Algorithms for Communications Systems and Their Applications Nevio Benvenuto and Giovanni Cherubini Copyright 2002 John Wiley & Sons, Ltd ISBN: 0-470-84389-6 Algorithms for Communications Systems and their Applications Algorithms for Communications Systems and their Applications Nevio Benvenuto University of Padova, Italy Giovanni Cherubini IBM Zurich Research Laboratory, Switzerland Copyright c 2002 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (C44) 1243 779777 Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com Reprinted with corrections March 2003 All Rights Reserved No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (C44) 1243 770571 Neither the author(s) nor John Wiley & Sons, Ltd accept any responsibility or liability for loss or damage occasioned to any person or property through using the material, instructions methods or ideas contained herein, or acting or refraining from acting as a result of such use The author(s) and Publisher expressly disclaim all implied warranties, including merchantability of fitness for any particular purpose Designations used by companies to distinguish their products are often claimed as trademarks In all instances where John Wiley & Sons is aware of a claim, the product names appear in initial capital or capital letters Readers, however, should contact the appropriate companies for more complete information regarding trademarks and registration Other Wiley Editorial Offices John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA Wiley-VCH Verlag GmbH, Boschstr 12, D-69469 Weinheim, Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic books British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 0-470-84389-6 Produced from LATEX files supplied by the authors, processed by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by Biddles Ltd, Guildford and King’s Lynn This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production To Adriana, and to Antonio, Claudia, and Mariuccia Contents Preface xxix Acknowledgements xxxi Elements of signal theory 1.1 Signal space : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Properties of a linear space : : : : : : : : : : : : : : : : Inner product : : : : : : : : : : : : : : : : : : : : : : : 1.2 Discrete signal representation : : : : : : : : : : : : : : : : : : : : The principle of orthogonality : : : : : : : : : : : : : : Signal representation : : : : : : : : : : : : : : : : : : : Gram–Schmidt orthonormalization procedure : : : : : : 1.3 Continuous-time linear systems : : : : : : : : : : : : : : : : : : : 1.4 Discrete-time linear systems : : : : : : : : : : : : : : : : : : : : : Discrete Fourier transform (DFT) : : : : : : : : : : : : The DFT operator : : : : : : : : : : : : : : : : : : : : : Circular and linear convolution via DFT : : : : : : : : : Convolution by the overlap-save method : : : : : : : : : IIR and FIR filters : : : : : : : : : : : : : : : : : : : : 1.5 Signal bandwidth : : : : : : : : : : : : : : : : : : : : : : : : : : The sampling theorem : : : : : : : : : : : : : : : : : : Heaviside conditions for the absence of signal distortion 1.6 Passband signals : : : : : : : : : : : : : : : : : : : : : : : : : : : Complex representation : : : : : : : : : : : : : : : : : : Relation between x and x bb/ : : : : : : : : : : : : : : : Baseband equivalent of a transformation : : : : : : : : : Envelope and instantaneous phase and frequency : : : : 1.7 Second-order analysis of random processes : : : : : : : : : : : : : 1.7.1 Correlation : : : : : : : : : : : : : : : : : : : : : : : : : : Properties of the autocorrelation function : : : : : : : : 1.7.2 Power spectral density : : : : : : : : : : : : : : : : : : : : Spectral lines in the PSD : : : : : : : : : : : : : : : : : Cross-power spectral density : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 6 13 17 19 20 21 23 25 28 30 32 33 33 34 42 43 44 45 46 46 47 48 viii Contents 1.8 1.9 1.10 1.11 1.12 1.13 Properties of the PSD : : : : : : : : : : : : : : : PSD of processes through linear transformations : PSD of processes through filtering : : : : : : : : 1.7.3 PSD of discrete-time random processes : : : : : : : Spectral lines in the PSD : : : : : : : : : : : : : PSD of processes through filtering : : : : : : : : Minimum-phase spectral factorization : : : : : : 1.7.4 PSD of passband processes : : : : : : : : : : : : : PSD of the quadrature components of a random process : : : : : : : : : Cyclostationary processes : : : : : : : : : : : : : The autocorrelation matrix : : : : : : : : : : : : : : : : : : Definition : : : : : : : : : : : : : : : : : : : : : Properties : : : : : : : : : : : : : : : : : : : : : Eigenvalues : : : : : : : : : : : : : : : : : : : : Other properties : : : : : : : : : : : : : : : : : : Eigenvalue analysis for Hermitian matrices : : : Examples of random processes : : : : : : : : : : : : : : : Matched filter : : : : : : : : : : : : : : : : : : : : : : : : Matched filter in the presence of white noise : : Ergodic random processes : : : : : : : : : : : : : : : : : : 1.11.1 Mean value estimators : : : : : : : : : : : : : : : : Rectangular window : : : : : : : : : : : : : : : Exponential filter : : : : : : : : : : : : : : : : : General window : : : : : : : : : : : : : : : : : : 1.11.2 Correlation estimators : : : : : : : : : : : : : : : : Unbiased estimate : : : : : : : : : : : : : : : : : Biased estimate : : : : : : : : : : : : : : : : : : 1.11.3 Power spectral density estimators : : : : : : : : : : Periodogram or instantaneous spectrum : : : : : Welch periodogram : : : : : : : : : : : : : : : : Blackman and Tukey correlogram : : : : : : : : Windowing and window closing : : : : : : : : : Parametric models of random processes : : : : : : : : : : : ARMA p; q/ model : : : : : : : : : : : : : : : MA(q) model : : : : : : : : : : : : : : : : : : : AR(N ) model : : : : : : : : : : : : : : : : : : : Spectral factorization of an AR(N ) model : : : : Whitening filter : : : : : : : : : : : : : : : : : : Relation between ARMA, MA and AR models : 1.12.1 Autocorrelation of AR processes : : : : : : : : : : 1.12.2 Spectral estimation of an AR.N / process : : : : : : Some useful relations : : : : : : : : : : : : : : : AR model of sinusoidal processes : : : : : : : : Guide to the bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48 49 50 50 51 52 53 54 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54 56 63 63 63 63 64 65 67 73 74 76 78 80 81 82 82 82 83 84 84 85 86 86 90 90 91 91 94 94 94 96 98 99 101 102 Contents Bibliography : : : : : : : : : : : : : : : : Appendices : : : : : : : : : : : : : : : : 1.A Multirate systems : : : : : : : : : : 1.A.1 Fundamentals : : : : : : : : 1.A.2 Decimation : : : : : : : : : 1.A.3 Interpolation : : : : : : : : : 1.A.4 Decimator filter : : : : : : : 1.A.5 Interpolator filter : : : : : : : 1.A.6 Rate conversion : : : : : : : 1.A.7 Time interpolation : : : : : : Linear interpolation : : : : Quadratic interpolation : : 1.A.8 The noble identities : : : : : 1.A.9 The polyphase representation Efficient implementations : 1.B Generation of Gaussian noise : : : : ix : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 103 104 104 104 106 109 110 112 113 116 116 118 118 119 120 127 The Wiener filter and linear prediction 2.1 The Wiener filter : : : : : : : : : : : : : : : : : : : : : : : : Matrix formulation : : : : : : : : : : : : : : : : : Determination of the optimum filter coefficients : : The principle of orthogonality : : : : : : : : : : : Expression of the minimum mean-square error : : : Characterization of the cost function surface : : : : The Wiener filter in the z-domain : : : : : : : : : 2.2 Linear prediction : : : : : : : : : : : : : : : : : : : : : : : : Forward linear predictor : : : : : : : : : : : : : : Optimum predictor coefficients : : : : : : : : : : : Forward “prediction error filter” : : : : : : : : : : Relation between linear prediction and AR models First and second order solutions : : : : : : : : : : 2.2.1 The Levinson–Durbin algorithm : : : : : : : : : : : Lattice filters : : : : : : : : : : : : : : : : : : : : 2.2.2 The Delsarte–Genin algorithm : : : : : : : : : : : : 2.3 The least squares (LS) method : : : : : : : : : : : : : : : : Data windowing : : : : : : : : : : : : : : : : : : : Matrix formulation : : : : : : : : : : : : : : : : : Correlation matrix : : : : : : : : : : : : : : : : Determination of the optimum filter coefficients : : 2.3.1 The principle of orthogonality : : : : : : : : : : : : : Expressions of the minimum cost function : : : : : The normal equation using the T matrix : : : : : : Geometric interpretation: the projection operator : : 2.3.2 Solutions to the LS problem : : : : : : : : : : : : : Singular value decomposition of T : : : : : : : : : Minimum norm solution : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 129 129 130 132 134 135 135 136 140 140 141 142 143 144 145 146 147 148 149 149 150 150 151 152 152 153 154 155 157 x Contents Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : Appendices : : : : : : : : : : : : : : : : : : : : : : : : : : 2.A The estimation problem : : : : : : : : : : : : : : : : : The estimation problem for random variables MMSE estimation : : : : : : : : : : : : : : : Extension to multiple observations : : : : : : MMSE linear estimation : : : : : : : : : : : MMSE linear estimation for random vectors : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 158 159 159 159 159 160 161 162 Adaptive transversal filters 3.1 Adaptive transversal filter: MSE criterion : : : : : : : : : : : : : : 3.1.1 Steepest descent or gradient algorithm : : : : : : : : : : : Stability of the steepest descent algorithm : : : : : : : : Conditions for convergence : : : : : : : : : : : : : : : : Choice of the adaptation gain for fastest convergence : : Transient behavior of the MSE : : : : : : : : : : : : : : 3.1.2 The least mean-square (LMS) algorithm : : : : : : : : : : Implementation : : : : : : : : : : : : : : : : : : : : : : Computational complexity : : : : : : : : : : : : : : : : Canonical model : : : : : : : : : : : : : : : : : : : : : Conditions for convergence : : : : : : : : : : : : : : : : 3.1.3 Convergence analysis of the LMS algorithm : : : : : : : : Convergence of the mean : : : : : : : : : : : : : : : : : Convergence in the mean-square sense (real scalar case) Convergence in the mean-square sense (general case) : : Basic results : : : : : : : : : : : : : : : : : : : : : : : : Observations : : : : : : : : : : : : : : : : : : : : : : : Final remarks : : : : : : : : : : : : : : : : : : : : : : : 3.1.4 Other versions of the LMS algorithm : : : : : : : : : : : : Leaky LMS : : : : : : : : : : : : : : : : : : : : : : : : Sign algorithm : : : : : : : : : : : : : : : : : : : : : : Sigmoidal algorithm : : : : : : : : : : : : : : : : : : : Normalized LMS : : : : : : : : : : : : : : : : : : : : : Variable adaptation gain : : : : : : : : : : : : : : : : : LMS for lattice filters : : : : : : : : : : : : : : : : : : : 3.1.5 Example of application: the predictor : : : : : : : : : : : : 3.2 The recursive least squares (RLS) algorithm : : : : : : : : : : : : Normal equation : : : : : : : : : : : : : : : : : : : : : Derivation of the RLS algorithm : : : : : : : : : : : : : Initialization of the RLS algorithm : : : : : : : : : : : : Recursive form of E : : : : : : : : : : : : : : : : : : Convergence of the RLS algorithm : : : : : : : : : : : : Computational complexity of the RLS algorithm : : : : : Example of application: the predictor : : : : : : : : : : 3.3 Fast recursive algorithms : : : : : : : : : : : : : : : : : : : : : : 3.3.1 Comparison of the various algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 165 166 166 168 169 170 171 173 173 175 175 175 177 178 179 180 183 184 186 186 187 187 188 189 189 191 191 197 198 199 201 202 203 203 203 204 205 Contents Block adaptive algorithms in the frequency domain : : : : : : : : : 3.4.1 Block LMS algorithm in the frequency domain: the basic scheme : : : : : : : : : : : : : : : : : : : : : : : : Computational complexity of the block LMS algorithm via FFT : : : : : : : : : : : : : : : 3.4.2 Block LMS algorithm in the frequency domain: the FLMS algorithm : : : : : : : : : : : : : : : : : : : : : : Computational complexity of the FLMS algorithm : : : : : Convergence in the mean of the coefficients for the FLMS algorithm : : : : : : : : : : : : 3.5 LMS algorithm in a transformed domain : : : : : : : : : : : : : : : 3.5.1 Basic scheme : : : : : : : : : : : : : : : : : : : : : : : : : On the speed of convergence : : : : : : : : : : : : : : : : 3.5.2 Normalized FLMS algorithm : : : : : : : : : : : : : : : : : 3.5.3 LMS algorithm in the frequency domain : : : : : : : : : : : 3.5.4 LMS algorithm in the DCT domain : : : : : : : : : : : : : : 3.5.5 General observations : : : : : : : : : : : : : : : : : : : : : 3.6 Examples of application : : : : : : : : : : : : : : : : : : : : : : : 3.6.1 System identification : : : : : : : : : : : : : : : : : : : : : Linear case : : : : : : : : : : : : : : : : : : : : : : : : : Finite alphabet case : : : : : : : : : : : : : : : : : : : : : 3.6.2 Adaptive cancellation of interfering signals : : : : : : : : : : General solution : : : : : : : : : : : : : : : : : : : : : : : 3.6.3 Cancellation of a sinusoidal interferer with known frequency 3.6.4 Disturbance cancellation for speech signals : : : : : : : : : : 3.6.5 Echo cancellation in subscriber loops : : : : : : : : : : : : : 3.6.6 Adaptive antenna arrays : : : : : : : : : : : : : : : : : : : : 3.6.7 Cancellation of a periodic interfering signal : : : : : : : : : Bibliography : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Appendices : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3.A PN sequences : : : : : : : : : : : : : : : : : : : : : : : : : : : : : Maximal-length sequences : : : : : : : : : : : : : : : : : CAZAC sequences : : : : : : : : : : : : : : : : : : : : : Gold sequences : : : : : : : : : : : : : : : : : : : : : : : 3.B Identification of a FIR system by PN sequences : : : : : : : : : : : 3.B.1 Correlation method : : : : : : : : : : : : : : : : : : : : : : Signal-to-estimation error ratio : : : : : : : : : : : : : : : 3.B.2 Methods in the frequency domain : : : : : : : : : : : : : : : System identification in the absence of noise : : : : : : : : System identification in the presence of noise : : : : : : : 3.B.3 The LS method : : : : : : : : : : : : : : : : : : : : : : : : Formulation using the data matrix : : : : : : : : : : : : : Computation of the signal-to-estimation error ratio : : : : 3.B.4 The LMMSE method : : : : : : : : : : : : : : : : : : : : : 3.B.5 Identification of a continuous-time system : : : : : : : : : : 3.4 xi : : 205 : : 206 : : 206 : : : : 207 209 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 211 211 212 214 214 214 215 216 216 216 217 220 221 222 224 224 225 226 227 229 233 233 233 235 236 239 239 241 242 242 243 244 246 246 249 251 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii Contents Transmission media 4.1 Electrical characterization of a transmission system : : : : : Simplified scheme of a transmission system : : : Characterization of an active device : : : : : : : Conditions for the absence of signal distortion : : Characterization of a 2-port network : : : : : : : Measurement of signal power : : : : : : : : : : 4.2 Noise generated by electrical devices and networks : : : : : Thermal noise : : : : : : : : : : : : : : : : : : : Shot noise : : : : : : : : : : : : : : : : : : : : : Noise in diodes and transistors : : : : : : : : : : Noise temperature of a two-terminal device : : : Noise temperature of a 2-port network : : : : : : Equivalent-noise models : : : : : : : : : : : : : Noise figure of a 2-port network : : : : : : : : : Cascade of 2-port networks : : : : : : : : : : : : 4.3 Signal-to-noise ratio (SNR) : : : : : : : : : : : : : : : : : SNR for a two-terminal device : : : : : : : : : : SNR for a 2-port network : : : : : : : : : : : : Relation between noise figure and SNR : : : : : 4.4 Transmission lines : : : : : : : : : : : : : : : : : : : : : : 4.4.1 Fundamentals of transmission line theory : : : : : : Ideal transmission line : : : : : : : : : : : : : : Non-ideal transmission line : : : : : : : : : : : : Frequency response : : : : : : : : : : : : : : : : Conditions for the absence of signal distortion : : Impulse response of a non-ideal transmission line Secondary constants of some transmission lines : 4.4.2 Cross-talk : : : : : : : : : : : : : : : : : : : : : : Near-end cross-talk : : : : : : : : : : : : : : : : Far-end cross-talk : : : : : : : : : : : : : : : : : 4.5 Optical fibers : : : : : : : : : : : : : : : : : : : : : : : : : Description of a fiber-optic transmission system : 4.6 Radio links : : : : : : : : : : : : : : : : : : : : : : : : : : 4.6.1 Frequency ranges for radio transmission : : : : : : Radiation masks : : : : : : : : : : : : : : : : : : 4.6.2 Narrowband radio channel model : : : : : : : : : : Equivalent circuit at the receiver : : : : : : : : : Multipath : : : : : : : : : : : : : : : : : : : : : 4.6.3 Doppler shift : : : : : : : : : : : : : : : : : : : : : 4.6.4 Propagation of wideband signals : : : : : : : : : : Channel parameters in the presence of multipath : Statistical description of fading channels : : : : : 4.6.5 Continuous-time channel model : : : : : : : : : : : Power delay profile : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 255 255 255 257 259 259 262 263 263 265 265 265 266 267 268 270 272 272 273 274 275 275 276 279 279 282 282 283 286 288 290 291 292 294 295 296 296 299 299 303 305 307 307 309 310 1270 Chapter 19 Design of high speed transmission systems Figure 19.16 Principal signal processing functions performed in a 100BASE-T2 transceiver [From [2] c 1997 IEEE.] The 100BASE-T2 receiver The receive signals r A t/ and r B t/ are bandlimited by analog receive filters (ARFs) to approximately 25 MHz, adjusted in amplitude by variable gain amplifiers (VGAs) and converted from analog-to-digital at a multiple rate of 25 Msamples/s For the following discussion a sampling rate of 50 Msamples/s will be assumed (oversampling factor F0 D 2, or equivalently sampling at the rate 2=T ) The remaining receiver operations are performed digitally Before detection of the pairs of quinary symbols akA R ; akB R / transmitted by the remote transceiver, an adaptive decisionfeedback equalizer (DFE) structure together with adaptive echo and self NEXT cancellers is employed, as shown in Figure 19.16 The forward equalizer sections of the DFE operate on T =2-spaced input signals The estimated echo and self NEXT signals are subtracted from the T -spaced equalizer output signals When signal attenuation and disturbances increase with frequency, as is the case for 100BASE-T2 transmission, a DFE receiver provides noticeably higher noise immunity compared to that achieved by a receiver with linear forward equalization only In Figure 19.16 additional feedback filters for DC restoration are not shown In a complete receiver implementation, these filters are needed to compensate for a spectral null at DC introduced by linear transform coupling This spectral notch may be broadened in a well-defined manner by the analog receive filters and compensated for by non-adaptive IIR filters 19.2 Design of a dual duplex transmission system at 100 Mbit/s 1271 Power spectral density [dB] -10 -20 -30 -40 -50 -60 -70 10 20 25 30 40 50 f [MHz] 60 70 80 90 100 Figure 19.17 Spectral template specified by the 100BASE-T2 standard for the power spectral density of transmit signals and achieved power spectral density for a particular transmitter implementation comprising a 5-tap digital transmit filter, 100 MHz D/A conversion, and a 3Ž order Butterworth analog transmit filter [From [2], c 1997 IEEE.] The use of forward equalizers with T =2-spaced coefficients serves two purposes First, as illustrated in Section 8.4, equalization becomes essentially independent of the sampling phase Second, when the received signals exhibit excess bandwidth, the superposition of spectral input-signal components at frequencies f and f 1=T , for < f < 1=.2T /, in the T -sampled equalizer output signals, can mitigate the effects of synchronous interference and asynchronous disturbances, as shown in Appendix 19.A Interference suppression achieved in this manner can be interpreted as a frequency diversity technique [5] Inclusion of the optional cross-coupling feedforward and backward filters shown in Figure 19.16 significantly enhances the capability of suppressing alien NEXT This corresponds to adding space diversity at the expense of higher implementation complexity Mathematical explanations for the ability to suppress synchronous and asynchronous interference with the cross-coupled forward equalizer structure are given in the Appendix 19.A This structure permits the complete suppression of the alien NEXT interferences stemming from another 100BASE-T2 transceiver operating in the same multi-pair cable at identical clock rate Alternatively, the interference from a single asynchronous source, e.g alien NEXT from 10BASE-T2 transmission over an adjacent pair, can also be eliminated The 100BASE-T2 standard does not provide the transmission of specific training sequences Hence, for initial receiver-filter adjustments, blind adaptation algorithms must be employed When the mean-square errors at the symbol-decision points reach sufficiently low values, filter adaptation is continued in decision directed mode based on quinary symbol 1272 Chapter 19 Design of high speed transmission systems decisions The filter coefficients can henceforth be continuously updated by the LMS algorithm to track slow variations of channel and interference characteristics The 100BASE-T2 Task Force adopted a symbol-error probability target value of 10 10 that must not be exceeded under the worst-case channel attenuation and NEXT coupling conditions when two 100BASE-T2 links operate in a four-pair UTP-3 cable, that are illustrated in Figure 4.23 During the development of the standard, the performance of candidate 100BASE-T2 systems has been extensively investigated by computer simulation For the scheme ultimately adopted, it was shown that by adopting time spans of 32T for the echo and self NEXT cancellers, 12T for the forward filters, and 10T for the feedback filters, the MSEs at the symbol-decision points remain consistently below a value corresponding to a symbol-error probability of 10 12 Computational complexity of digital receive filters The digital receive filters account for most of the transceiver implementation cost It is worthwhile comparing the filter complexities for a dual duplex and a mono duplex scheme Intuitively, the dual-duplex scheme may appear to be more complex, because it requires two transceivers We define the complexity of a finite-impulse response FIR as Filter complexity D time span ð input sampling rate ð output sampling rate D number of coefficients ð output sampling rate D number of multiply-and-adds per second (19.19) Note that the time span of an FIR filter is given in seconds by the product of the number of filter coefficients times the sampling period of the input signal Transmission in a four-pair cable environment with suppression of alien NEXT from a similar transceiver is considered Only the echo and self NEXT cancellers and forward equalizers will be compared Updating of filter coefficients will be ignored For dual duplex transmission, the modulation rate is 25 MBaud and signals are transmitted with about 100% excess bandwidth Echo and self NEXT cancellation requires four FIR filters with time spans TC and input/output rates of 25 Msamples/s For equalization and alien NEXT suppression, four forward FIR filters with time spans TE , an input rate of 50 Msamples/s and an output rate of 25 Msamples/s are needed The modulation rate for mono duplex transmission is 1=T D 50 MBaud and signals are transmitted with no significant excess bandwidth Hence, both schemes transmit within a comparable bandwidth (Ä 25 MHz) For an obvious receiver structure that does not allow alien NEXT suppression, one self NEXT canceller with time span TC and input/output rates of 50 Msamples/s, and one equalizer with time span TE and input/output rates of 50 Msamples/s will be needed However, for a fair comparison, a mono duplex receiver must have the capability to suppress alien NEXT from another mono duplex transmission This can be achieved by receiving signals not only from the receive pair but also in the reverse direction of the transmit pair, and combining this signal via a second equalizer with the output of the first equalizer The additionally required equalizer exhibits the same complexity as the first equalizer The filter complexities for the two schemes are summarized in Table 19.1 As the required time spans of the echo and self NEXT cancellers and the forward equalizers are similar for 19 Bibliography 1273 Table 19.1 Complexities of filtering for two transmission schemes dual duplex Echo and self NEXT cancellers ð TC ð 25 ð 1012 Forward equalizers ð TE ð 50 ð 25 ð 1012 mono duplex ð TC ð 50 ð 50 ð 1012 ð TE ð 50 ð 50 ð 1012 the two schemes, it can be concluded that the two schemes have the same implementation complexity The arguments can be extended to the feedback filters Finally, we note that with the filter time spans considered in the preceding section (TC D 32T , TE D 12T and TFb D 10T ), in a 100BASE-T2 receiver on the order of 1010 multiply-and-add operations/s need to be executed Bibliography ă er, and G Ungerboeck, “A quaternary partial response class-IV [1] G Cherubini, S Olc transceiver for 125 Mbit/s data transmission over unshielded twisted-pair cables: principles of operation and VLSI realization”, IEEE Journal on Selected Areas in Communications, vol 13, pp 16561669, Dec 1995 ă ¸ er, G Ungerboeck, J Creigh, and S K Rao, “100BASE-T2: [2] G Cherubini, S Olc a new standard for 100 Mb/s ethernet transmission over voice-grade cables”, IEEE Communications Magazine, vol 35, pp 115122, Nov 1997 ă er, and G Ungerboeck, “Adaptive analog equalization and receiver [3] G Cherubini, S Olc front-end control for multilevel partial-response transmission over metallic cables”, IEEE Trans on Communications, vol 44, pp 675–685, June 1996 [4] “Supplement to carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications: physical layer specification for 100 Mb/s operation on two pairs of Category or better balanced twisted pair cable (100BASET2, Clause 32)”, Standard IEEE 802.3y, IEEE, Mar 1997 [5] B R Petersen and D D Falconer, “Minimum mean-square equalization in cyclostationary and stationary interference–Analysis and subscriber line calculations”, IEEE Journal on Selected Areas in Communications, vol 9, pp 931–940, Aug 1991 1274 Chapter 19 Design of high speed transmission systems Appendix 19.A Interference suppression Figure 19.18 illustrates the interference situations considered here Equalization by linear forward filters only is assumed Reception of 100BASE-T2 signals is disturbed either by alien NEXT from another synchronous 100BASE-T2 transmitter or by cross-talk from a single asynchronous source Only one of these disturbances may be present The symbol sequences fakA R g and fakB R g denote the sequences transmitted by the remote 100BASEA0 B0 H Ac f / C cA A f / C H Ac H Bc f / C Bc A f / C H Bc T2 transceiver, whereas fak T g and fak T g denote the sequences transmitted by an adjacent synchronous 100BASE-T2 transmitter The spectrum S f / of the asynchronous source may be aperiodic or exhibit a period different from 1=T The functions “H f /” represent the spectral responses of the signal or cross-talk paths from the respective sources to the inputs of the forward equalizer filters with transfer functions C A A f / and C B A f / Because of 2=T sampling rate, these functions exhibit 2=T -periodicity All signals and filter coefficients are real-valued It is therefore sufficient to consider only frequencies f and f 1=T , for < f < 1=.2T / We will concentrate on the signals arriving at decision point DPA; the analysis for signals at DPB is similar Intersymbol-interference free reception of the symbol sequence fakA R g and the suppression of signal components stemming from fakB R g at DPA require  f T f T  B’ (a) {a k T } decimation T DPA ~ {a A R } = k * CBA (f) DPB CAA à f T f T  CB A A’ HB’A (f) nxt HA’A (f) à D1 (19.20) à D0 (b) S(f) {a k T } nxt T CAA (f)  à xt HSA (f) c HA (f) nxt HB’B (f) nxt HA’B (f) A {a k R } H xt (f) SB c HB (f) B {a k R } Figure 19.18 Cross-talk disturbance by: (a) alien NEXT from another synchronous 100BASET2 transmitter, (b) an asynchronous single source, for example, a 10BASE-T transmitter [From [2], c 1997 IEEE.] 19.A Interference suppression 1275 To suppress alien NEXT from a 100BASE-T2 transmitter, two additional conditions must be met:     à à à ý X Ä ` ` ` ` nxt nxt H A0 A f CAA f C H A0 B f CB A f D0 T T T T `D0;1 (19.21)     à à à ý X Ä ` ` ` ` nxt nxt HB A f CAA f C HB B f CB A f D0 T T T T `D0;1 Alternatively, the additional conditions for the suppression of cross-talk caused by a single asynchronous source become HSxtA  f T  à CAA f HSxtA f / C A A f / C HSxtB f / C B A f / D   à à à 1 C HSxtB f CB A f D0 T T T (19.22) Therefore in each case the interference is completely suppressed if for every frequency in the interval < f < 1=.2T / the transfer function values C A A ( f ), C A A ( f 1=T /), C B A ( f ) and C B A f 1=T // satisfy four linear equations It will be highly unlikely that the cross-talk responses are such that the coefficient matrix of these equations becomes singular Hence a solution will exist with high probability In the absence of filter-length constraints, the T =2-spaced coefficients of these filters can be adjusted to achieve these transfer functions For a practical implementation a trade-off between filter lengths and achieved interference suppression has to be made Algorithms for Communications Systems and Their Applications Nevio Benvenuto and Giovanni Cherubini Copyright 2002 John Wiley & Sons, Ltd ISBN: 0-470-84389-6 Index Access methods, 523 Active device, 257 Adaptation gain, 168, 170, 177, 183–185, 189, 212, 645, 703, 1086, 1100, 1104, 1120, 1124, 1250 Adaptive differential pulse code modulation (ADPCM), 341, 393, 398, 456, 1183 Advanced Mobile Phone Service (AMPS), 1180 Algorithm Bahl–Cocke–Jelinek–Raviv (BCJR), 668 Benveniste–Goursat, 1091 Contour (CA), 1093, 1095, 1098, 1102, 1113 Delsarte–Genin, 110, 147 Fano, 917–918 forward backward (FBA), 670, 915, 930, 939, 941, 948 Godard, 1101 Jacobi, 158 Linde–Buzo–Gray (LBG), 424 least-mean-square (LMS), 173–179, 186–191, 205–216, 628, 633, 638, 648–649, 701, 722, 819, 1090, 1120, 1121, 1128, 1251, 1253, 1258, 1272 Lempel–Ziv, 434 Levinson–Durbin, 145 Lloyd, 422 Max, 369 Mueller–Muller, 1064 recursive least-squares (RLS), 197–203, 217, 645, 722, 1180 Sato, 1090, 1096, 1100, 1106 stochastic gradient (SGA), 1086, 1113 stop-and-go, 1092 Viterbi (VA), 663, 677, 682, 686, 691, 823, 915, 921–923, 968, 993, 1007, 1177, 1238, 1262 American National Standards Institute (ANSI), 1152 Analog-to-digital converter (ADC), 331, 338, 341, 385, 572–573, 1189–1191, 1249 Antenna array, 226 directional, 296, 299, 811, 1165 gain, 296 isotropic, 296 Autocorrelation average, 1212 matrix, 63–66, 132, 135, 149, 166, 420, 635, 719, 744 sequence, 50, 53, 86, 144, 401, 622, 655, 678 Automatic gain control (AGC), 1249 Automatic repeat query (ARQ), 807, 827 Autoregressive model (AR), 91–94, 96–101, 101, 115, 143, 197, 414 Autoregressive moving average model (ARMA), 90, 94 Bandwidth definition of, 29 excess, 764, 777, 1131, 1152, 1263, 1269 1278 Bandwidth (continued) minimum, 458, 552, 559, 578, 590, 609, 771, 808, 1003 Bit error probability, 340, 456, 475, 485, 494, 499, 578, 613, 899, 919, 941, 954, 1212, 1224 Bit loading, 1002, 1152 Blind equalization, 1083 Block codes Bose–Chaudhuri–Hocquenghem (BCH), 878–898 generator matrix, 836 generator polynomial, 864 Hamming, 872 low-density parity check (LDPC), 946–955 non binary, 960–965 parity-check matrix, 833 Reed–Solomon, 885 simplex, 875–877 syndrome decoding, 839 Calculus of variations, 731, 1000 Carrier sense multiple access (CSMA), 1164 Cancellation cross-talk, 1116, 1251 echo, 1116–1130, 1145, 1269 Cell radius, 1165, 1182 Cellular systems, 1171, 1182 Channel additive white Gaussian noise (AWGN), 326, 439, 458, 503–506, 543, 713, 999, binary symmetric (BSC), 456, 571 Channel model, 251, 296, 309, 313, 316, 322, 658, 811, 1116 Channel capacity, 503, 999 Cholesky decomposition, 155 Circular convolution, 21–23, 205, 242, 707 Code division multiple access (CDMA), 523, 795, 802, 810, 818, 1180 Code rate, 827, 828, 903, 1177, 1180, 1182, 1185 Index Codes block, 827, 899, 946, 990 Bose–Chaudhuri–Hocquenghem (BCH), 878–898 channel, 827–965 concatenated, 921, 924 convolutional, 900–920 cyclic, 862–898 forward error correction (FEC), 827 linear, 830, 968 low-density parity check (LDPC), 946–955 Reed–Solomon, 885 turbo, 924–942 Walsh–Hadamard, 536 Coding adaptive predictive (APC), 341, 401 adaptive transform (ATC), 341, 433 code excited linear predictive (CELP), 341, 416, 433, 578 linear predictive (LPC), 341, 414 residual excited linear predictive (RELP), 341, 415, 1226 subband (SBC), 341, 456 vector sum excited liner predictive (VSELP), 457, 1177 Coding by modelling, 413 Coherence time, 311, 314 Combining equal gain (EGC), 720 maximal ratio (MRC), 720, 815 optimum (OC), 721 selective, 719 switched, 720 Convolution, 13 Convolutional codes, 900–920 catastrophic error propagation, 910 decoding algorithms, 912–918 general description, 903 transfer function, 907 Correlation coefficient partial (PARCOR), 146 Index Correlogram, 86 Coset, 837–841, 871, 964–965, 977 Costas loop, 1040–1043 Criterion least squares (LS), 148, 197, 429 mean-square error (MSE), 166, 366 Cross-talk far-end (FEXT), 290, 1116 near-end (NEXT), 288–289, 1116, 1251, 1269 Cut-off rate, 509 Cyclostationary process, 56, 1057 Decimation, 106, 236, 380, 766, 1126 Decoding iterative, 929, 939 sequential, 958 Delay spread rms, 307, 1177 Delta modulation (DM), 343, 404 adaptive, 343 continuously variable slope (CVSDM), 411 linear, 407 Demodulation coherent, 499 non coherent, 487, 806, 1213 Despreading, 795, 801 Detection decision feedback sequence (DFSE), 695 maximum likelihood (MLSD), 662, 969, 1262 multiuser, 820, 823, 1131 reduced state sequence (RSSE), 691–696, 716 single-user, 818 threshold, 462, 474, 542, 555 Diagram state, 902, 909, 910 tree, 694, 901, 917, 974, 977 trellis, 664, 667, 677, 682, 903, 921, 968, 971, 981, 986, 990, 1014 Differential PCM (DPCM), 343, 385, 407 1279 Digital European Cordless Telephone (DECT), 523, 1145, 1162, 1182–1185 Digital signal processor (DSP), 709 Digital subscriber line (DSL), 285, 1131–1142, 1147 asymmetric (ADSL), 1148–1150 high bit rate (HDSL), 523, 1147–1148 single line high speed (SHDSL), 919, 1148 very high speed (VDSL), 285, 523, 1115, 1131–1142 Digital-to-analog converter (DAC), 113, 331, 339, 408, 413 572, 1234, 1251 Distance Euclidean, 7, 420, 499, 682, 915, 967 free Euclidean, 919, 967, 986 free Hamming, 907 Hamming, 830, 875, 960 Distortion envelope delay, 319 Diversity frequency, 521, 1167, 1271 polarization, 522 space, 522, 1271 time, 522 Division multiplexing frequency (FDM), 753, 1175 time (TDM), 524, 1175 wavelength (WDM), 292 Doppler frequency, 318 shift, 303 spectrum, 311, 313, 315 spread, 304, 313, 1167 Downlink, 802, 819, 1156, 1175, 1183 Duplex transmission dual, 1154, 1263 full, 522, 1117, 1145–1148, 1251, 1264 half, 522, 1146, 1154 mono, 1154, 1264, 1272 1280 Duplexing digital, 1149 frequency division (FDD), 523, 1146, 1175 time division (TDD), 522, 1184 Dynamic channel allocation (DCA), 1182 Dynamic channel selection (DCS), 1182 Echo cancellation, 225, 1116–1130 Envelope detector, 512 Equalization adaptive, 304, 645, 1018, 1083, 1252 fractionally spaced, 630, 642, 1269 self-training, 1083 Equalizer adaptive, 628, 1083, 1252 decision feedback (DFE), 595, 617, 635–645, 649–656, 695, 710, 741, 777, 823, 1010, 1131, 1270 decision feedback-zero forcing (DFE-ZF), 649, 657, 679, 695 fractionally spaced (FSE), 617, 630–634, 642, 699, 703, 1107, 1270 linear (LE), 594, 619–620, 627–628 linear zero forcing (LE-ZF), 619 passband, 697 Estimation error, 129, 151, 159, 165, 174, 200, 213, 241, 622, 741, 1064, 1105 Estimate biased, 83 unbiased, 82 Estimator early-late, 1055 feedback, 1053 phasor, 1066 timing, 1055 Ethernet, 290, 1152–1155, 1263 European Telecommunications Standards Institute (ETSI), 415, 435, 1137, 1148, 1163, 1185 Excess MSE, 854 Index Extension field, 890, Eye diagram, 562 Fading channel flat, 305, 311, 718 frequency selective, 305, 311, 718 Rayleigh, 308, 518 Rice, 308 FCC, 1162, 1264 Fiber-to-the-curb architecture (FTTC), 1148 Fiber distributed data interface (FDDI), 1155 Filter allpass, 28 bank, 214, 433, 753–755, 757–773, 783, 818, 1152, 1190 Butterworth, 313 decimator, 110, 119–126, 628, 754–755 distributed arithmetic, 1121 finite impulse response (FIR), 25, 116, 129, 165, 399, 754, 1234, 1272 frequency response, 18, 543, 591, 760, 1028 highpass, 28 impulse response, 18, 542, 558, 754, 1005 infinite impulse response (IIR), 25, 90, 136, 317, 622 integrate and dump, 1197 interpolator, 112–126, 315, 754, 773, 1049, 1229 lattice, 146, 191, 204 loop, 1030, 1036, 1054, 1262 lowpass, 28 matched, 73, 462, 494, 567, 621, 698, 755, 799, 813, 1003, 1045, 1243 narrowband, 28 notch, 224 prediction error, 142, 386, 650, 679 transfer function, 16, 91 transversal, 165, 627, 1119–1120, 1255 Index whitened matched (WMF), 651, 1003, 1007 whitening (WF), 94, 651, 1005 Wiener, 129–140, 165, 622 Filter bank critically sampled, 764–767, 769 non critically sampled, 764–769, 777 Finite field, 844 Finite state machine (FSM), 663, 751, 970 Flexible precoding, 1018–1025, 1146 Free space path loss, 298 Frequency deviation, 44, 453, 1197, 1207, 1214 Frequency division duplexing (FDD), 523, 1146, 1175 Frequency reuse, 810, 1165, 1172 Front-end architectures, 1189 Function Bessel, 308, 511, 1056 Marcum, 529 saw-tooth, 1048 Galois field, 844, 851 Gauss quadrature rule, 607 Gaussian random process, 68, 309, 503, 518 Gaussian random variable, 67, 314, 439 Generator matrix, 836, 865, 906 polynomial, 863, 869, 875, 905, 928 Geometric mean, 53, 1001 Global system for mobile communication (GSM), 523, 1172–1177 Gradient vector, 132, 150, 167, 1086 Gram–Schmidt orthonormalization procedure, Granular error, 350, 354, 364 noise, 389, 408, 411 Graph, 907, 947, 952 Gray coding, 462, 531 1281 Group, 830, 961, 977 Guard time, 1176, 1184 Hard input decoding, 913 Heaviside conditions, 32, 259 Householder transformation, 158 Hybrid fiber/coax (HFC) networks, 1156–1160 IEEE 802 Working Group, 1152–1156, 1163–1164, 1266 Indoor environment, 1185 Inner product, Integrated Services Digital Network (ISDN), 1119, 1147–1148, 1173 Intensity profile of multipath, 307 Interference cancellation, 1115 co-channel (CCI), 803 intersymbol (ISI), 456, 557, 604, 620, 655, 674, 749 multiuser (MUI), 803, 817 Interleaving, 913 International Telecommunications Union (ITU), 435, 1146, 1148 Interpolation, 31, 109, 116–118, 339, 764, 1255, 1269 Jakes model, 313 Japanese Digital Cellular (JDC), 1171, 1180, 1235 Lagrange interpolation, 118 Lattice Gosset, 977, 991 Schlaefli, 976, 991 Law A, 363 ¼, 364 Leakage, 86, 1190 Likelihood function, 511, 674, 1051 Likelihood ratio, 442, 675 Limiter-discriminator, 1197 Line coding, 583–601 Line codes biphase, 584 1282 Line codes (continued) block, 585 dicode, 583, 591 duobinary, 591 modified duobinary, 592 NRZ, 583 RZ, 584 Line-of-sight (LOS), 295, 302 LMS algorithm for lattice filters, 191 in a transformed domain, 211 leaky, 187, 634 normalized, 189 sign, 187 Local area network (LAN), 290, 523, 1152, 1155 Local multipoint distribution service (LMDS), 1165 Log-likelihood function, 512, 677 Log-likelihood ratio, 676, 916, 934 Matrix circulant, 243, 776 diagonal, 20, 22, 155 generator, 836, 865, 906 Hadamard, 536 Hermitian, 65 inverse, 145 parity check, 833–836, 840, 865, 870, 905, 906, 946–950, 962–965 Toeplitz, 63 triangular, 214 unitary, 66, 168, 182, 212 Vandermonde, 890 Maximum a posteriori (MAP) criterion, 160, 441, 661, 675, 677, 915, 921, 932, 948 Max-Log-MAP, 675, 677, 916, 921 Log-MAP, 677, 916, 952 Mean convergence of the, 178 Medium access control (MAC), 1156, 1163–1164 Message-passing decoding, 946, 953 Minimum function, 857–861 Index Modulation amplitude (AM), 295, 461, 480, 539 amplitude and phase (AM-PM), 480 binary, 437, 487, 520 binary phase shift keying (BPSK), 450, 470, 477, 795, 919 biorthogonal, 493 carrierless AM/PM (CAP), 568–570 continuous phase (CPM), 1246–1248 continuous phase FSK (CPFSK), 1217, 1219 differential PSK (DPSK), 474–475 DMT, 770, 775, 781 double sideband (DSB), 41, 58, 608 DWMT, 782 FMT, 771, 777, 781 frequency (FM), 1197, 1213 frequency-shift keying (FSK), 452, 516, 519, 1207 Gaussian minimum-shift keying (GMSK), 1229–1243 index, 453, 1209 minimum-shift keying (MSK), 454, 1214–1228 multicarrier (MC), 753 offset QPSK (OQPSK), 1203, 1220 on-off keying (OOK), 510 orthogonal, 486 phase-shift keying (PSK), 465, 474, 995 pulse amplitude (PAM), 69, 72, 461–464, 539–543, 583, 1040 pulse duration (PDM), 464, 532, 534 pulse position (PPM), 464, 532 quadrature amplitude (QAM), 480–485, 502, 544–548, 611 quadrature PSK (QPSK), 472–473 single sideband (SSB), 58, 499 trellis coded (TCM), 967–998 vestigial sideband (VSB), 781 Moving average model (MA), 91, 94, 398 Index Multichannel multipoint distribution service (MMDS), 1165 Multipath, 299, 302, 307, 521, 717, 803, 811, 1167, 1243 Multiple access code division (CDMA), 524, 795, 802, 810, 818, 1180 frequency division (FDMA), 523, 1178 time division (TDMA), 524, 1158, 1175 Noble identities, 118, 759 Noise figure, 268, 270, 274 impulse, 782, 1158 shot, 265, 294, 326 temperature, 265, 273 thermal, 263–264 Norm, Numerically controlled oscillator (NCO), 1054 Nyquist criterion, 559, 562, 589 frequency, 462, 559, 616 pulse, 559, 801 OFDM, 753–794 passband, 780 synchronization of, 779 systems, 769, 773, 780, 1002, 1128 Optical fibers, 291–294, 1148 Orthogonality principle, 134, 151 Oversampling, 404, 627, 630, 699, 1062 Parseval theorem, 15, 84 Partial response systems, 587, 1096, 1249 Per survivor processing (PSP), 695 Periodogram, 84 Welch, 85 Personal communication services (PCS), 810 Phase detector (PD), 1030 Phase deviation, 44, 322, 1193 1283 Phase jitter, 321 Phase noise, 321, 697, 1189 Phase-locked loop (PLL), 326, 1029–1039, 1074, 1105, 1262 Pilot signal, 1027 Power amplifier (HPA), 322, 1171 Power back-off, 1136–1141 Power delay profile, 310, 812, 1243 Power spectral density (PSD), 46–62 Precoding, 596, 777, 599, 1008–1025 Prediction error, 141, 176, 192, 385, 399, 657 linear, 129, 140–147, 414, 1180 optimum, 143, 392 Predictor backward, 140 forward, 140 linear, 140, 385, 391 optimum, 141, 399 Probability a posteriori, 160, 441, 661, 668, 931, 954 a priori, 440, 669 conditional, 159, 442, 510 transition, 932 Probability density function Gaussian, 567 Rayleigh, 308 Rice, 308, 518 Probability of error, 454, 483, 489, 494, 899 Processing gain, 809 Projection operator, 153 Pseudo-inverse matrix, 155–157 Pseudo-noise (PN) sequences, 233–238 CAZAC, 235 Gold, 236 maximal length, 233 Public switched telephone network (PSTN), 331, 1018, 1145 Pulse code modulation (PCM), 345, 357, 377, 385, 571 QPR-IV transceiver, 1249–1262 Quantization adaptive, 377 1284 Quantization (continued) error, 345, 347, 350, 352, 387, 404, 575 scalar, 417, 420, 424 uniform, 355 vector, 417–432 Quantizer adaptive, 377–379, 381 non uniform, 358–377 uniform, 346, 353 vector, 418, 421 Quotient group, 978 Radio link, 294–318 Raised cosine pulse, 559–561 Rake receiver, 811, 815, 1181 Rate bit, 331, 338, 340, 379, 406, 457, 504, 539, 578, 827–830, 1002 sampling, 407, 555, 616, 626, 769 symbol, 458, 540, 754 Receiver direct conversion, 1190 superheterodyne, 1189 optimization, 731 Recovery carrier frequency, 1068 carrier phase, 1050, 1104 timing, 1046, 1053, 1060, 1074, 1252, 1269 Reflection coefficient, 146, 278 Regenerative repeaters, 575–581 Sampling theorem, 8, 30, 337, 627, 1046 Scattering, 295, 300, 310 Scrambling, 803, 1153, 1265 Self-training equalization 1083–1114 Set partitioning, 694, 973, 1014 Shadowing, 313 Shannon limit, 499, 504, 508, 924, 947 Signal analytic, 33, 38, 780, 804 bandwidth, 28–29 baseband, 31, 36, 459 baseband equivalent, 33–34, 549 Index complex envelope, 34 envelope, 43, 322 passband, 33, 697, 780 space, 1–4, 439, 990, 1008 Signal constellation, 12, 458 Signal-to-interference ratio (SIR), 798 Signal-to-noise ratio (SNR), 272, 449, 463, 469, 552, 626 Signal-to-quantization error ratio, 352, 354, 364, 387 Simplex transmission, 523 Simplex cyclic codes, 875–878 Singular-value decomposition (SVD), 155 Slope overload distortion, 389 Soft output Viterbi algorithm (SOVA), 921–924 Source coding, 433 Spectral efficiency, 458, 460, 463, 468, 503, 782, 991 Spectral factorization, 53 Spread spectrum systems, 795–826 applications of, 807 chip equalizer, 818 direct sequence, 795 frequency hopping, 804 symbol equalizer, 819 synchronization, 1074 Soft input decoding, 900, 914 Spreading techniques, 795 factor, 795, 1074 Standard ADSL, 1148 DECT, 1182 Ethernet, 1152, 1156, 1263–1273 FDDI, 1155 HDSL, 1147 HIPERLAN, 1185 IS-136, 1177 JDC, 1180 modem, 1146–1147 SHDSL, 1148 speech and audio, 434 Token Ring, 1155 Index VDSL, 1148 video, 435 Sufficient statistic, 440, 681, 816, 1007 Symbol error probability, 463, 469, 483, 508, 565, 604, 682 Synchronization, 1027–1082 Syndrome, 839–841, 871, 889, 895, 965 System bandwidth, 265, 590, 1171 baseband equivalent, 549, 775 causal, 18 continuous time, 13 discrete time, 17, 556, 1003 identification, 239–254 T1 carrier, 524 Tanner graph, 947 girth, 952 Telecommunications Industry Association (TIA), 286 Telephone channel, 318–322, 697, 703 Token Ring, 1155 Tomlinson–Harashima precoding, 1009 Transform D, 903 discrete cosine (DCT), 214–215, 433, 790 discrete Fourier (DFT), 19, 206, 214, 433 fast Fourier (FFT), 20 Fourier, 14–17 1285 Hilbert, 37–38 z, 18 Transmission lines, 274–291 Trellis coded modulation (TCM), 967–997 Union bound, 455 Universal mobile telecomunication service (UMTS), 1170, 1181 Uplink, 803, 1156, 1158, 1175 User code, 796, 803 Vector quantization (VQ), 417–432 Vocoder, 341, 414 Voltage controlled oscillator (VCO), 1030, 1042, 1189, 1252 Wiener–Khintchine theorem, 46 Window Hann, 82 raised cosine or Hamming, 82 rectangular, 78, 82, 239 triangular or Bartlett, 82 Window closing, 86 Wireless local area networks (WLANs), 1162–1163, 1170, 1185 Yule–Walker equations, 97 Zero-forcing equalizer LE-ZF, 619, 648–649 DFE-ZF, 649, 651, 655 ... lambda psi ¼ M mu ! sigma omega Algorithms for Communications Systems and Their Applications Nevio Benvenuto and Giovanni Cherubini Copyright 2002 John Wiley & Sons, Ltd ISBN: 0-470-84389-6 Chapter... Germany John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia John Wiley & Sons (Asia) Pte Ltd, Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809 John Wiley & Sons. .. Paci for their support in developing the software for the book, Charlotte Bolliger and Lilli M Pavka for their assistance in administering the project, and Urs Bitterli and Darja Kropaci for their