1. Trang chủ
  2. » Giáo Dục - Đào Tạo

SDHLT 02986 electric machines modeling, condition monitoring, and fault diagnosis

276 110 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 276
Dung lượng 28,28 MB

Nội dung

ELECTRIC MACHINES MODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS r- ' ■ ( ^ -— j I ^ E y e W '^ ^ ' ^ Wo u n d s t a t o r r = '" In s u la tio n ^ ^ '' - yCi End Shield f' \ I ' Lam inations S Shaft Slinger Gasket To Fram e Protection To inner HAMID A TOLIYAT •SUBHASIS NANDI SEUNGDEOG CHOI • HOMAYOUN MESHGIN-KELK CRC Press , Taylor & Francis Croup ELECTRIC MACHINES MODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS ELECTRIC MACHINES MODELING, CONDITION MONITORING, AND FAULT DIAGNOSIS HAMID A TOLIYAT SUBHASIS NANDI SEUNGDEOG CHOI HOMAYOUN MESHGIN-KELK -^-1 hÀ\G HAI V ê \AM TÀI LI£llTHL(■VIÊ^ CRC Press Taylor &i Francis Group Boca Raton London N e w York C R C Press is an im p rin t of the Taylor & Francis C ro u p , an in fo r m a business C R C Press Taylor & Francis G ro u p 0 B r o k e n S o u n d P a r k w a y N\X', S u i t e 0 B o c a R a t o n , FL 3 48 - © by T a y l o r & F r a n c i s G r o u p , LLC C R C P r e s s is a n i m p r i n t o f T a y l o r & F r a n c i s G r o u p , a n I n t o r m a b u s i n e s s \ ' o c l a i m t o o r i g i n a l U.S G o v e r n m e n t w o r k s \ e r s i o n D at e : 2 I n t e r n a t i o n a l S t a n d a r d Bo o k N u m b e r : 97 - - - 7 - ( H a r d b a c k l T h is bo o k c o n ta in s in fo rm a tio n o b ta in e d from a u th e n tic a n d highly re g a rd e d so u rces R e a so n a b lf efforts h a v e b e e n m a d e t o p u b l i s h r e l ia b l e d a t a a n d i n f o r m a t i o n , b u t t h e a u t h o r a n d p u b l i s h e r c a n n o t a s s u m e r e s p o n s i b i l i t y for t h e v a l i d i t y o f all m a t e r i a l s o r t h e c o n s e q u e n c e s o f t h e i r use T h e a u t h o r s a n d p u b l i s h e r s h a v e a t t e m p t e d t o t r a c e t h e c o p y r i g h t h o l d e r s o f all m a t e r i a l r e p r o d u c e d in t h i s p u b l i c a t i o n a n d a p o l o g i z e to c o p y r i g h t h o l d e r s if p e r m i s s i o n t o p u b l i s h in t h i s f o r m h a s n o t b e e n o b t a i n e d If a n y c o p y r i g h t m a t o r i a l h as n o t b e e n a c k n o w l e d g e d p l e a s e w r i t e a n d let u s k n o w so w e m a y r e c t i f y in a n y f u t u r e r e p r i n t E x c e p t a s p e r m i t t e d u n d e r U.S C o p y r i g h t Law, n o p a r t o f t h i s b o o k m a y be r e p r i n t e d , r e p r o d u c e d , t r a n s m i t ­ t e d , o r u t i l i z e d in a n y f o r m by a n y e l e c t r o n i c , m e c h a n i c a l , o r o t h e r m e a n s , n o w k n o w n o r h e r e a f t e r i n v e n t e d , i n c l u d i n g p h o t o c o p y i n g , m i c r o f i l m i n g , a n d r e c o r d i n g , o r in a n y i n f o r m a t i o n s t o r a g e o r r e t r i e v a l s y s t e m , w ith o u t w ritte n p e rm issio n from the publishers F o r p e r m i s s i o n t o p h o t o c o p y o r u s e m a t e r i a l e l e c t r o n i c a l l y f r o m t h i s w o r k , p le as e ac c e s s w w w c o p y r i g h t c o m ( h t t p : / / w w w c o p y r i g h t c o m / ) o r c o n t a c t t h e C o p y r i g h t C l e a r a n c e C e n t e r , Inc (C C C ) , 2 R o s e w o o d D r iv e , D a n v e r s , M A , - - 0 C C C is a n o t - f o r - p r o f i t o r g a n i z a t i o n t h a t p r o v i d e s l i c e n s e s ind r e g i s t r a t i o n for a v a r i e t y o f u s e r s F or o r g a n i z a t i o n s t h a t h a v e b e e n g r a n t e d a p h o t o c o p y li c e n s e by t h e C C C , a s ep arate system o f p ay m en t has been arranged T r a d e m a r k N o t ic e : P r o d u c t o r c o r p o r a t e n a m e s m a y be t r a d e m a r k s o r r e g i s t e r e d t r a d e m a r k s , a n d a r e u s e d o n l y fo r i d e n t i f i c a t i o n a n d e x p l a n a t i o n w i t h o u t i n t e n t t o in f r i n g e L ib r y o f C o n g r e s s C a t a lo g in g - in - P u b lic a t io n D a ta E l e c t r i c m a c h i n e s : m o d e l i n g , c o n d i t i o n m o n i t o r i n g , a n d f au lt d i a g n o s i s / H a m i d A T o li ya t [et al.] p cm Includes bibliographical references a n d index I S BN - - - 7 - ( h a r d b a c k ) E l e c t r i c m a c h i n e r y - - R e l i a b i l i t y M a c h i n e r y - - M o n i t o r i n g M a c h i n e p a r t S ' - F a i l u r e s I To l iy at , H a m i d A T K 3 E 4 20 12 ’0 - d c V is it t h e T a y lo r & F r a n c is W e b s it e at h t t p : //w w w t a y lo r a n d f r a n c is c o m a n d t h e C R C P r e s s W e b s it e at h t t p : //w w w c r c p r e s s c o m 20i2 t)2 Contents P re fa c e xi In tr o du c ti o n Seun gdeog Choi R e f e re n c e s F a u lts in I n d u c t i o n a n d S y n c h r o n o u s M o t o r s .9 Bilal A kin an d M ina M Rahim ian 2.1 In tro d u c tio n of Induction M otor Favilt 2.1.1 B earing F au lts 2.1.2 Stator F a u l t s 11 2.1.3 Broken Rotor Bar F a u lt 13 2.1.4 Eccentricity Fault 15 2.2 I n tro d u c tio n of S y n c h ro n o u s M otor Fault D ia g n o s is 16 2.2.1 D a m p e r W in d in g F a u lt 17 2.2.2 D e m a g n e tiz a tio n Fault in P e rm a n e n t M ag n e t S y n c h ro n o u s M a c h in e s (PMSM s) 18 2.2.3 Eccentricity F ault 19 2.2.4 Stator Inter-Turn F a u lt 20 2.2.5 Rotor Inter-Turn F au lt 21 2.2.6 Bearing Fault 22 R e fe r e n c e s 23 M o d e l i n g o f E lectric M a c h in e s U sin g W i n d i n g a n d M o d if ie d W i n d i n g F u n c tio n A p p r o a c h e s 27 Su bhasis N andi 3.1 3.2 I n t r o d u c t i o n 27 W in d in g a n d M odified W in d in g F un ctio n A p p ro a c h e s (WFA a n d M W F A ) 28 3.3 In d u c ta n c e C alculatio ns U sing WFA a n d M W F A .33 3.4 Validation of Inductance Calculations U sing WFA a n d M W F A 39 R e f e r e n c e s 45 Contents vi M o d e lin g of Electric M a c h i n e s U s in g M a g n e tic E q u iv a le n t C ir c u it M e t h o d .47 H om ayoun M eshgin-K elk 4.1 4.2 In tro c iu c tio n 47 In direct A pplication of M agnetic E qui\'alent Circuit for A nalysis of Salient Pole S y n c h ro n o u s M a c h i n e s 52 4.2.1 M agnetic Equivalent C ircuit of a Salient Pole S y n c h ro n o u s M a c h in e 53 4.2.2 In d u c ta n c e Relations of a Salient Pole S y n c h ro n o u s M a c h in e 55 4.2.3 C alcu lation of In d u c ta n c e s for a Salient Pole S y n c h ro n o u s M a c h in e 58 4.2.4 E x p e rim en ta l M e a s u r e m e n t of I n d u ctan c e s of a Salient Pole S y n c h ro n o u s M a c h i n e 63 4.3 In direct A pplication of M agnetic E quivalent C ircuit for A nalysis of In d u c tio n M a c h i n e s 66 4.3.1 A Simplified M ag netic E q u i\’alent Circuit of In d u c tio n M a c h in e s 66 4.3.2 In d uctance Relations of Indu ctio n M a c h i n e s 68 4.3.3 C alculation of In d u c ta n c e of an In d u c tio n M a c h i n e 70 4.4 D irect A pplication of M agnetic E quivalent Circuit C o n sid e rin g N o n lin e a r M ag netic C haracteristic for M a c h in e A n a ly s is 73 A p p e n d ix A: Induction M achine P a r a m e t e r s 77 A p p e n d ix B: N o d e Perm e an c e M a trice s 78 R e f e re n c e s 79 A n a l y s i s o f F a u lt y I n d u c t i o n M o t o r s U s in g F i n i te E le m e n t M e t h o d 81 Bashir M alidi Ebrahim i 5.1 5.2 5.3 5.4 5.5 I n tr o d u c t io n .81 G eom e tric a l M o d e lin g of Faulty In d u c tio n M otors U sing T im e-S tep ping Finite E lem ent M e th o d (TSFEM ) 82 C o u p lin g of Electrical C ircuits a n d Finite Elem ent A r e a 83 M o d e lin g Internal Faults U sing Finite Elem ent M e t h o d 85 5.4.1 M o d e lin g Broken Bar F ault .85 5.4.2 M o d e lin g Eccentricity F a u l t .87 5.4.2.1 Static E c c e n tric ity 87 5.4.2.2 D y n a m ic E c c e n tric ity 89 5.4.2.3 M ixed E c c e n tric ity 90 Im p act of M agnetic S a tu tio n on A ccurate Fault D etection in I n d u c tio n M o t o r s 91 Contents 5.5.1 A nalysis of A ir-G ap M agnetic Flux D ensity in H ealthy a n d Faulty Indu ctio n M o to r .94 5.5.1.1 Linear M a g n e tiz a tio n C c te ristic 94 5.5.1.2 N o n lin e a r M a g n e tiz a tio n C h a c te ris tic 95 R e fe re n c e s 96 Fault D i a g n o s i s of Electric M a chi ne s U si ng Techni ques Based on Frequency D o m a i n 99 Subhasis N andi 6.1 6.2 6.3 I n tr o d u c tio n 99 Som e D efinitions a n d Exam ples Related to Signal Processing 100 6.2.1 C o n tin u o u s v e rsu s Discrete or Digital or S am p led S i g n a l 100 6.2.2 C o n tin u o u s, D iscrete Fourier Transform s, a n d N o n p a r a m e tr ic Pow er S p e c tr u m E stim a tio n 101 6.2.3 Param etric Pow er S p e c tr u m E s tim a ti o n 105 6.2.4 Pow er S p e c tr u m E stim a tio n Using H ig h e r-O rd e r Spectra (H O S ) .107 6.2.5 Pow'er S p e c tr u m E stim atio n U sing Sw ept Sine M e a s u re m e n ts or Digital Frequency Locked Loop T echnique (D FLL ) 110 D iag nosis of M a c hine Faults U sing Freq uen cy -D om ainBased T e c h n iq u e s I l l 6.3.1 D etection of M otor B earing F a u l t s I l l 6.3.1.1 M ech anical Vibration Frequency A n alysis to Detect Bearing F a u l t s .I l l 6.3.1.2 Line C u r re n t Frequ en cy A n alysis to D etect Bearing F a u lts 115 6.3.2 D etection of Stator F a u lts 116 6.3.2.1 Detection of Stator Faults U sing External Flux S e n s o r s 116 6.3.2.2 D etection of Stator Faults U sing Line C u rre n t H a r m o n i c s .117 6.3.2.3 Detection of Stator Faults Using T erm inal Voltage H a rm o n ic s at S w itc h - O f f 119 6.3.2.4 Detection of Stator Faults Using Field C u rr e n t a n d Rotor Search Coil H a rm o n ic s in S y n c h ro n o u s M a c h in e s 121 6.3.2.5 D etection of Stator Faults U sing Rotor C u r r e n t a n d Search Coil Voltages H a rm o n ic s in W o u nd Rotor Ind uction M a c h in e s 124 6.3.3 D etection of Rotor F a u l t s 129 C.antcnts viii 6.3.3.1 Detection of Rotor Faults in Stator l.ine C urrent, Speed, Torque, a n d P o w e r 130 6.3.3.2 D etection of Rotor Faults in E xternal and Internal Search C o i l 134 6.3.3.3 Detection of Rotor Faults Using T erm in al Voltage H a rm o n ic s at S w itc h -O ff 134 6.3.3.4 D etection of Rotor Faults at S t a r t - U p .134 6.3.3.5 D etection of Rotor Faults in Presence of In terbar C u r r e n t U sing Axial Vibration S ig n a ls 135 6.3.4 D etection of Eccentricity F a u lts 136 6.3.4.1 D etectio n of Eccentricity Faults U sin g Line C u rr e n t Signal S p e c t r a 136 6.3.4.2 D etection of Eccentricity Faults Based on N a m e p la te P a r a m e t e r s 142 6.3.4.3 D etection of Eccentricity Faults U sing M e c hanical Vibration Signal S p e c t r a 147 6.3.4.4 D etection of Inclined Eccentricity F a u lts 147 6.3.5 Detection of Faults in Inverter-Fed Induction M a c h i n e s 148 R e f e re n c e s 149 Fa u lt D ia g n o s is of E lectric M a c h i n e s U s in g M o d e l-B a s e d T e c h n i q u e s 155 Siibhasis N andi 7.1 7.2 7.3 I n tr o d u c tio n 155 Model of H ealthy Three-Phase Squirrel-Cage Induction M o to r 158 M odel of T h re e -P h ase S quirrel-C age In duction M otor w ith Stator Inter-Turn Faults 165 7.3.1 M odel w ith o u t S a tu tio n 165 7.3.2 M odel w ith S a t u r a t i o n 169 7.4 M odel of S quirrel-C age Indu c tion M otor w ith Incipient Broken Rotor Bar a n d E nd-R ing F a u lts 175 7.5 M odel of S quirrel-C age In d u c tio n M otors w ith Eccentricity F a u lts 177 7.6 M odel of a S y n c h ro n o u s Reluctance M otor w ith Stator F a u lt 179 7.7 M odel of a Salient Pole S y n c h ro n o u s M otor w ith D y n a m ic Eccentricity F a u lts ]8l R e f e re n c e s 183 A p p lic a tio n o f P a tte r n R e c o g n itio n to F a u lt D i a g n o s i s 185 M asou d H ajiaghajani 8.1 8.2 8.3 I n tr o d u c tio n ] 85 Bayesian T h e o ry a n d Classifier D e s i g n 186 Simplified Form for a N o r m a l D is tr i b u ti o n 189 Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis 248 40 -42 E < ‘H -4 -0 -4H * -1 100 200 300 400 ~ -SO m) -0,5 Buffer Index Fr equency Offset (a) (b) -O.S \tiip (dB) Ihreshoki 05 i 0.') Frequency Offset FIG URE 11.8 F r e q u e n c y t r a c k i n g fur b r o k e n rotor ba r fault: (a) a v e r a g e d s i g n a l , (b) f r e q u e n c y t r a c k i n g a n d d e c i s i o n m a k i n g (r e so lu ti on: 0.02 F^z), a n d (c) c o h e r e n t d e f e c t i o n w i t h o u t s t r a t e g y for fault fr e ­ q u e n c y o f f s e t c o rr e c tio n need to be smaller than the difference b e tw e e n the supply an d the expected fault frequencies In Fig ure 11.8b, the fault freq uency offset is identified at m a x im u m point w ith 0.46 Hz In Table 11.3, th e fault is d e te r m in e d correctly o n ly after fre ­ q u e n c y tracking a n d d e te c te d a m p litu d e is b o o ste d from -49.8 to -41.32 dB The accu racy of the ML track in g alg o rith m can be c o n firm e d from the a m p l i­ tu d e m o n ito re d th r o u g h the s p e c tr u m an aly zer, w h ic h is -41.8 dB a n d yields only 0.47 dB e rro r from the tracked result Figure 11.8c show's detections th ro u g h one of the o ptim a l schemes, F^D, to com pare the perform ance w ith the algorithm in Figure 11.8b u n d e r error c o n d i­ tions Unlike the zero offset condition in Figure 11.7, the fre q u e n c y /p h ase offsets are completely am b ig u o u s in Figure 11.8 Figure 11.8c show s the serious p erfo r­ m an c e degradation of am p litu d e loss d u e to fre q uency /p hase ambiguity Every detection at Hz, -0.5 Hz, a n d 0.5 H z show's unreliable yalues Meanwhile, th ro u g h the use of phase e rro r-im m u n iz ed detection a n d frequency tracking in F ig u re ll b, the detection p erfo rm ance becom es close to o p tim a l an d ro bu st­ ness of detection is m a in tain ed u n d e r erro r conditions 11.3.3 On-Line Experimental Results T he in d uc tio n m o to r is fed by the inyerter The voltage-to-frequency (y/f) m o to r control a n d on-line fault d iag n o sis service routine are s im u lta n e o u s ly im p le ­ m e n te d on a 32-bit fixed-point, 12-bit ADC, 150-MHz DSP of TMS320F2812 Roluist Sigiiiil Processing Techniques for M C S A Diagnosis 249 FIG URE 11.9 F r e q u e n c y tr a c k in g for e c c e n t r i c i t y s i g n a t u r e w i t h 20"o t o r q u e at 10 s e c o n d s ( s u p p l y fr e q u e n c y : 48.^ 11/, res olu tio n: 0.04 Hz) In Figure 11.9 a n d Figure 11.10, tlie zero fre q ue nc y is the fault sig n a tu r e frequency m e a s u re d by the DSP from the fault equation In Figure 11.9, the DSP m e a su re s th e fault s ig n a tu r e freq uen cy correctly s h o w in g a m a x im u m at zero frequency, that is, -40.2 dB In Figure 11.10, 0.24 H z fault frequ ency offset b e tw e e n the e x p e c te d a n d the ex istin g fault sig n a tu re freq u e n c y is m o n ito re d for the b ro k e n rotor bar signature T he c h a n g es in detected a m p litu d e a n d th re sh o ld s in tim e are s h o w n in Figure 11.11 a n d Figure 11.12 In both figures, th e d etected s ig n a tu r e h a r d ly varies after seconds The th re sh o ld m e a s u r e d is u n sta b le initially a n d b e co m es stabilized after a b o u t seconds A fter b e c o m in g stabilized, it te n ds to d e crease since on e of the threshold p a m e te rs, effecti\’e noise \ ariance 40 -4:i o- Amp (dB) • Threshold '-, -1 Frequency Offset FICLIRE 11.10 F r e q u e n c y tr a c k in g for b r o k e n rotor bar s i g n a t u r e (left s i d e b a n d ) w i t h 100"., t o r q u e at 10 s e c ­ o n d s (-.upplv fr e q u e n c v : "i 11/, r es olut ion: 0.04 Hz) 250 Elcctric Machi)ics: Modeling, Condition Monitoring, nnd Fuitlt Ditignosis Time FIG URE 11.11 D e te c t a b ilit \- v a r ia tio n w i t h t i m e for e cct'ntric itv w i t h 20" t o r q u e ( s u p p l y fr e q u e n c y ; "i I I/) o V N , d ecreases as the n u m b e r of sa m p le s u se d increases, w h ic h co n firm s careful deriv atio n in Equation (11.14) T he latency tim e of abo ut 10 secon ds in fault d ia g n o sis is a s s u m e d to be acceptable b ecause co ndition m o n ito rin g is p e rfo rm e d in a relativ eh ’ long p e rio d of time, especially w ith a m ec h a n ic al ty p e of fault such as b roken rotor b a r or eccentricity In on-line e xperim ents, the threshold applied is de sig n e d to keep false detection errors strictly w ith in 0.097'’/» as sh o w n in Table 11.1 That is v\'hy the sig n a tu re s are u su a lly detected close to threshold w ith in 5-10 dB The th r e s h ­ olds can be fu rth e r d ecreased to detect small sig n a tu re s by re d u cin g the w e ig h tin g factor in Equation (11.14) T his can be d o n e b a s e d on th e relation sh o w n in Figure 11.4 (bottom) from the trade-off of detection p erfo rm an ce T im e FIG URE 11.12 D e t e c t a b i l i t y \ a r ia tio n w i t h t i m e for b r o k e n ro to r b a r w i t h 100% t o r q u e ( s u p p ly f r e q u e n c y : 48.3 Hz) Rol’ust Signal Proccsiing Techiiiqucs for M C S A Diagnosis 231 The resolution of s ig n a tu re a m p litu d e tracking can also be fu rth e r im p rtn ed bv intentionally a d d in g k n o w n frecquency bias, w h ic h lets the detection achie\'ed be m o re precise as th e relati\’ely high frequency signal can be id e n ­ tified in a relati\ ely sh o rte r tim e period The fault d e te c tio n a n d d e c isio n -m a k in g capability of the ro b u st fault d ia g ­ nosis a lg o rith m are d e m o n s t r a t e d in this c h a p te r by m a th e m a tic a l verifica­ tions a n d off-line/on-line e x p e rim en ts It is ob serv ed that am b ig u itie s such as the fault s ig n a tu re freq u e n c y m ism a tc h , the p h a s e of the fault \-ector, a n d c h a n g e s in th e noise le\’el of fault sig n a tu re s can be efficiently h a n d le d u sin g a sim ple a lg o rith m capable of fre q ue nc y tracking, p h a se e lim in a tin g d etec­ tion, a n d a d a p tiv e threshold References |1| S.M Ka_\’, Fuiidiiiuciitals o f Stiitistical Signal P m ccisin g: Estiuintion am i D ctcction Ttieon/, E n g le w o o d Cliffs, NJ: Prentice-Hail, 1993 |2] 15 Akin, H Toliyat, U O rg u n e r, a n d M Rayner, "P h a s e sensiti\ e d etec tio n of m o to r fault s ig n a tu re s in the p resen ce of n oise,” IEEE T ransaction f on ¡ndii>triiil E lectronics, \ ol, 53, pp 2339-2330, Ju n e 2008 13| S.H Kia, H H e n a o , a n d G C ap olin o, "A h ig h -re so lu tio n freq uen cy e stim atio n m e th o d for th r e e -p h a se in d u c tio n niaciiine fault detectio n," IEEE T ransactions on Indu strial E lectronics, vol 34, no 4, A u g u s t 2007 |4] ,A Ik'llini, G Franceschini, an d C Tassoni, "M o n ito r in g of in d u ctio n m a c h in e s li\' m a x i m u m cox’arian ce nietho d for frequency tracking," IEEE Tra}isactions on Indu strial A pplication s, vol 42, no 1, pp 69-78, J a n u a r y / F e b r u a r y 2006 |5| Viterbi, P rinciples o f C oherent C on m m n icalion , N e w York: M cG raw -H ill, 1966 [6| S.VI.A C ru z , H.A Toliyat, a n d A.J.M C a rd o so , "DSP im p le m e n ta tio n of the m ultiple reference fram es theo ry for the d ia g n o s is of sta to r faults in a DTC in d u c tio n mc)tor dri\-e," IEEE T ransactions on E nergy C o n iv rsio n , \'ol 20, no 2, pp 329-333, Jun e 2003 [7] M B e n b o u /i d , M Vieira, a n d C T heys, " i n d u c ti o n m o to rs' faults detectio n an d localization u sin g stato r c u rre n t adv an ced signal processin g tech n iq u e s," IEEE T ransaclions on P o w e r Electronics, \ ’oi 14, pp 14-22, J a n u a r y 1999 ¡8] S Ciw i, B Akin, M R ahim ian, a n d H.A lo iiy a t, " i m p l e m e n t a ti o n of a fault d ia g n o s is a lg o r ith m for in d u c tio n m a c h in e s b a se d o n adv ance d digital signal pi'ocessing tech n iq u e s," IEEE T ransactions on Indn strial E lectronics, vol 38, no 3, pp 937-948, M arch 2011 In d ex A coustic an a ly s es, 4, A coustic noise, m ec h a n ic a l \ ibration, c a u s e d bv, 9, 137 A d a p t i \ e th r e s h o ld d esig n , 240-241 A d d itiv e w h ite G a u s s i a n no ise (AVVGX), 200, 201, 242 A ir-g a p flux tu b e s , 50-51 A ir-gap s, 15 S ee »¡so E ccentricity faults d v n a m i c eccentricity, 19-20 f u n c tio n s of, 177 inverse, 177, 182 len g th of, 70, 89 m a g n e tic fields in, 16 n ia g n etic flux in, 19 n ia g n e to m to iv e force in, 120-121 p erm ea b ility , 28-29 p e rn ie a n a c e , 68 s y m m e t r y , 31, 37 A lgebraic m a c h i n e ee]uations, 73 A liasing , 100 A lternatt)rs, fa ilu re of, 13 A m p e r e 's law, 29 A m p li tu d e m o d u l a t i o n (AM) detectors, 11 A n a lo g u e -t o -d i g ita l c o n v e rte rs (ADC), 206 A n aU sis e q u a tio n s , 101 A n g u l a r velocity, 112 A n so ft C o rp o t io n , 39 A p p lic atio n env ir o n m e n t, electric m otors, Artificial intelligence, 156 A rtificial n e u l n e t w o r k m e th o d , 22 Axial tlux, 117 A xial x’ibration sig n als, 135-136 B B artlett w indow , 103 Bayes m i n i m u m e r r o r classifier, 189-190,197 Bayesian d ecisio n theory, 185-186 See also Classifier d e sig n d efin in g, 186 fault d ete c tio n using , 197 p ro b a b ility d e n s ity in, 187 stru c tu r e , 189 Bearing balls, d a m a g e d , Bearing faults, classifications, 10 defin in g , d iag n o s is, 4, 11 eccentricity faults, zvrsus, 15-16 m o d e lin g , 85 o verview , p re v a len ce of, B isp e ctru m , 99 Blackm an-T ukey w in d o w , 103 Drinelling, 115 Broken ro tor b a r faults, 13-14 d etec tion, 148 field a s y m m e t r y c a u se d by, 226, 230 m o d e lin g , 5-8 on -fau lt d ia g n o s is of, 18 o n li n e fault detec tion , 212 p a tte rn recogn itio n, u se in, 191, 194 s q u irre l cage in d u c tio n m otors, in, 175, 177 C a rte r 's coefficients, 41 Classifier desig n, 186 Sec also Bayesian d ecisio n th e o ry C o d e of Federal R e g u la tio n s (CFR), 222 C o n d it io n -b a s e d m a i n te n a n c e (CBM), 156 C o n t i n u o u s F o urier tr a n sfo r m s, 101 C o n t i n u o u s signal, 100 C o p p e r rotors, 13 C PU utiliz atio n, 199 253 254 C u r r e n t m o n ito rin g , motor, 10 D D a m p e r w i n d i n g faults, 17-18 D a m p e r w in d in g s , 17 D ecision rule, 187 D igital fre q u e n c y locked loop te c h n iq u e (DFLL), 99 D igital fre q u e n c y locked loop te c h n iq u e (DFLL), 110 D igital signal p ro c e s s o rs (DSP), 199, 200 a d a p t i \ ’e th r e s h o ld desig n, 240-241 tro l signals, 216 d a ta p ro c e s sin g w ith, 237 e m b e d d e d , 201 fault codes, 210 fault fre q u e n c y offset c o m p e n s a tio n , 237-239 fault-detectio n p ro c e d u r e s, 235-236, 241 o n li n e fault d etectio n, 204, 206 p h a se -se n siti\'e m o to r fault s ig n a tu r e d etec tio n, 210-212, 2Í7, 241, 249 re al-tim e analysis, 210, 239 referen ce signals, 214 D iscrete F o urier tr a n s f o r m (DPT), 101-102 D iscrete signal, 100 D isc re te-tim e F o urier tr a n s fo r m , 101 D o ub ly fed in d u c t io n g e n e to r (DFIG), 125 Drive cycle analysis, 224-226 D y n a m ic eccentricity, 15, 19, 41, 59, 60, 147 d e fin in g , 90 i n d u c t a n c e values, re la tio n sh ip b e tw e e n , 73 m o d e l in g , 178,182 E ccentricity faults, 15-16 causes, 87,136 d etec tio n, 19-20,136 d y n a m i c eccentricity; see D y n a m ic eccentricity inclin e d , 147-148 Index line ciu'rent signal spectra, im pact on, 136-138 m e c h a n ic a l \ ihration sign al spectra, d e te c tio n b ased on, 147 m ixed ; see M ixed eccentricity n a m e p l a te p a m e te r s , d etec tio n baseci on, 142-144 s q u irre l-c a se in d u c tio n motiir, in, 177-179 static eccentricity; srt’ Static eccentricity E d d y c u rr e n ts , 28, 54, 158 Electric m a c h in e s, rotatin g, 27 Electric m o to rs defects in, 2-3 d e s i g n of, e n e r g y d e m a n d s of, failures of, 1-2 g r o w t h in use, s y m p t o m s of a b n o rm a lity , Electrical M a c h in e s & Pow er E lectronics (EMPE) lab, 197 Electrical sca lar p o ten tial, -4 E n d -rin g faults, 175,177 Euler's identity, 102 Fast E ourier tr a n s f o r m s (FFT), 99,102, 109 s p e c t r u m a n a ly z e r o u u t s , 206, 212, 246 Fault a m p litu d e , 236 Fault detection, See also specific detection methods: specific faults d iagn osis, e x te rn a l flux senso rs, 116-117 m e c h a n ical v ib ratio n f r e q u e n c y analysis, 111-114 overview, 155-156 p a m e te rs, 91 p a tte rn re c o g n itio n in; see P a tte rn re c o g n itio n in fault d ia g n o s is stator faults, of; see Stator faults tools for, 11 Fault h arm o nics, 15 Faults, bearing See B earing faults Faults, stator See S tato r faults Field re c o n s tru c tio n m e t h o d (FRM), 19 253 Itulcx Finili' elem o n t m e t h o d (FEM), 21, 39 ciirre n t-te d ap p ro a c h , 81-82 electrical circu it c ou pling , -8 i n f o rm a tio n received from , 156 o\ervievs-, 81 th r e e -d im e n s io n a l, 81, 82, 83 tim e-step ping finite elem en t m e th o d (TSFEM); see Tim e-stepp ing finite c lem en t m eth o d (TSFEM) t w o -d i m e n s i o n a l, 81, 82, 83 \'oltage-fed ap p ro a c h , 81, 82 Fin ite-elem ent (FE) m a g n e tic circu it eq u iv alen ts , F inite -ele m en t a n a ly s is (FEA), Flux a s y m m e t r y , 22 Flux density, 8Z 92, 94-95, 118 F o r w a r d eq u a tio n s, 101 F o urier series, 101 F u n d a m e n t a l fre q u e n c y voltage u n b a la n c e , 118 Fuz-/y logic analysis, G a b o r s p e c t r o g r a m , 22 G a u ss's law, 29, 30 G a u s s i a n noise c h a n n e l, 242 t i e n e r a l i / e d r o u g h n e s s See R o ug hn ess, g e n e liz e d C iro u n d in g unstab le, H H a iin i n g w in d o w , 109 H i d d e n Vlarko\' m o d e l in g (HMM), 11 H ig her-()rd er sp e c tra (HOS) b ased sp ectral analysis, 107 H y b rid electric vehicles (HEV), fault d ia g n o s is u sin g reference fram e th e o ry c a ta s tr o p h ic failures, 222 d ia g n o s tic criteria, 222 driv e cvcle analysis, 224-226 m a l f u n c t io n in dicato r lights (Mil.), 222 m e c h a n ic a l v ibrations, 223 on-b(iard d ia g n o s is ((^BD), 221-222, 224-226 overview, 221 real-tim e fault s i g n a tu r e tracks, 228 to rq u e v alues, 226, 227 vector ro tation d irec tio n , 227 z ero s p e e d tests, 226-229 H ysteresis, 158 I In d u c ta n c e values, ca lc u latin g , 73, 77 In d u c tio n m a c h in e s, 68-70, 72-73 In d u c tio n m o to rs faulty, tim e - s te p p i n g finite ele m e n t m e t h o d (TSFEM) m o d e l in g of, 82-83 s q u irre l cage; ic e S q u irre l cage in d u c tio n m o to rs h if r a r e d a n a ly s e s o f b e a r i n g faults, In tern al faults (I.M) b ro k e n rotor b a r fault; see Broken ro to r b a r fault eccentricity faults; f e e Eccentricity faults o verview , 85 Inverter-fed indu ctio n m achines, 148-149 J Jacobian, 76 L e akag e in d u c ta n c e s, 163 L e akag e p a th reluctances, 70 L east-sq u are e stim ates, 171 Line c u r r e n t f r e q u e n c y analv sis, 115 Line c u r r e n t h a rm o n ic s , 117-llH L in ear velocity, 112 L in ea r-circu it-th e o ry -b ase d m a th e m a tic a l m o dels, Load to rque, 193 M M a c h in e -th e o ry -b a s e d fault analy sis, M agnetic e q u iv alen t circuit (MFC) m e th o d accuracy, 47 e d d y c u rr e n t, 54 256 flux o rientation , 34 i n d u c t a n c e coefficients, 38 m a c h in e geom etry, ex plo ratio n of, 47 m a g n e t ic flux lines, 47-48 o verview , 47 p e r m e a n c e co m p u ta tio n , 49, 51 ro to r slots, 30-31, 34 salie n t pole s y n c h r o n o u s m a c h in e , of, 3 - l s sim plified MEC of in d u c ta n c e m ach in es, 66-68 sk e w in g , 31 stato r slots, 30-31, 34 M a g n e tic field w av efo rm s, 94 M a g n e tic flux lines, 47-48 M a g n e to m o tiv e force (MMF), 29, 33, 49 h a rm o n ic s, effect on, 138 no des, levels of, 34 p e r m e a n c e h a rm o n ic s, re la tio n sh ip b e tw e e n , 170-171 stato rs a n d rotors, \ ecto rs of, 33 tr a n s f o r m m atrix, 33 M a x i m u m lik elih oo d detection, 238-239 M ax w ell eq u atio n s, 39 M e a n m u vector, 189 M e a n sp e ctral d e v iatio n (MSD), 113 M e a n s q u a r e d e r r o r estim a tio n , 243 M ech a n ic a l v ib ratio n fre q u en cy analysis, 111-114 M ix ed eccentricity, 39, 62 d e fin in g , 90 m o d e lin g , 90-91 M od ified w i n d i n g fu n c tio n a p p r o a c h (MWFA) See W i n d i n g a n d m o d ifie d w i n d i n g fu n c tio n a p p r o a c h (W FA /M W F A ) M o to r b e a r i n g faults de te c tin g 111 lin e c u r r e n t f r e q u e n c y an alysis, 115 m e a n sp e c tra l d e v ia tio n (MSD), 115 m e c h a n ic a l v ib ratio n fr e q u e n c y analy sis, 111-114 o verv iew 111 M o to r c u r r e n t s i g n a tu r e an aly sis (MCSA), 5, 3, 99, 99 See also R eference fr a m e th e o ry Index b e a r i n g fault co n d itio n s , 22 fault s i g n a tu re s , 202, 210-212, 235 im p le m e n ta tio n , 199 lo w -cost p ro te c tio n ap plication s, noise s u p p r e s s i o n , 200-201 o verv iew , 199-200 p h a s e tra n sfo rm a tio iis, 202-203 M ultiple sig n a l classification (MUSIC), 99, 107 N X e u l n e tw o rk s , 6, 22 N e w to n 's m e t h o d , 73 N oise v arian ce, 243-244 O Oil analysis, O verlo ad, electrical, O z o n e m o n ito r in g , 13 P a m e tric p o w e r s p e c t r u m estimafi(.)n, 105-107 Particle d is c h a rg e s , 12 P a ttern r e c o g n itio n in fault d i a g n o s is classification issues, 189 decision ru les, 189 err o r rate, 189 featu re ex tra c tio n in, 190-194 h arm o n ics, 190-191 im p le m e n ta tio n , 194-197 overv’iew, 185-186 P e rio d o g m , 103 Perm anent m ag n et syn ch ro n o u s m a c h i n e s (PMSMs), 16 d e m a g n e tiz a t io n faults of, 18-19 fault d e te c tio n in, 20-21 p o pu la rity, 18 P e rm ean ce h a rm o n ic s , 170-171 Pole pairs, 143 P o w er s p ectral d e n s i ty (PSD), 103, 105', 193, 247 Principle slot h a r m o n i c s (PSH), 137 257 Index Q -fu n ctio n , 242-243 saliency effects, 59 self-inductance, 61, 65 s p e e d of, 92 R o u g h n ess, g e n e liz e d 111, 115 R Radio f r e q u e n c y (RF) c u r r e n t tr a n s fo r m e rs , 13 R ad io -fre q u e n c y (RF) e m issio n m o n i to r in g , Real-tim e fault s i g n a t u r e tracks, 217, 228, 230 Reciprocity th e o r e m , 163 R e c ta n g u la r w in d o w , 103 Reference fr a m e theory, 201-202 c o n dition m o n ito r in g , u se in, 202 hvbrid cars, u s e d on, fault d ia g n o s is u s i n g referen ce fr a m e theory, h y b rid electric vehicles (FIEV) m icro tro llers, u tilizin g, 204 usage, 202 Reference s ig n als, 211 ROOT MUSIC, 99 Rotor faults axial \ ib ratio n signals, im p a c t on, 135-136 brciken ro to r b a r faults; sec Broken ro to r b a r faults c u r r e n t d is trib u tio n , affect on, 130, 131 ex tern al a n d in te rn a l coils, de tec tio n by p re s e n c e of, 134 in te r-tu rn faults, 21-22 o \ i ' r \ i e w , 129-130 start-up, d e te c tio n at, 134-135 te r m in a l v oltag e h a rm o n ic s, d e te c tio n usin g, 134 Rotor search coils, 121, 123-124 Rotors a l u m i n u m , 13 b rt'k cn ro to r b a r faults; srt’ Rotor faults cast, 13 copper, 13 d e p t h b e t w e e n poles, 61 in to r-tu rn faults; see Rotor faults m i s a l i g n m e n t of, 15 relu cta n ce s of, 73 S alient pole s y n c h r o n o u s m a c h in e, 19, 41 in d u c ta n c e c alc ulation s, 8-6 in d u c ta n c e re latio n s of, 55-58, 64 m a g n e tic e q u iv a l e n t circu it of, 3-55 S a m p le d signal, 100 S a tu r a tio n ch aracteristics, 75, 117, 118, 120 S calar m a g n e tic po tential, 48 S h a n n o n s a m p l i n g th e o r e m , 101 S h o rt tim e Fo u rie r tr a n s f o r m s (STFT), 99 S ignal p ro ces sin g , 99 c o h e re n t d etec tio n , 236-237 fault a m p litu d e , 236 n o n c o h e r e n t dete c tio n, 236, 237 S ig n a l-b a se d fault de tec tio n, S in g le-p o in t defects 111, 114 Skew effect, 72 S lo ttin g p e r f o r m a n c e effect, 138 Space h a rm o n ic s, 70 S p e c to g r a m s, 99 S p e c tra l leakage, 103 S p e c t r u m m o n i to r in g tech n iq u e, S q u ir re l cage in d u c tio n m otors, IIZ 134 b ro k e n roto r b a r or e n d - r in g faults in, 175, 177 d esc r ip tio n , 158 eccentricity faults in, 177-179 FE m e t h o d of c o m p u t in g , 163 m o d e lin g , a s s u m p t i o n s m ad e, 158 s ta r jun ctio n voltage, 158, 159 stato r fault d ete c tio n, 169 WFA m e t h o d of c o m p u t in g , 163 S q u ir re l cage rotor bars, 13 S tar ju n c tio n voltage, 158, 159 Static eccentricity, 15, 19, 59, 60,142, 143, 144, 147 in d u c t a n c e \ ’alues, rela tio n sh ip b e tw e e n , 73 258 m o d e l i n g , 87, 89, 178 S ta tistica l m o t o r a n a ly s is in real tim e (SMART), 107 S ta to r faults coils, s h o r te d , 119 e x t e r n a l tlux sen s o rs, 116-117 field c u r r e n t a n d roto r s e a r c h coil h a r m o n ic s , d e te c tio n u sin g , 121, 123-124 i n t e r - t u r n , 20-21, 165, 169 o\-er\ievv, 11, 116 p a r t ic l e d is c h a r g e s , 12 pre v a le n c e , 11 re s u l t s of, 12-13 ro t o r c u r r e n t a n d se a r c h coil v o lta g e s h a r m o n i c s in w o u n d r o t o r i n d u c t io n m a c h i n e s , d e te c tio n u sin g , 124-125 s q u i r r e l cage in d u c t a n c e m o to rs, d e t e c t i n g in, 169-170 s y n c h r o n o u s re lu c ta n c e m a c h i n e , in; ÍCC S y n c h r o n o u s r e l u c ta n c e m achine t e m p e r a t u r e , effects of, 11-12, 13 t e r m i n a l v o lta g e at sw itch-off, d e te c tio n u sin g , 119-121 v oltage, d e c a y i n g , 119 S ta t o r-r o to r in d u c t a n c e s , 165 S ta to r-s ta to r in d u c t a n c e s , 165 S ta to rs b a c k ir o n relu c tan ces, 69 e le c t r o m o t i v e force (EMF) of, 14 faults; se e S ta to r faults h a r m o n i c s of, 14 i n t e r - t u r n faults, 117 p h a s e c u r r e n t s , 68 r e l u c ta n c e s of, 73 s k e w of, 72 slot o p e n i n g s , size of, 72, 73 w i n d i n g of, 20 S u p p o r t v e c to r m a c h i n e (SVM), 21 S y n c h r o n o u s r e l u c ta n c e m a c h i n e , 43 d e f i n in g , 179 o v e r v i e w , 179 s t a t o r fau lt in, 179, 182 S y n th e s is e q u a t i o n s , 101 Index T erm inal voltage h a rm o n ic s, 134 T h e r m a l a n a ly s e s b e a r i n g faults, of, s e n s o r s n e e d e d for, 10 T h e r m a l stress, effect on stators, 11-12 T h r e e - p h a s e in d u c tio n motor, 63, 74 T im e -fr e q u e n c y analysis, 99, 206, 208 T im e -ste p co u p le d finite e le m e n t state space a n a lv s is (TSCFE-SS), T im e -s t e p p in g finite ele m e n t c o u p le d state sp ace (TSFEM-SS), 82 T im e -s t e p p in g finite ele m e n t m e t h o d (TSFEM), 82-83 Torque ripples, 92, 118 Total h a r m o n i c d istrib u tio n , 244 Triplen h a rm o n ic s, 119, 120-121, 144 T r is p e c tr u m , 99 U U n b a la n c e d m a g n e tic pull (L'MP), 137, 144 Vector ro tatio na l frequency, 202-203 Vibration s p e c t r u m analysis, 4, 9, 10 V ibration, m e c h a n ic a l, Voltage h a rm o n ic s, 143 W W a \’elet d e c o m p o s itio n a lg o r it h m , 156 Welch w in d o w , 103 W ig ne r-V ille tr a n s fo r m s , 99 W in d a g e losses, 28,158,167 W in d i n g a n d m o d ifie d w i n d i n g fu n c tio n a p p r o a c h (W F A / MWFA), 19, 20 accuracy, 38 air-gap a s y m m e t r y , 37 air-gap fu n ctio n , 30, 31, 33, 36 air-gap, p e r m e a b il it y of, 28-29 case ex am ples, 31-33, 38 Index d e fin in g , 30-31 in d u c tn n c e profiles, 41 in\ i'rse a ir -g a p fun ction , 33, 35 m a g n e tic field intensity, 29 m a g n e tic tlux density, 30, 3-3 m a g n e t o m o t iv e force (M MF) d is trib u tio n s , 33 s a tu tio n , 28 slot effects, 28, 35, 41 t h r e e - d i m e n s i o n a l (3D) effects, 41 259 t u r n s f u n c t io n , 29, 37 u sag e, 27-28 W i n d i n g f u n c t i o n a p p r o a c h (WFA), 163 W ind ow ' f u n c t io n , 102-103 Z e r o fr e q u e n c y , 244 Z o o m fast F o u r i e r t r a n s f o r m s (FFT), 105 An environmentally fnendly book printed and bound in England by www.printondemand-worldwide.co-n PEFCCertified MIX TMi product II •fom Mtuixkblr m>A

Ngày đăng: 22/05/2018, 23:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN