THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 80 |
Dung lượng | 1,46 MB |
Nội dung
Ngày đăng: 14/05/2018, 15:47
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
4. Borodin, A., Bufetov, A., Olshanski, G.: Limit shapes for growing extreme characters of U (∞) . Ann. Appl. Probab. 25, 2339–2381 (2015) | Sách, tạp chí |
|
||
1. Biane, P.: Representations of symmetric groups and free probability. Adv. Math. 138, 126–181 (1998) | Khác | |||
2. Biane, P.: Approximate factorization and concentration for characters of symmetric groups.IMRN 2001, 179–192 (2001) | Khác | |||
3. Biane, P.: Characters of symmetric groups and free cumulants. In: Vershik, A.M. (ed.) Asymp- totic Combinatorics with Applications to Mathematical Physics, vol. 1815, pp. 185–200.Springer, Lecture Notes in Mathematics (2003) | Khác | |||
5. Borodin, A., Olshanski, G.: Infinite-dimensional diffusions as limits of random walks on par- titions. Probab. Theory Relat. Fields 144, 281–318 (2009) | Khác | |||
6. Ceccherini-Silberstein, T., Scarabotti, F., Tolli, F.: Representation Theory of the Symmetric Groups. Cambridge University Press, Cambridge studies in advanced mathematics (2010) 7. Chandrasekharan, K.: Arithmetical Functions. Springer (1970) | Khác | |||
8. Féray, V.: Combinatorial interpretation and positivity of Kerov’s character polynomials. J.Algebr. Comb. 29, 473–507 (2009) | Khác | |||
9. Fulman, J.: Stein’s method, Jack measure, and the Metropolis algorithm. J. Combin. Theory Ser. A 108, 275–296 (2004) | Khác | |||
10. Fulman, J.: Stein’s method and Plancherel measure of the symmetric group. Trans. Amer. Math.Soc. 357, 555–570 (2005) | Khác | |||
11. Funaki, T., Sasada, M.: Hydrodynamic limit for an evolutional model of two-dimensional Young diagrams. Commun. Math. Phys. 299, 335–363 (2010) | Khác | |||
12. Hora, A.: A diffusive limit for the profiles of random Young diagrams by way of free probability.Publ. RIMS Kyoto Univ. 51, 691–708 (2015) | Khác | |||
13. Hora, A.: Representations of Symmetric Groups and Analysis of Ensembles of Young Diagrams (in Japanese). Sugaku Shobo, To appear | Khác | |||
14. Hora, A., Obata, N.: Quantum Probability and Spectral Analysis of Graphs. Springer, Theo- retical and Mathematical Physics (2007) | Khác | |||
15. Ivanov, V., Kerov, S.: The algebra of conjugacy classes in symmetric groups and partial per- mutations. J. Math. Sci. 107, 4212–4230 (2001) | Khác | |||
17. Kerov, S.: Gaussian limit for the Plancherel measure of the symmetric group. C.R. Acad. Sci.Paris Sér. I Math. 316, 303–308 (1993) | Khác | |||
18. Kerov, S.: Interlacing measures. Amer. Math. Soc. Transl. 181, 35–83 (1998) | Khác | |||
19. Kerov, S.V.: Asymptotic Representation Theory of the Symmetric Group and its Applications in Analysis, Translations of Mathematical Monographs, vol. 219. American Mathematical Society (2003) | Khác | |||
20. Kerov, S., Olshanski, G.: Polynomial functions on the set of Young diagrams. C.R. Acad. Sci.Paris Sér. I Math. 319, 121–126 (1994) | Khác | |||
21. Logan, B.F., Shepp, L.A.: A variational problem for random Young tableaux. Adv. Math. 26, 206–222 (1977) | Khác | |||
22. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd Ed. Oxford University Press (1995) | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN