THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 625 |
Dung lượng | 48,54 MB |
Nội dung
Ngày đăng: 08/08/2018, 16:50
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
3. Compare the single-link method of clustering with k-means, discussing computational requirements, storage, and applicability of the methods | Sách, tạp chí |
|
||
5. Implement a k-means algorithm and test it on two-dimensional normally distributed data (dataset 2 with n = 500). Also, use the algorithm within a tree-structured vector quantiser and compare the two methods | Sách, tạp chí |
|
||
1. Is the square of the Euclidean distance a metric? Does it matter for any clustering algorithm | Khác | |||
2. Observations on six variables are made for seven groups of canines and given in Table 11.5 (Manly, 1986; Krzanowski and Marriott, 1994). Construct a dissimilarity matrix using Euclidean distance after standardising each variable to unit variance. Carry out a single- link cluster analysis | Khác | |||
4. A mixture of two normals divided by a normal density having the same mean and variance as the mixed density is always bimodal. Prove this for the univariate case | Khác | |||
6. Using dataset 1, code the data using the Luttrell self-organising feature map algorithm (Section 11.5.3). Plot the positions of the centres for various numbers of code vectors | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN