Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 70 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
70
Dung lượng
354,06 KB
Nội dung
Nguyễn Công Phương CONTROL SYSTEM DESIGN The DesignofStateVariable Feedback Systems Contents I Introduction II Mathematical Models of Systems III StateVariable Models IV Feedback Control System Characteristics V The Performance of Feedback Control Systems VI The Stability of Linear Feedback Systems VII The Root Locus Method VIII.Frequency Response Methods IX Stability in the Frequency Domain X The Designof Feedback Control Systems XI The DesignofStateVariable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn The DesignofStateVariable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model DesignStateVariableDesign Using Control Design Software s i tes.google.com/site/ncpdhbkhn Introduction u System model xɺ = Ax + Bu x y C yɶ = y − Cxˆ + xˆ ɺ −K xˆ = Axˆ + Bu + Lyɶ − Control law Observer C Compensator Three steps for statevariable design: Use a full-state feedback control law Construct an observer to estimate the states that are not directly sensed and available as outputs Connect appropriately the observer to the fullstate feedback control law s i tes.google.com/site/ncpdhbkhn The DesignofStateVariable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model DesignStateVariableDesign Using Control Design Software s i tes.google.com/site/ncpdhbkhn Controllability & Observability (1) • A system is completely controllable if there exists an unconstrained control u(t) that can transfer any initial state x(t0) to any other desired location x(t) in a finite time, t0 ≤ t ≤ T • For the system xɺ = Ax + Bu, we can determine whether the system is controllable by examining the algebraic condition: rank[B AB A B … A n −1 B] = n A is n×n & B is nì1 For multi-input systems, B can be n×m, where m is the number of inputs s i tes.google.com/site/ncpdhbkhn Controllability & Observability (2) • A system is completely controllable if there exists an unconstrained control u(t) that can transfer any initial state x(t0) to any other desired location x(t) in a finite time, t0 ≤ t ≤ T • For a single-input, single-output system, the controllability matrix Pc is: Pc = [B AB A B … A n −1 B] • If the determinant of Pc is nonzero, the system is controllable s i tes.google.com/site/ncpdhbkhn Ex Controllability & Observability (3) 0 xɺ = 0 x + 0 u −a0 −a1 −a 1 y = [1 0] x + [0] u A= −a −a1 0 Pc = 1 − a Pc = [B AB A 2B … A n−1B ] 0 , B = 0 , AB = , A 2B = −a a − a −a2 1 −a2 1 −a → Pc = −1 ≠ a 22 − a1 s i tes.google.com/site/ncpdhbkhn This system is controllable Ex Controllability & Observability (4) −2 1 xɺ = x + u a −3 0 y = [0 1] x + [0 ] u Pc = [B AB A2 B … A n−1B ] 1 − Pc = [B AB ] = a → Pc = a →a ≠0 s i tes.google.com/site/ncpdhbkhn Controllability & Observability (5) • A system is completely observable if and only if there exists a finite time T such that the initial state x(0) can be determined from the observation history y(t) given the control u(t), t0 ≤ t ≤ T xɺ = Ax + Bu • For the SISO system ,C is 1×n & x is n×1, y = Cx C CA we define the observability matrix Po = ⋮ n−1 CA • This system is completely observable when the determinant of Po is nonzero s i tes.google.com/site/ncpdhbkhn 10 Optimal Control Systems (6) Ex U (s) X X 1 Y (s) X1 = s X sX1 = X s s → sX = U X = 1U s xɺ1 = x2 d x1 0 x1 → → = + u (t ) ↔ xɺ = Ax + Bu dt x2 0 x2 xɺ2 = u (t ) u (t ) = −k1 x1 − k x2 R (s ) = U ( s ) X X Y (s) − s s − xɺ1 = x2 → xɺ2 = − k1 x1 − k x2 k2 → xɺ = Hx = − k1 x − k2 s i tes.google.com/site/ncpdhbkhn k1 56 Optimal Control Systems (7) Ex xɺ = Hx = − k1 x − k2 H P + PH = −I T p P = 11 p12 p12 p 22 U (s) X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − k2 k1 k1 = 1 −1 0 −1 p11 p12 p11 p12 → + = 1 − k2 p12 p22 p12 p22 − − k2 −1 −2 p12 p11 − p22 − k2 p12 − ↔ = p − p − k p p − k p − 11 22 12 12 22 −2 p12 = −1 → p11 − p22 − k2 p12 = p − 2k p = −1 12 22 1 → p12 = , p22 = , k2 s i tes.google.com/site/ncpdhbkhn k 22 + p11 = k2 57 Optimal Control Systems (8) Ex 1 p12 = , p22 = , k2 p11 = +2 2k U (s) k 22 J = xT (0)Px(0) R (s ) = U ( s ) X X Y (s) − s s − 1 x(0) = 1 p → J = [1 1] 11 p12 X X1 Y (s) s s k2 k1 p12 1 k22 + k2 + = p11 + p12 + p22 = p22 1 2k dJ k (2 k + 2) − 2(k 22 + 2k + 4) → = =0 dk (2k ) s i tes.google.com/site/ncpdhbkhn k2 = → J = 58 Optimal Control Systems (9) Ex U (s) k1 = 1, k = J= k22 X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − + k2 + 2k k2 22 20 k1 18 16 14 12 10 0.5 1.5 2.5 3.5 4.5 k2 s i tes.google.com/site/ncpdhbkhn 59 Optimal Control Systems (10) Ex 0 xɺ = Hx = − k 1 x −k HT P + PH = −I p11 P= p12 p12 p22 U (s) X X1 Y (s) s s R (s ) = U ( s ) X X Y (s) − s s − k k +1 2k + → p12 = , p22 = , p = 11 2k 2k 2k J = x (0)Px (0) k T 1 x(0) = 0 1 → J = 1+ → J = 2k s i tes.google.com/site/ncpdhbkhn k2 60 Optimal Control Systems (11) J = ∫ g (x , u, t ) dt tf J= ∞ ∫ (x T Ix + λuT u)dt u = −Kx →J = = ∫ ∞ ∫ (xT Ix + λ (Kx)T Kx )dt ∞ (xT (I + λ K T K )xdt Q = I + λ KT K →J = ∫ ∞ xT Qxdt T H P + PH = −Q → T J = x (0)Px(0) s i tes.google.com/site/ncpdhbkhn 61 Optimal Control Systems (12) Ex 1 0 xɺ = x + u 0 1 u = −Kx = − [ k U (s) X X1 Y (s) s s x1 k ] = − kx1 − kx2 x2 xɺ1 = x2 xɺ1 0 x1 → = + (− kx1 − kx2 ) → xɺ2 0 x2 xɺ2 = − kx1 − kx2 xɺ1 → = xɺ2 − k x1 ↔ xɺ = Hx − k x2 s i tes.google.com/site/ncpdhbkhn 62 Optimal Control Systems (13) Ex K = [k k ], 0 H= −k 1 − k U (s) X X1 Y (s) s s HT P + PH = −Q p11 P= p12 p12 p22 0 k Q = I + λK K = + λ [k 1 k T − 2kp12 H P + PH = p11 − kp12 − kp22 T λ k + λk2 k]= 2 λ k + 1 λ k p11 − kp12 − kp22 p12 − 2kp22 −2 kp12 = −λ k − → p11 − kp12 − kp 22 = −λ k 2 p − kp = − λ k −1 12 22 s i tes.google.com/site/ncpdhbkhn 63 Optimal Control Systems (14) Ex − 2kp12 = − λ k − p11 − kp12 − kp 22 = −λ k 2 p − kp = − λ k −1 22 12 2k + 2 p = ( λ k + 1) − λ k 11 2k λk + → p12 = 2k k +1 λ p = ( k + 1) 22 2 k p11 P= p12 p12 p22 J = x (0) Px(0) T U (s) X X1 Y (s) s s → J = (λ k + 1) 2k + − λk2 2k → J = p11 xT (0) = [1 ] s i tes.google.com/site/ncpdhbkhn 64 Optimal Control Systems (15) Ex J= ∫ ∞ U (s) X X1 Y (s) s s ( xT Ix + λ uT u) dtv u = −Kx = − [ k k]x xT (0) = [1 ] → J = (λ k + 1) 2k + − λk2 2k dJ = λ − = → k = dk k λ s i tes.google.com/site/ncpdhbkhn 65 The DesignofStateVariable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model DesignStateVariableDesign Using Control Design Software s i tes.google.com/site/ncpdhbkhn 66 Internal Model Design xɺ = Ax + Bu y = Cx R ( s) E − xɺ r = A r x r r = d r x r K1 s Compensator U − G (s ) x Y (s) K2 r ( n) = α n −1r ( n −1) + α n − r ( n− 2) + ⋯ + α1rɺ + α r r = xr , xɺr = e = y −r → eɺ = yɺ = Cxɺ z = xɺ , w = uɺ eɺ 0 C e → = + w zɺ 0 A z B w = − K1e − K z → u (t ) = t t ∫ w = −K ∫ e(τ )dτ − K x(t ) s i tes.google.com/site/ncpdhbkhn 67 The DesignofStateVariable Feedback Systems Introduction Controllability & Observability Full-State Feedback Control Design Observer Design Integrated Full-State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model DesignStateVariableDesign Using Control Design Software s i tes.google.com/site/ncpdhbkhn 68 StateVariableDesign Using Control Design Software (1) Ex x1 0 d x2 0 = dt x3 0 x4 0 x1 − x2 0.1237 + u 0 x3 100 x4 −1.2621 y = [1 0 0][ x1 x2 x3 x4 ] T • ctrb • obsv • det s i tes.google.com/site/ncpdhbkhn 69 Ex StateVariableDesign Using Control Design Software (2) Y ( s) = G( s ) = , p1,2 = −1 ± j U (s) s x1 = y 1 0 → xɺ = x+ u 0 1 x2 = yɺ P = [ −1 + j −1 − j ] • acker s i tes.google.com/site/ncpdhbkhn 70 ... The Design of Feedback Control Systems XI The Design of State Variable Feedback Systems XII Robust Control Systems XIII.Digital Control Systems s i tes.google.com/site/ncpdhbkhn The Design of State. .. Control Design Observer Design Integrated Full -State Feedback & Observer Reference Inputs Optimal Control Systems Internal Model Design State Variable Design Using Control Design Software s i tes.google.com/site/ncpdhbkhn... tes.google.com/site/ncpdhbkhn → Po = 12 The Design of State Variable Feedback Systems Introduction Controllability & Observability Full -State Feedback Control Design Observer Design Integrated Full -State Feedback & Observer