y = f ( x) Câu 48 [2D1-3.8-4] (CHUYÊN THÁI BÌNH LẦN 3-2018) Cho hàm số liên tục y = f '( x) g ( x ) = 2f ( x ) − ( x + 1) hình bên Đặt Mệnh đề đúng? A B C ¡ Đồ thị hàm số g ( x ) = g ( 1) [ −3;3] max g ( x ) = g ( 1) [ −3;3] g ( x ) = g ( 3) [ −3;3] D Không tồn giá trị nhỏ g( x) [ −3;3] Lời giải Đáp án B Ta có: Với x = −3 g ' ( x ) = 2f ' ( x ) − ( x + 1) = ⇔ x = x = x < −3 f '( x) < x +1 ( −∞; −3) ta có: suy hàm số nghịch biến khoảng g ( x) g ( −3 ) g ( 3) Tương tự ta suy hình dạng đồ thị hàm số bên dưới, ta cần so sánh g ( x ) = 2f ( x ) − ( x + 1) ⇒ g ' ( x ) = 2f ' ( x ) − ( x + 1) ; ∀x ∈ ¡ Ta có x = ±3 g ' ( x ) =⇔ f ' ( x ) = x + ⇔ y = f '( x ) x = Phương trình (Dựa vào ÐTHS ) g '( x) Bảng xét dấu max g ( x ) = g ( 1) [ −3;3] Dựa vào bảng xét dấu, ta −3 ∫ 2f ' ( x ) − 2x dx > − ∫ 2f ' ( x ) − 2x dx Dựa vào hình vẽ lại có g ( 1) − g ( −3) > g ( 1) − g ( 3) ⇔ g ( ) > g ( −3 ) Do