polyurethane-urea-acrylic dispersions 261 Polyurethane/urea dispersions 466 Formulations 457 Laboratory preparation 466 Polyvinylidene chloride 178 Pot life 372, 375 Determination 375, 390 PPG polyols 424, 429, 436 One-shot elastomer system 436 Processability 429 Processing latitude 434 Property latitude 429 Ultra-low monol 424, 444 PPG/PTMEG blends 447 Elastomer properties 447 Prepolymer-ionomer 265, 275, 276 Processing 113, 167, 179 Desorption 166 Exhaust 179 Latitude Polyurethane 113 Seal-off 179 Thermally activated 167 Yield 187 Propionic acid, dimethylol 269 PU see Polyurethane PVC 136 Q Quality assurance 191 Quality control 172, 191 R Rapid Cure 87 Rate 169 Helium transmission 169 Water transmission 169 Rate-of-rise 18 Raw materials 92 Emulsification 92 Reactive amine catalysts Reactivity 18, 23, 45, 65, 74 Handmix rate of rise 65 Machine free rise 23 Rebound properties 380, 390, 401 Recycling 162 Refrigerators 162 Reeves Brothers 87 Refrigerator 177, 203 Biomedical 203 Laboratory 203 Reinforcement 141 Handling 141 Reynold’s Equation 220, 227 Model 216 Number 241 Rigid foam 158 Open cell 158 Robots 121, 145 Cartesian 122 Foaming 121 Robotics 145 S Scalloping 23, 25 Seating 17 Automotive 113, 122, 130 Back formulation 19-22, 30-34, 36, 38, 40, 44-46, 48, 60, 113 Cushion formulation 19-22, 26-29, 34-35, 37, 39, 43-44, 46, 49, 57, 59 Polyurethane 17 PU back formulation 18 PU cushion formulation 17 Service station 125 Shear modulus 386 Shore hardness 372 491 Advances in Urethane Science and Technology Shrinkage 12, 61 Foam 61 Template 12 Silanes 356 Additive 364 Silica 98 Silicone surfactant 4, 95, 99, 213, 215217, 219-220, 228-229, 254 Burning 95 Characterisation data 233 Chemistry 99, 103 Dabco Stabilisation 93 Soft segment content 376 Solvated volume 232, 234 Sound deadening 130 Sponge 214 Stoke’s law 219 Storage modulus 384, 385, 412 Stress conditions 239, 246 Normal 239, 246 Tangential 239, 246 Stress/strain curves 426, 440, 447, 458 Structure 174 Laminate 174 Styrene 269 Polymer dispersions 261 Surface characteristics 335 Surface energy 213, 214 Surface free energy 278, 317 Surface partition coefficient 219, 220 Surface tension 91, 230, 276 Gradient 218-220, 225-226, 229, 232, 234-235, 250, 252-253 Surface viscosity 217 Surfactants 64, 91-92, 101, 108, 213, 229, 232 Activity 92 Concentration 229 Development 101 Emulsification 92 Flexible moulded 64 492 Molecular structure 232 Non-ionic fluorocarbon 229 Silicone 91, 92, 100, 213 Synthesis 288 MDPUR 288 MDPUR-ASD 288 T Tan delta 387, 414 TDI 80, 465 Laboratory preparation 465 MBOCA 450, 453 Mechanical properties 454 Moisture-cured 454 Prepolymers 450, 453, 454, 466 Laboratory casting 466 Tear 380, 390, 401 Resistance 373 Strength 410 Technology 130 Foam & film 130-132, 134-138 Tegostab 102 Tensile 401, 408 Tensile Measurements 410 Modulus 372 Properties 378, 390, 392 Thermal conductivity 159, 174, 175, 180 Thermoregulation 124 Time pressure release test 13 Toluene diisocyanate 85 TPR 23 TPR times 33 Transmission rate 169 Helium 173 Water 169, 173 Transport 126 Systems 126 Treatment 165 Heat 165 Main Index U Urethane elastomers 413 Heat aged 413 Urethanes 335 Adhesion behaviour 335 V Vacuum panel 158, 161, 188, 191 Characterisation 188 Insulating performance 191 Manufacturing process 188 Vacuum panel technology 158 Van der Waals bonding 218 Vending machines 177, 204 Vibrathane 375-376, 378, 383 Video imaging 106 Video microscopy 103, 105 Vinyl staining 42, 62 VIP 190, 193, 197, 202, 203 Longevity 203 Performance 202 Reliability 202 Flange 168 Viscosity 217-218, 220, 227-228, 245, 276 Bulk 220 Bulk dynamic 227 Finite surface 245 Surface 217-218, 220, 225, 227-232, 235-237, 242, 255 Surface dilatational 240 Surface shear 240 Volatile organic compounds Voranol 7, 80 W Water resistance 277 Water transmission 176 Window fogging 42 Z Zeolite 181 Zeta potential 314 493 Advances in Urethane Science and Technology 494 ISBN: 1-85957-275-8 Rapra Technology Limited Rapra Technology is the leading independent international organisation with over 80 years of experience providing technology, information and consultancy on all aspects of rubbers and plastics The company has extensive processing, analytical and testing laboratory facilities and expertise, and produces a range of engineering and data management software products, and computerised knowledge-based systems Rapra also publishes books, technical journals, reports, technological and business surveys, conference proceedings and trade directories These publishing activities are supported by an Information Centre which maintains and develops the world’s most comprehensive database of commercial and technical information on rubbers and plastics Shawbury, Shrewsbury, Shropshire SY4 4NR, UK Telephone: +44 (0)1939 250383 Fax: +44 (0)1939 251118 http://www.rapra.net ... Advances in Urethane Science and Technology Dimensional Stabilising Additives for Flexible Polyurethane Foams Gary D Andrew, Jane G Kniss, Mark L Listemann, Lisa A Mercando, James D Tobias and Stephan... 8.2.4 Physical and Mechanical Properties Determination 372 8.3 HER Materials Synthesis and Characterisation 373 v Advances in Urethane Science and Technology 8.4 Cast Poly(Ether Urethanes)... Preface This is a landmark issue of ‘Advances in Urethane Science and Technology Not only is this the first volume of the new millennium, but it is the first to be published by Rapra Technology On

Ngày đăng: 06/01/2019, 16:13

Từ khóa liên quan

Mục lục

  • Contents

  • 1 Dimensional Stabilising Additives for Flexible Polyurethane Foams

    • 1.1 Introduction

    • 1.2 Experimental Procedures

      • 1.2.1 Materials

      • 1.2.2 Handmix Evaluations

      • 1.2.3 Machine Evaluation

      • 1.3 TDI - Flexible Moulded Additives

        • 1.3.1 Dimensional Stability Additives for TDI

        • 1.3.2 Low Emission Dimensional Stability Additives

        • 1.4 MDI Flexible Moulded Foam Additives

          • 1.4.1 Dimensional Stability Additives for MDI

          • 1.4.2 Low Emissions Dimensional Stability Additives in MDI

          • 1.5 TDI Flexible Slabstock Low Emission Additives

            • 1.5.1 Reactivity

            • 1.5.2 Standard Physical Properties

            • 1.5.3 TDI Flexible Slabstock Foam Review

            • 1.6 Foam Model Tool Discussions

              • 1.6.1 TDI and MDI Moulded Foam Model

              • 1.6.2 TDI Flexible Slabstock Foam Model

              • 1.7 Conclusions

              • 2 Demands on Surfactants in Polyurethane Foam Production with Liquid Carbon Dioxide Blowing

                • 2.1 History of Polyurethane Foams

                  • 2.1.1 Environmental Concerns in Relation to Flexible Foam Density

                  • 2.2 Current Liquid Carbon Dioxide Technologies for Flexible Slabstock Polyether Foam Production

                    • 2.2.1 Machinery

                    • 2.2.2 The Foaming Process

                    • 2.2.3 Additional Tasks of Silicone Surfactants in Flexible Slabstock Foam Production

                    • 2.2.4 Chemistry of a Silicone Surfactant in Flexible Slabstock Foam Production

Tài liệu cùng người dùng

Tài liệu liên quan