1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Design of state variable FS2017b mk

70 55 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 70
Dung lượng 354,06 KB

Nội dung

Nguyễn Công Phương CONTROL SYSTEM DESIGN The Design of State Variable Feedback Systems Contents I Introduction II Mathematical Models of Systems III State Variable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII The Root Locus Method VIII.Frequency Response Methods IX Stability in the Frequency Domain X The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn The Design of State Variable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn Introduction u System model xɺ = Ax + Bu x y C yɶ = y − Cxˆ + xˆ ɺ −K xˆ = Axˆ + Bu + Lyɶ − Control law Observer C Compensator Three steps for state variable design: Use a full-state feedback control law Construct an observer to estimate the states that are not directly sensed and available as outputs Connect appropriately the observer to the fullstate feedback control law s i tes.google.com/site/ncpdhbkhn The Design of State Variable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn Controllability & Observability (1) • A system is completely controllable if there exists an unconstrained control u(t) that can transfer any initial state x(t0) to any other desired location x(t) in a finite time, t0 ≤ t ≤ T • For the system xɺ = Ax + Bu, we can determine whether the system is controllable by examining the algebraic condition: rank[B AB A B … A n −1 B] = n A is n×n & B is nì1 For multi-input systems, B can be n×m, where m is the number of inputs s i tes.google.com/site/ncpdhbkhn Controllability & Observability (2) • A system is completely controllable if there exists an unconstrained control u(t) that can transfer any initial state x(t0) to any other desired location x(t) in a finite time, t0 ≤ t ≤ T • For a single-input, single-output system, the controllability matrix Pc is: Pc = [B AB A B … A n −1 B] • If the determinant of Pc is nonzero, the system is controllable s i tes.google.com/site/ncpdhbkhn Ex Controllability & Observability (3)   0  xɺ =  0  x + 0  u      −a0 −a1 −a  1  y = [1 0] x + [0] u  A=  −a −a1 0  Pc =  1 − a  Pc = [B AB A 2B … A n−1B ]    0       , B = 0  , AB =   , A 2B =  −a       a − a  −a2  1   −a2  1    −a  → Pc = −1 ≠ a 22 − a1  s i tes.google.com/site/ncpdhbkhn This system is controllable Ex Controllability & Observability (4)  −2  1  xɺ =  x +  u   a −3 0  y = [0 1] x + [0 ] u Pc = [B AB A2 B … A n−1B ] 1 −  Pc = [B AB ] =   a   → Pc = a →a ≠0 s i tes.google.com/site/ncpdhbkhn Controllability & Observability (5) • A system is completely observable if and only if there exists a finite time T such that the initial state x(0) can be determined from the observation history y(t) given the control u(t), t0 ≤ t ≤ T xɺ = Ax + Bu • For the SISO system  ,C is 1×n & x is n×1,  y = Cx  C   CA   we define the observability matrix Po =   ⋮   n−1  CA  • This system is completely observable when the determinant of Po is nonzero s i tes.google.com/site/ncpdhbkhn 10 Optimal Control Systems (6) Ex U (s) X X 1  Y (s)  X1 = s X  sX1 = X s s →   sX = U X = 1U  s  xɺ1 = x2 d  x1  0   x1    → →  = +   u (t ) ↔ xɺ = Ax + Bu    dt  x2  0   x2     xɺ2 = u (t ) u (t ) = −k1 x1 − k x2 R (s ) = U ( s ) X X Y (s) − s s −  xɺ1 = x2 →  xɺ2 = − k1 x1 − k x2 k2  → xɺ = Hx =  − k1  x  − k2  s i tes.google.com/site/ncpdhbkhn k1 56 Optimal Control Systems (7) Ex  xɺ = Hx =  − k1  x  − k2  H P + PH = −I T p P =  11  p12 p12  p 22  U (s) X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − k2 k1 k1 = 1   −1  0 −1   p11 p12   p11 p12   → + =         1 − k2   p12 p22   p12 p22  − − k2   −1 −2 p12 p11 − p22 − k2 p12  −   ↔ =   p − p − k p p − k p −  11 22 12 12 22     −2 p12 = −1  →  p11 − p22 − k2 p12 =  p − 2k p = −1  12 22 1 → p12 = , p22 = , k2 s i tes.google.com/site/ncpdhbkhn k 22 + p11 = k2 57 Optimal Control Systems (8) Ex 1 p12 = , p22 = , k2 p11 = +2 2k U (s) k 22 J = xT (0)Px(0) R (s ) = U ( s ) X X Y (s) − s s − 1 x(0) =   1 p → J = [1 1]  11  p12 X X1 Y (s) s s k2 k1 p12  1 k22 + k2 + = p11 + p12 + p22 =    p22  1 2k dJ k (2 k + 2) − 2(k 22 + 2k + 4) → = =0 dk (2k ) s i tes.google.com/site/ncpdhbkhn k2 = →  J = 58 Optimal Control Systems (9) Ex U (s) k1 = 1, k = J= k22 X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − + k2 + 2k k2 22 20 k1 18 16 14 12 10 0.5 1.5 2.5 3.5 4.5 k2 s i tes.google.com/site/ncpdhbkhn 59 Optimal Control Systems (10) Ex 0 xɺ = Hx =  − k 1 x  −k  HT P + PH = −I  p11 P=  p12 p12  p22  U (s) X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − k k +1 2k + → p12 = , p22 = , p = 11 2k 2k 2k J = x (0)Px (0) k T 1  x(0) =   0  1 → J = 1+ → J = 2k s i tes.google.com/site/ncpdhbkhn k2 60 Optimal Control Systems (11) J = ∫ g (x , u, t ) dt tf J= ∞ ∫ (x T Ix + λuT u)dt u = −Kx →J = = ∫ ∞ ∫ (xT Ix + λ (Kx)T Kx )dt ∞ (xT (I + λ K T K )xdt Q = I + λ KT K →J = ∫ ∞ xT Qxdt T  H P + PH = −Q → T  J = x (0)Px(0) s i tes.google.com/site/ncpdhbkhn 61 Optimal Control Systems (12) Ex  1  0 xɺ =  x + u     0 1  u = −Kx = − [ k U (s) X X1 Y (s) s s  x1  k ]   = − kx1 − kx2  x2   xɺ1 = x2  xɺ1  0   x1    →  = +   (− kx1 − kx2 ) →      xɺ2  0   x2     xɺ2 = − kx1 − kx2  xɺ1   →  =  xɺ2   − k   x1  ↔ xɺ = Hx    − k   x2  s i tes.google.com/site/ncpdhbkhn 62 Optimal Control Systems (13) Ex K = [k k ], 0 H=  −k 1 − k  U (s) X X1 Y (s) s s HT P + PH = −Q  p11 P=  p12 p12  p22   0 k  Q = I + λK K =  + λ   [k   1 k  T − 2kp12  H P + PH =   p11 − kp12 − kp22 T λ k + λk2  k]=   2 λ k + 1  λ k p11 − kp12 − kp22  p12 − 2kp22   −2 kp12 = −λ k −  →  p11 − kp12 − kp 22 = −λ k  2 p − kp = − λ k −1 12 22  s i tes.google.com/site/ncpdhbkhn 63 Optimal Control Systems (14) Ex − 2kp12 = − λ k −   p11 − kp12 − kp 22 = −λ k  2 p − kp = − λ k −1 22  12 2k +  2 p = ( λ k + 1) − λ k  11 2k  λk +  →  p12 = 2k   k +1 λ p = ( k + 1)  22 2 k   p11 P=  p12 p12  p22  J = x (0) Px(0) T U (s) X X1 Y (s) s s → J = (λ k + 1) 2k + − λk2 2k → J = p11 xT (0) = [1 ] s i tes.google.com/site/ncpdhbkhn 64 Optimal Control Systems (15) Ex J= ∫ ∞ U (s) X X1 Y (s) s s ( xT Ix + λ uT u) dtv u = −Kx = − [ k k]x xT (0) = [1 ] → J = (λ k + 1) 2k + − λk2 2k dJ   =  λ −  = → k = dk  k  λ s i tes.google.com/site/ncpdhbkhn 65 The Design of State Variable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn 66 Internal Model Design xɺ = Ax + Bu   y = Cx R ( s) E − xɺ r = A r x r  r = d r x r K1 s Compensator U − G (s ) x Y (s) K2 r ( n) = α n −1r ( n −1) + α n − r ( n− 2) + ⋯ + α1rɺ + α r r = xr , xɺr = e = y −r → eɺ = yɺ = Cxɺ z = xɺ , w = uɺ  eɺ  0 C   e    → = + w     zɺ  0 A   z  B  w = − K1e − K z → u (t ) = t t ∫ w = −K ∫ e(τ )dτ − K x(t ) s i tes.google.com/site/ncpdhbkhn 67 The Design of State Variable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn 68 State Variable Design Using Control Design Software (1) Ex  x1  0    d  x2  0 = dt  x3  0     x4  0   x1    −   x2   0.1237  + u 0   x3        100   x4  −1.2621 y = [1 0 0][ x1 x2 x3 x4 ] T • ctrb • obsv • det s i tes.google.com/site/ncpdhbkhn 69 Ex State Variable Design Using Control Design Software (2) Y ( s) = G( s ) = , p1,2 = −1 ± j U (s) s  x1 = y  1 0  → xɺ =  x+  u    0 1   x2 = yɺ P = [ −1 + j −1 − j ] • acker s i tes.google.com/site/ncpdhbkhn 70 ... The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn The Design of State. .. Control Design Observer Design Integrated Full -State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn... tes.google.com/site/ncpdhbkhn → Po = 12 The Design of State Variable Feedback Systems Introduction Controllability & Observability Full -State Feedback Control Design Observer Design Integrated Full -State Feedback & Observer

Ngày đăng: 17/05/2018, 15:55

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN