1. Trang chủ
  2. » Thể loại khác

Finite element methods for incompressible flow problems

816 311 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 816
Dung lượng 17,1 MB

Nội dung

Springer Series in Computational Mathematics 51 Volker John Finite Element Methods for Incompressible Flow Problems Springer Series in Computational Mathematics Volume 51 Editorial Board R.E Bank R.L Graham W Hackbusch J Stoer R.S Varga H Yserentant More information about this series at http://www.springer.com/series/797 Volker John Finite Element Methods for Incompressible Flow Problems 123 Volker John Weierstrass Institute for Applied Analysis and Stochastics Berlin, Germany Fachbereich Mathematik und Informatik Freie UniversitRat Berlin Berlin, Germany ISSN 0179-3632 ISSN 2198-3712 (electronic) Springer Series in Computational Mathematics ISBN 978-3-319-45749-9 ISBN 978-3-319-45750-5 (eBook) DOI 10.1007/978-3-319-45750-5 Library of Congress Control Number: 2016956572 Mathematics Subject Classification (2010): 65M60, 65N30, 35Q30, 76F65, 76D05, 76D07 © Springer International Publishing AG 2016 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland For Anja and Josephine Preface Incompressible flow problems appear in many models of physical processes and applications Their numerical simulation requires in particular a spatial discretization Finite element methods belong to the mathematically best understood discretization techniques This monograph is devoted mainly to the mathematical aspects of finite element methods for incompressible flow problems It addresses researchers, Ph.D students, and even students aiming for the master’s degree The presentation of the material, in particular of the mathematical arguments, is performed in detail This style was chosen in the hope to facilitate the understanding of the topic, especially for nonexperienced readers Most parts of this monograph were presented in three consecutive master’s level courses taught at the Free University of Berlin, and this monograph is based on the corresponding lecture notes First of all, I like to thank the students who attended these courses Many of them wrote finally their master’s thesis under my supervision Then, I like to thank two collaborators of mine, Julia Novo (Madrid) and Gabriel R Barrenechea (Glasgow), who read parts of this monograph and gave valuable suggestions for improvement Above all, I like to thank my beloved wife Anja and my daughter Josephine for their continual encouragement Their efforts to manage our daily life and to save me working time were an invaluable contribution for writing this monograph in the past years Colbitz, Germany July 2016 Volker John vii Contents Introduction 1.1 Contents of this Monograph 2 The Navier–Stokes Equations as Model for Incompressible Flows 2.1 The Conservation of Mass 2.2 The Conservation of Linear Momentum 2.3 The Dimensionless Navier–Stokes Equations 2.4 Initial and Boundary Conditions 7 17 19 Finite Element Spaces for Linear Saddle Point Problems 25 3.1 Existence and Uniqueness of a Solution of an Abstract Linear Saddle Point Problem 26 3.2 Appropriate Function Spaces for Continuous Incompressible Flow Problems 41 3.3 General Considerations on Appropriate Function Spaces for Finite Element Discretizations 52 3.4 Examples of Pairs of Finite Element Spaces Violating the Discrete Inf-Sup Condition 62 3.5 Techniques for Checking the Discrete Inf-Sup Condition 72 3.5.1 The Fortin Operator 72 3.5.2 Splitting the Discrete Pressure into a Piecewise Constant Part and a Remainder 76 3.5.3 An Approach for Conforming Velocity Spaces and Continuous Pressure Spaces 79 3.5.4 Macroelement Techniques 84 3.6 Inf-Sup Stable Pairs of Finite Element Spaces 93 3.6.1 The MINI Element 93 3.6.2 The Family of Taylor–Hood Finite Elements 98 3.6.3 Spaces on Simplicial Meshes with Discontinuous Pressure 111 ix x Contents 3.7 3.6.4 Spaces on Quadrilateral and Hexahedral Meshes with Discontinuous Pressure 3.6.5 Non-conforming Finite Element Spaces of Lowest Order 3.6.6 Computing the Discrete Inf-Sup Constant The Helmholtz Decomposition The Stokes Equations 4.1 The Continuous Equations 4.2 Finite Element Error Analysis 4.2.1 Conforming Inf-Sup Stable Pairs of Finite Element Spaces 4.2.2 The Stokes Projection 4.2.3 Lowest Order Non-conforming Inf-Sup Stable Pairs of Finite Element Spaces 4.3 Implementation of Finite Element Methods 4.4 Residual-Based A Posteriori Error Analysis 4.5 Stabilized Finite Element Methods Circumventing the Discrete Inf-Sup Condition 4.5.1 The Pressure Stabilization Petrov–Galerkin (PSPG) Method 4.5.2 Some Other Stabilized Methods 4.6 Improving the Conservation of Mass, Divergence-Free Finite Element Solutions 4.6.1 The Grad-Div Stabilization 4.6.2 Choosing Appropriate Test Functions 4.6.3 Constructing Divergence-Free and Inf-Sup Stable Pairs of Finite Element Spaces 115 117 124 127 137 137 144 145 163 165 180 187 198 199 213 217 218 229 237 The Oseen Equations 5.1 The Continuous Equations 5.2 The Galerkin Finite Element Method 5.3 Residual-Based Stabilizations 5.3.1 The Basic Idea 5.3.2 The SUPG/PSPG/grad-div Stabilization 5.3.3 Other Residual-Based Stabilizations 5.4 Other Stabilized Finite Element Methods 243 243 249 258 258 261 287 289 The Steady-State Navier–Stokes Equations 6.1 The Continuous Equations 6.1.1 The Strong Form and the Variational Form 6.1.2 The Nonlinear Term 6.1.3 Existence, Uniqueness, and Stability of a Solution 6.2 The Galerkin Finite Element Method 301 301 301 302 312 316 Contents 6.3 6.4 xi Iteration Schemes for Solving the Nonlinear Problem 333 A Posteriori Error Estimation with the Dual Weighted Residual (DWR) Method 342 The Time-Dependent Navier–Stokes Equations: Laminar Flows 7.1 The Continuous Equations 7.2 Finite Element Error Analysis: The Time-Continuous Case 7.3 Temporal Discretizations Leading to Coupled Problems 7.3.1 Â-Schemes as Discretization in Time 7.3.2 Other Schemes 7.4 Finite Element Error Analysis: The Fully Discrete Case 7.5 Approaches Decoupling Velocity and Pressure: Projection Methods 355 355 377 393 393 409 410 The Time-Dependent Navier–Stokes Equations: Turbulent Flows 8.1 Some Physical and Mathematical Characteristics of Turbulent Incompressible Flows 8.2 Large Eddy Simulation: The Concept of Space Averaging 8.2.1 The Basic Concept of LES, Space Averaging, Convolution with Filters 8.2.2 The Space-Averaged Navier–Stokes Equations in the Case ˝ D Rd 8.2.3 The Space-Averaged Navier–Stokes Equations in a Bounded Domain 8.2.4 Analysis of the Commutation Error for the Gaussian Filter 8.2.5 Analysis of the Commutation Error for the Box Filter 8.2.6 Summary of the Results Concerning Commutation Errors 8.3 Large Eddy Simulation: The Smagorinsky Model 8.3.1 The Model of the SGS Stress Tensor: Eddy Viscosity Models 8.3.2 Existence and Uniqueness of a Solution of the Continuous Smagorinsky Model 8.3.3 Finite Element Error Analysis for the Time-Continuous Case 8.3.4 Variants for Reducing Some Drawbacks of the Smagorinsky Model 8.4 Large Eddy Simulation: Models Based on Approximations in Wave Number Space 8.4.1 Modeling of the Large Scale and Cross Terms 8.4.2 Models for the Subgrid Scale Term 8.4.3 The Resulting Models 447 431 448 458 458 463 466 470 477 481 482 482 486 508 536 541 542 549 551 References 797 Konshin IN, Olshanskii MA, Vassilevski YV (2015) ILU preconditioners for nonsymmetric saddle-point matrices with application to the incompressible Navier-Stokes equations SIAM J Sci Comput 37:A2171–A2197 Kraichnan RH (1967) Inertial ranges in two-dimensional turbulence Phys Fluids 10:1417–1423 Král J, Wendland W (1986) Some examples concerning applicability of the Fredholm-Radon method in potential theory Apl Mat 31:293–308 Kreiss H-O, Lorenz J (2004) Initial-boundary value problems and the Navier-Stokes equations Classics in applied mathematics, vol 47 Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp xviii+402 Reprint of the 1989 edition Ladyženskaja OA (1967) New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems Trudy Mat Inst Steklov 102:85–104 Ladyzhenskaya OA (1969) The mathematical theory of viscous incompressible flow Second English edition, revised and enlarged Translated from the Russian by Richard A Silverman and John Chu Mathematics and its Applications, vol Gordon and Breach, Science Publishers, New York/London/Paris, pp xviii+224 Layton W (2002) A connection between subgrid scale eddy viscosity and mixed methods Appl Math Comput 133:147–157 Layton W (2008) Introduction to the numerical analysis of incompressible viscous flows Computational science & engineering, vol Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp xx+213 With a foreword by Max Gunzburger Layton W, Lewandowski R (2003) A simple and stable scale-similarity model for large eddy simulation: energy balance and existence of weak solutions Appl Math Lett 16:1205–1209 Layton W, Lewandowski R (2006) On a well-posed turbulence model Discrete Contin Dyn Syst Ser B 6:111–128 (electronic) Layton WJ, Rebholz LG (2012) Approximate deconvolution models of turbulence Analysis, phenomenology and numerical analysis Lecture notes in mathematics, vol 2042 Springer, Heidelberg, pp viii+184 Layton W, Tobiska L (1998) A two-level method with backtracking for the Navier-Stokes equations SIAM J Numer Anal 35:2035–2054 (electronic) Layton W, Manica CC, Neda M., Rebholz LG (2008) Numerical analysis and computational testing of a high accuracy Leray-deconvolution model of turbulence Numer Methods Partial Differ Equ 24:555–582 Layton W, Manica CC, Neda M, Rebholz LG (2010) Numerical analysis and computational comparisons of the NS-alpha and NS-omega regularizations Comput Methods Appl Mech Eng 199:916–931 Lederer PL (2016) Pressure Robust Discretizations for Navier Stokes Equations: Divergencefree Reconstruction for Taylor-Hood Elements and High Order Hybrid Discontinuous Galerkin Methods Diplomarbeit, Technische Universität Wien Leonard A (1975) Energy cascade in large-eddy simulations of turbulent fluid flows In: Frenkiel F, Munn R (eds) Turbulent diffusion in environmental pollution proceedings of a symposium held at Charlottesville Advances in geophysics, vol 18, part A Academic, New York, pp 237–248 Leray J (1933) Étude de diverses équations intégrales non linéaires et de quelques problèmes de l’hydrodynamique J Math Pures Appl (9) 12:1–82 Leray J (1934a) Essai sur les mouvements plans d’une liquide visqueux que limitent des parois J Math Pures Appl (9) 13:331–418 Leray J (1934b) Sur le mouvement d’un liquide visqueux emplissant l’espace Acta Math 63:193– 248 Lesieur M (1997) Turbulence in fluids Fluid mechanics and its applications, vol 40, 3rd edn Kluwer Academic Publishers Group, Dordrecht, pp xxxii+515 Lesieur M, Metais O, Comte P (2005) Large-eddy simulations of turbulence Cambridge University Press, New York, pp xii+219 With a preface by James J Riley 798 References Lilly D (1967) The representation of small-scale turbulence in numerical simulation experiments In: Goldstine H (ed) Proceedings of the IBM scientific computing symposium on environmental sciences IBM, Yorktown Heights, NY, pp 195–210 Lilly DK (1992) A proposed modification of the germano subgrid-scale closure method Phys Fluids A 4:633–635 Linke A (2014) On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime Comput Methods Appl Mech Eng 268:782–800 Linke A, Merdon C, Wollner W (2016a) Optimal L2 velocity error estimate for a modified pressurerobust Crouzeix–Raviart Stokes element IMA J Numer Anal (in press) Linke A, Matthies G, Tobiska L (2016b) Robust arbitrary order mixed finite element methods for the incompressible Stokes equations with pressure independent velocity errors ESAIM Math Model Numer Anal 50:289–309 Lions J-L, Magenes E (1972) Non-homogeneous boundary value problems and applications Vol I Springer, New York/Heidelberg, pp xvi+357 Translated from the French by P Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181 Lube G, Rapin G (2006) Residual-based stabilized higher-order FEM for a generalized Oseen problem Math Models Methods Appl Sci 16:949–966 Lube G, Tobiska L (1990) A nonconforming finite element method of streamline diffusion type for the incompressible Navier-Stokes equations J Comput Math 8:147–158 Lube G, Rapin G, Löwe J (2008) Local projection stabilization for incompressible flows: equalorder vs inf-sup stable interpolation Electron Trans Numer Anal 32:106–122 Manica CC, Merdan SK (2007) Finite element error analysis of a zeroth order approximate deconvolution model based on a mixed formulation J Math Anal Appl 331:669–685 Mardal K-A, Schöberl J, Winther R (2013) A uniformly stable Fortin operator for the Taylor-Hood element Numer Math 123:537–551 Marion M, Temam R (1998) Navier-Stokes equations: theory and approximation In: Handbook of numerical analysis, vol VI North-Holland, Amsterdam, pp 503–688 Marsden JE, Shkoller S (2001) Global well-posedness for the Lagrangian averaged Navier-Stokes (LANS-˛) equations on bounded domains R Soc Lond Philos Trans Ser A Math Phys Eng Sci 359:1449–1468 Topological methods in the physical sciences (London, 2000) Marsden JE, Shkoller S (2003) The anisotropic Lagrangian averaged Euler and Navier-Stokes equations Arch Ration Mech Anal 166:27–46 Matthies G (2001) Mapped finite elements on hexahedra Necessary and sufficient conditions for optimal interpolation errors Numer Algorithms 27:317–327 Matthies G, Tobiska L (2002) The inf-sup condition for the mapped Qk -Pdisc k element in arbitrary space dimensions Computing 69:119–139 Matthies G, Tobiska L (2005) Inf-sup stable non-conforming finite elements of arbitrary order on triangles Numer Math 102:293–309 Matthies G, Tobiska L (2015) Local projection type stabilization applied to inf-sup stable discretizations of the Oseen problem IMA J Numer Anal 35:239–269 Matthies G, Skrzypacz P, Tobiska L (2007) A unified convergence analysis for local projection stabilisations applied to the Oseen problem M2AN Math Model Numer Anal 41:713–742 Matthies G, Lube G, Röhe L (2009) Some remarks on residual-based stabilisation of inf-sup stable discretisations of the generalised Oseen problem Comput Methods Appl Math 9:368–390 Maxwell J (1879) On stresses in rarified gases arising from inequalities of temperature Philos Trans R Soc 170:231–256 Meneveau C, Katz J (2000) Scale-invariance and turbulence models for large-eddy simulation Ann Rev Fluid Mech 32:1–32 Annual Reviews, Palo Alto, CA Miles WW, Rebholz LG (2010) An enhanced-physics-based scheme for the NS-˛ turbulence model Numer Methods Partial Differ Equ 26:1530–1555 Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re D 590 Phys Fluids 11:943–945 References 799 Müller-Urbaniak S (1993) Eine Analyse des Zwischenschritt- -Verfahrens zur Lösung der instationären Navier-Stokes-Gleichungen PhD thesis, Univ Heidelberg, Naturwiss.-Math Gesamtfak., Heidelberg, pp 78 Nabh G (1998) On higher order methods for the stationary incompressible Navier-Stokes equations PhD thesis, Univ Heidelberg, Naturwissenschaftlich-Mathematische Gesamtfakultät, Heidelberg, pp 104 Navier C (1823) Mémoire sur les lois du mouvement des fluiales Mém Acad R Soc 6:389–440 Neilan M (2015) Discrete and conforming smooth de Rham complexes in three dimensions Math Comp 84:2059–2081 Nirenberg L (1959) On elliptic partial differential equations Ann Scuola Norm Sup Pisa (3) 13:115–162 Nitsche J (1968) Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens Numer Math 11:346–348 Ohmori K, Ushijima T (1984) A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations RAIRO Anal Numér 18:309– 332 Olshanskii MA (2002) A low order Galerkin finite element method for the Navier-Stokes equations of steady incompressible flow: a stabilization issue and iterative methods Comput Methods Appl Mech Eng 191:5515–5536 Olshanskii MA, Reusken A (2004) Grad-div stabilization for Stokes equations Math Comp 73:1699–1718 Olshanskii MA, Tyrtyshnikov EE (2014) Iterative methods for linear systems Theory and applications Society for Industrial and Applied Mathematics, Philadelphia, PA, pp xvi+247 Olshanskii MA, Vassilevski YV (2007) Pressure Schur complement preconditioners for the discrete Oseen problem SIAM J Sci Comput 29:2686–2704 Olshanskii M, Lube G, Heister T, Löwe J (2009) Grad-div stabilization and subgrid pressure models for the incompressible Navier-Stokes equations Comput Methods Appl Mech Eng 198:3975–3988 Parés C (1992) Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids Appl Anal 43:245–296 Patankar SV (1980) Numerical heat transfer and fluid flow Series in computational methods in mechanics and thermal sciences Hemisphere Publishing Corporation, Washington, New York, London/McGraw-Hill Book Company, New York, pp XIII+197 Piomelli U (1999) Large-eddy simulation: achievements and challenges Progr Aerosp Sci 35:335– 362 Piomelli U, Balaras E (2002) Wall-layer models for large-eddy simulations Ann Rev Fluid Mech 34:349–374 Annual Reviews, Palo Alto, CA Pope SB (2000) Turbulent flows Cambridge University Press, Cambridge, pp xxxiv+771 Principe J, Codina R, Henke F (2010) The dissipative structure of variational multiscale methods for incompressible flows Comput Methods Appl Mech Eng 199:791–801 Prohl A (1997) Projection and quasi-compressibility methods for solving the incompressible Navier-Stokes equations Advances in numerical mathematics B G Teubner, Stuttgart, pp xiv+294 Qin J (1994) On the convergence of some low order mixed finite elements for incompressible fluids PhD thesis, Department of Mathematics, Pennsylvania State University Rang J (2008) Pressure corrected implicit  -schemes for the incompressible Navier-Stokes equations Appl Math Comput 201:747–761 Rannacher R (1992) On Chorin’s projection method for the incompressible Navier-Stokes equations In: The Navier-Stokes equations II—theory and numerical methods (Oberwolfach, 1991) Lecture notes in mathematics, vol 1530 Springer, Berlin, pp 167–183 Rannacher R, Turek S (1992) Simple nonconforming quadrilateral Stokes element Numer Methods Partial Differ Equ 8:97–111 Rasthofer U (2015) Computational multiscale methods for turbulent single and two-phase flows Bericht 27 PhD thesis, Lehrstuhl für Numerische Mechanik, Technische Universität München 800 References Rasthofer U, Gravemeier V (2013) Multifractal subgrid-scale modeling within a variational multiscale method for large-eddy simulation of turbulent flow J Comput Phys 234:79–107 Raviart P-A, Thomas JM (1977) A mixed finite element method for 2nd order elliptic problems Mathematical aspects of finite element methods (proceedings of the conference, Consiglio Naz delle Ricerche (C.N.R.), Rome, 1975) Lecture notes in mathematics, vol 606 Springer, Berlin, pp 292–315 Richardson LF (1922) Weather prediction by numerical process Cambridge University Press, Cambridge Rockel S (2013) Über Formen des konvektiven Terms in Finite–Elemente–Diskretisierungen der inkompressiblen Navier–Stokes–Gleichungen Diplomarbeit, Freie Universität Berlin Rodi W, Ferziger JH, Breuer M, Pourquié M (1997) Status of large eddy simulation: results of a workshop ASME J Fluids Eng 119:248–262 Röhe L, Lube G (2010) Analysis of a variational multiscale method for large-eddy simulation and its application to homogeneous isotropic turbulence Comput Methods Appl Mech Eng 199:2331–2342 Roos H-G, Stynes M, Tobiska L (2008) Robust numerical methods for singularly perturbed differential equations Convection-diffusion-reaction and flow problems Springer series in computational mathematics, vol 24, 2nd edn Springer, Berlin, pp xiv+604 Rudin W (1991) Functional analysis International series in pure and applied mathematics, 2nd edn McGraw-Hill, Inc., New York, pp xviii+424 Saad Y (1993) A flexible inner-outer preconditioned GMRES algorithm SIAM J Sci Comput 14:461–469 Saad Y (2003) Iterative methods for sparse linear systems, 2nd edn Society for Industrial and Applied Mathematics, Philadelphia, PA, pp xviii+528 Saad Y, Schultz MH (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems SIAM J Sci Stat Comput 7:856–869 Sagaut P (2006) Large eddy simulation for incompressible flows In: Scientific computation, 3rd edn Springer, Berlin, pp xxx+556 An introduction, translated from the 1998 French original, with forewords by Marcel Lesieur and Massimo Germano, with a foreword by Charles Meneveau Schäfer M, Turek S (1996) Benchmark computations of laminar flow around a cylinder (with support by F Durst, E Krause and R Rannacher) In: Flow simulation with high-performance computers II DFG priority research programme results 1993–1995 Vieweg, Wiesbaden, pp 547–566 Schenk O, Bollhöfer M, Römer RA (2008) On large-scale diagonalization techniques for the anderson model of localization SIAM Rev 50:91–112 Schieweck F (1997) Parallele Lösung der stationären inkompressiblen Navier-Stokes Gleichungen Habilitation thesis, Magdeburg: Univ Magdeburg, Fakultät Mathematik, pp 142 Schieweck F (2000) A general transfer operator for arbitrary finite element spaces Preprint 00-25 Fakultät für Mathematik, Otto-von-Guericke-Universität Magdeburg Schieweck F, Tobiska L (1989) A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation RAIRO Modél Math Anal Numér 23:627–647 Schieweck F, Tobiska L (1996) An optimal order error estimate for an upwind discretization of the Navier-Stokes equations Numer Methods Partial Differ Equ 12:407–421 Schönknecht N (2015) On solvers for saddle point problems arising in finite element discretizations of incompressible flow problems Master thesis, Freie Universität Berlin Scott LR, Vogelius M (1985) Conforming finite element methods for incompressible and nearly incompressible continua Large-scale computations in fluid mechanics, Part (La Jolla, CA, 1983) Lectures in applied mathematics, vol 22 American Mathematical Society, Providence, RI, pp 221–244 Scott LR, Zhang S (1990) Finite element interpolation of nonsmooth functions satisfying boundary conditions Math Comp 54:483–493 References 801 Serrin J (1963) The initial value problem for the Navier-Stokes equations In: Nonlinear problems (proceedings of the sympos., Madison, WI, 1962) University of Wisconsin Press, Madison, WI, pp 69–98 Shakib F, Hughes TJR, Johan Z (1991) A new finite element formulation for computational fluid dynamics X The compressible Euler and Navier-Stokes equations Comput Methods Appl Mech Eng 89:141–219 Second world congress on computational mechanics, part I (Stuttgart, 1990) Shen J (1992a) On error estimates of projection methods for Navier-Stokes equations: first-order schemes SIAM J Numer Anal 29:57–77 Shen J (1992b) On error estimates of some higher order projection and penalty-projection methods for Navier-Stokes equations Numer Math 62:49–73 Shen J (1996) On error estimates of the projection methods for the Navier-Stokes equations: second-order schemes Math Comp 65:1039–1065 Smagorinsky J (1963) General circulation experiments with the primitive equations Mon Weather Rev 91:99–164 Sohr H (1983) Zur Regularitätstheorie der instationären Gleichungen von Navier-Stokes Math Z 184:359–375 Sohr H (2001) The Navier-Stokes equations An elementary functional analytic approach Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks] Birkhäuser Verlag, Basel, pp x+367 Sonneveld P (1989) CGS, a fast Lanczos-type solver for nonsymmetric linear systems SIAM J Sci Stat Comput 10:36–52 Stanculescu I (2008) Existence theory of abstract approximate deconvolution models of turbulence Ann Univ Ferrara Sez VII Sci Mat 54:145–168 Stenberg R (1984) Analysis of mixed finite elements methods for the Stokes problem: a unified approach Math Comp 42:9–23 Stenberg R (1987) On some three-dimensional finite elements for incompressible media Comput Methods Appl Mech Eng 63:261–269 Stenberg R (1990) Error analysis of some finite element methods for the Stokes problem Math Comp 54:495–508 Stolz S, Adams NA (1999) An approximate deconvolution procedure for large-eddy simulation Phys Fluids 11:1699–1701 Stolz S, Adams NA, Kleiser L (2001) An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows Phys Fluids 13:997–1015 Stroud AH (1971) Approximate calculation of multiple integrals Prentice-Hall series in automatic computation Prentice-Hall, Inc., Englewood Cliffs, NJ, pp xiii+431 Stüben K (2001) A review of algebraic multigrid J Comput Appl Math 128:281–309 Numerical analysis 2000, vol VII Partial differential equations ´ Swierczewska A (2006) A dynamical approach to large eddy simulation of turbulent flows: existence of weak solutions Math Methods Appl Sci 29:99–121 Tabata M, Tagami D (2000) Error estimates for finite element approximations of drag and lift in nonstationary Navier-Stokes flows Jpn J Ind Appl Math 17:371–389 Taylor G (1923) On the decay of vortices in viscous fluid Philos Mag XLVI:671–674 Témam R (1969) Sur l’approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires II Arch Ration Mech Anal 33:377–385 Temam R (1982) Behaviour at time t D of the solutions of semilinear evolution equations J Differ Equ 43:73–92 Temam R (1984) Navier-Stokes equations Theory and numerical analysis Studies in mathematics and its applications, vol 2, 3rd edn North-Holland Publishing Co., Amsterdam, pp xii+526 With an appendix by F Thomasset Temam R (1986) Infinite-dimensional dynamical systems in fluid mechanics In: Nonlinear functional analysis and its applications, part (Berkeley, CA, 1983) Proceedings of the symposium Pure Mathematics, vol 45 American Mathematical Society, Providence, RI, pp 431–445 802 References Temam R (1995) Navier-Stokes equations and nonlinear functional analysis CBMS-NSF regional conference series in applied mathematics, vol 66, 2nd edn Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, pp xiv+141 Temam R (1997) Infinite-dimensional dynamical systems in mechanics and physics Applied mathematical sciences, vol 68, 2nd edn Springer, New York, pp xxii+648 Tiesinga G, Wubs FW, Veldman AEP (2002) Bifurcation analysis of incompressible flow in a driven cavity by the Newton-Picard method J Comput Appl Math 140:751–772 Timmermans L, Minev P, van de Vosse F (1996) An approximate projection scheme for incompressible flow using spectral elements Int J Numer Methods Fluids 22:673–688 Tobiska L, Lube G (1991) A modified streamline diffusion method for solving the stationary Navier-Stokes equation Numer Math 59:13–29 Tobiska L, Verfürth R (1996) Analysis of a streamline diffusion finite element method for the Stokes and Navier-Stokes equations SIAM J Numer Anal 33:107–127 Triebel H (1972) Höhere analysis VEB Deutscher Verlag der Wissenschaften, Berlin, p 704 Hochschulbücher für Mathematik, Band 76 Trilinos (2016) https://trilinos.org Accessed 22 June 2016 Trottenberg U, Oosterlee CW, Schüller A (2001) Multigrid Academic Press, Inc., San Diego, CA, pp xvi+631 With contributions by A Brandt, P Oswald and K Stüben Turek S (1999) Efficient solvers for incompressible flow problems An algorithmic and computational approach Lecture notes in computational science and engineering, vol Springer, Berlin, pp xvi+352 With CD-ROM (“Virtual Album”: UNIX/LINUX, Windows, POWERMAC; “FEATFLOW 1.1”: UNIX/LINUX) Umla R (2009) Stabilisierte Finite–Element Verfahren für die Konvektions-DiffusionsGleichungen und Oseen-Gleichungen Diplomarbeit, Universität des Saarlandes, FR 6.1 – Mathematik ur Rehman M, Vuik C, Segal G (2008) A comparison of preconditioners for incompressible NavierStokes solvers Int J Numer Methods Fluids 57:1731–1751 van Cittert P (1931) Zum Einfluß der Spaltbreite auf die Intensitätsverteilung in Spektrallinien II Zeitschrift für Physik 69:298–308 van der Bos F, Geurts BJ (2005) Commutator errors in the filtering approach to large-eddy simulation Phys Fluids 17:035108, 20 van der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems SIAM J Sci Statist Comput 13:631–644 van Driest E (1956) On turbulent flow near a wall J Aeronaut Sci 23:1007–1011, 1036 van Kan J (1986) A second-order accurate pressure-correction scheme for viscous incompressible flow SIAM J Sci Stat Comput 7:870–891 Vanˇek P, Mandel J, Brezina M (1996) Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems Computing 56:179–196 International GAMM-workshop on multi-level methods (Meisdorf, 1994) Vanka SP (1986) Block-implicit multigrid solution of Navier-Stokes equations in primitive variables J Comput Phys 65:138–158 Vassilevski PS, Lazarov RD (1996) Preconditioning mixed finite element saddle-point elliptic problems Numer Linear Algebra Appl 3:1–20 Verchota GC, Vogel AL (2003) A multidirectional Dirichlet problem J Geom Anal 13:495–520 Verfürth R (1984) Error estimates for a mixed finite element approximation of the Stokes equations RAIRO Anal Numér 18:175–182 Verfürth R (1989) A posteriori error estimators for the Stokes equations Numer Math 55:309–325 Verfürth R (1994) A posteriori error estimation and adaptive mesh-refinement techniques J Comput Appl Math 50:67–83 Verfürth R (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques Wiley, Chichester; B G Teubner, Stuttgart, pp vi+127 Verfürth R (2013) A posteriori error estimation techniques for finite element methods Numerical mathematics and scientific computation Oxford University Press, Oxford, pp xx+393 References 803 Winckelmans G, Jeanmart H, Carati D (2002) On the comparison of turbulence intensities from large-eddy simulation with those from experiment or direct numerical simulation Phys Fluids 14:3 Xu J, Zikatanov L (2003) Some observations on Babuška and Brezzi theories Numer Math 94:195–202 Yosida K (1995) Functional analysis Classics in mathematics Springer, Berlin, pp xii+501 Reprint of the sixth (1980) edition Zhang S (2005) A new family of stable mixed finite elements for the 3D Stokes equations Math Comp 74:543–554 Zhang S (2009) Bases for C0-P1 divergence-free elements and for C1-P2 finite elements on union jack grids http://www.math.udel.edu/~szhang/research/p/uj.pdf Accessed 20 July 2016 Zang Y, Street RL, Koseff JR (1993) A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows Phys Fluids A 5:3186–3196 Index of Subjects adjoint variable, 346 affine mapping, see mapping ASGS-VMS method, see method attractor global, 456 augmented Lagrangian-based preconditioner, see preconditioner auxiliary problem, 548 averaging radius, 459 Babuška–Brezzi condition, see inf-sup condition backscatter, 449, 539, 607, 618 backward Euler scheme, see Euler scheme barycenter, 712 barycentric coordinates, 711 barycentric-refined grid, see grid basis global, 710 local, 708 nodal, 184 BDF2, 409, 437, 439 Beltrami flow, 767 Bernardi–Raugel element, see finite element Bernoulli pressure, see pressure BiCGStab, 652 bilinear form V-elliptic, 697 bounded, 697 coercive, 697 boundary locally Lipschitz continuous, 685 boundary condition directional do-nothing, 23, 316 Dirichlet, 20 do-nothing, 21 essential, 21 natural, 21 no-slip, 20 outflow, 43 periodic, 24 slip with linear friction and no penetration, 508, 509 Boussinesq hypothesis, 484 box filter, see filter Bramble–Hilbert lemma, see lemma bubble function cell, 193, 716, 721 edge, 715 face, 193 Cauchy stress vector, 10, 466 Cauchy–Schwarz inequality, see inequality CGS, 652 checkerboard instability, 64, 69 checkpoint technique, 353 CIP method, see method coarse grid solver, 665 coercivity, 35 commutation, 622 commutation error, 466, 470 compact set, 678 compatibility condition, 20 compatibility conditions at initial time, 377 complex de Rham, 238 finite element sub-, 239 © Springer International Publishing AG 2016 V John, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5 805 806 Stokes, 238 condensed sparse row format, 650 consistency error, 167 continuity equation, continuous interior penalty method, see method convective term convective form, 303 divergence form, 303, 599 divergence form with modified pressure, 303 rotational form, 303 skew-symmetric form, 308 skew-symmetry, 245 convergence weak, 696 weak , 696 convolution, 689 Crank–Nicolson scheme, 394, 397, 409, 429, 436, 437 cross term, 541 curl, 127 two dimensions, 132 cut-off wave number, 459 cycle multigrid, 655 de Rham complex, see complex defect restriction, 661 deformation tensor formulation, 138 degree of freedom, 180 density, diameter of a mesh cell, 734 differential filter, see filter Direct Numerical Simulation, 451 discrete differential filter, see filter dissipation of turbulent energy, 449 divergence distributional, 44 weak, 44 divergence of a tensor, 13 divergence operator, see operator divergence-free discretely, 56 weakly, 44, 45 divergence-free subspace sequence with optimal approximation property, 221 domain polyhedral, 148 with Lipschitz continuous boundary, 148 downwind, 297 drag coefficient, 353, 751, 761 drag force, see force Index of Subjects driven cavity problem, 753 dual problem, 346 dual weighted residual method, see method DWR method, see method dynamic Smagorinsky model, see model dynamic subgrid scale model, see model dynamical system, 455 autonomous, 455 eddy viscosity, see viscosity eddy viscosity model, see model edge, 707 energy cascade, 449 energy dissipation, 369 energy inequality, see inequality error equation, 146 essential boundary condition, see boundary condition estimate a posteriori, 190 interpolation, 736 inverse, 745 Euler formula, 735 Euler scheme backward, 394, 397, 401, 412, 433 forward, 394, 397 IMEX, 424 Eulerian description of a flow field, 576 face, 707 FGMRES, 666 field irrotational, 128 isotropic, 449 statistically homogeneous, 449 statistically stationary, 449 filter, 464 box, 462, 477 characteristic width, 459 differential, 358, 548, 554, 562, 566 discrete differential, 566 Gaussian, 460, 542, 554 scale, 459 skewed, 477 test, 537 top hat, 462 width, 459 finite element P0 , 713 P1 , 713 P1 =P0 , 64 Index of Subjects P1 =P1 , 63 PBR =P0 , 114 Pnc , 295, 717 Pnc =P0 , 165, 291 h=2 P1 =P1 , 111 P2 , 714 disc PBR =P1 , 115 bubble =Pdisc P2 , 111, 113 P3 , 715 =Pdisc Pbubble , 114 Pk =Pk , 98 Pk =Pdisc k , 112 Pdisc k , 723 Q0 , 720 Q1 , 720 Q1 =Q0 , 67 Qrot , 295, 722 Qrot =Q0 , 118, 165 Q2 , 721 8/ Q2 =Q1 , 98 Q3 , 721 Qk =Pdisc k mapped, 115 Qk =Pdisc k unmapped, 115 Qk =Qk , 98 RTk , 718 Bernardi–Raugel, 111 Crouzeix–Raviart, 117, 165, 229, 717 Hsieh–Clough–Tocher, 239 isoparametric, 329 Lagrangian, 713 MINI, 93, 153, 226, 254, 326 modified Taylor–Hood, 111 parametric, 710 Rannacher–Turek, 117, 165, 722 Raviart–Thomas, 241, 718 rotated bilinear, 118 Scott–Vogelius, 70, 111, 112, 160, 238, 239, 385 simplicial, 712 Taylor–Hood, 98, 153, 224, 254, 326 finite element method conforming, 52 continuous-in-time, 516 non-conforming, 52, 117 finite element space, see space fluctuation, 216, 292, 458, 609 force drag, 751 irrotational, 144 lift, 751 Fortin operator, see operator forward Euler scheme, see Euler scheme Fourier transform, 459, 689 807 fractional-step  -scheme, 396 friction velocity, see velocity function absolutely continuous, 690 average on a face, 61 continuous with respect to functional, 709 jump across a face, 61 function restriction, 661 functional energy, 40 global, 709 Lagrangian, 40 linear, 697 local, 709 Galerkin least squares (GLS) method, see method Galerkin method, see method Galerkin orthogonality, 348, 703, 705 Galilean invariance, 483 Gaussian filter, see filter global basis, see basis GMRES, 651 grad-div stabilization, see stabilization grad-div term, 264 gradient velocity, 15 gradient operator, see operator grid, 709 barycentric-refined, 112, 222 criss-cross, 222 Union Jack, 222 Gronwall’s lemma, see lemma Hölder coefficient, 683 Hölder’s inequality, see inequality Hagen–Poiseuille flow, 22 Hausdorff dimension, 457 Helmholtz decomposition, 130 Helmholtz projection, see projection ILU factorization, 653 image, 696 imbedding theorem, see theorem IMEX scheme, 406, 424, 429 inequality Cauchy–Schwarz, 684 Cauchy–Schwarz, sum, 679 energy, 369, 488 Hölder’s, 684 808 Hölder’s, sum, 679 Korn’s, 46, 510 Poincaré’s, 686 Poincaré–Friedrichs’, 686 Poincaré-type, 730 triangle, 678 Young’s, 680 Young’s for convolutions, 690 inertial subrange, 452 inexact solution, 341, 342, 399, 652 inf-sup condition, 34, 140 Babuška, 35, 142 discrete, 52 initial condition, 20 inner product, 679 integral length scale, see scale interpolant, 733 interpolation of Sobolev spaces, 687 interpolation estimate, see estimate inverse estimate, see estimate irrotational field, see field irrotational force, see force isotropic turbulence, see turbulence iteration Newton, 338, 398, 652 Picard, 335, 398, 652 jump across a face, 61 Kármán vortex street, 761 kernel, 696 kinetic energy, 369, 452, 607 kinetic energy spectrum, 451 Kolmogorov 5=3 spectrum, 453 Kolmogorov hypotheses, 450 Kolmogorov length scale, see scale Kolmogorov scales, see scale Korn’s inequality, see inequality Krylov subspace, 651 Lagrangian description of a flow field, 576 Lagrangian multiplier, 25, 35, 395 Lagrangian point of view, 483 laminar flow, 355 large scale advective term, 541 LBB condition, see inf-sup condition Lebesgue space, see space lemma Bramble–Hilbert, 732 Cea, 704 Index of Subjects discrete Gronwall’s, 695 Gronwall’s, 692 Gronwall’s, variation of, 694 Strang, second, 167 Leray-˛ model, see model LES basic idea, 458 lift coefficient, 353, 751, 761 lift force, see force Lipschitz constant, 683 Lipschitz continuity, 512 local basis, see basis local projection stabilization (LPS) method, see method locking phenomenon, 67 LSC preconditioner, see preconditioner macroelement, 85 macroelement condition, 88 mapping affine, 712 parametric, 724 mass, conservation of, violation of conservation of, 57 matrix Gramian, 126 mass, 126, 406 Schur complement, 666 stiffness, 704 mesh, 709 mesh cell, 707 anisotropic, 123 reference, 712, 719 method absolutely stable, 213 algebraic subgrid scale (ASGS) VMS, 608 AVM3 , 614 AVM4 , 618 CIP, 289, 430, 431 coarse space projection-based VMS, 619 diagonally implicit Runge–Kutta, 410 dual weighted residual, 343 DWR, 343 finite difference, 473 Galerkin, 358, 486, 704 GLS, 214 higher order term-by-term stabilization, 295, 590 LPS, 217, 292, 430, 431, 590, 607 of lines, 393 of Rothe, 393 pressure-robust, 229 Index of Subjects projection, 431 pseudo-compressibility, 199 PSPG, 199, 283, 430, 435, 617 residual-free bubble, 613 Rosenbrock, 409 SUPG/PSPG/grad-div, 262, 292, 608 VMS, 591 VMS with orthogonal subscales (OSS), 605 MINI element, see finite element model ADM, 553 approximate deconvolution, 553 dynamic Smagorinsky, 537, 595 dynamic subgrid scale, 537 eddy viscosity, 484 isotropic Lagrangian-averaged Navier– Stokes, 576 Ladyzhenskaya, 482 Leray-˛, 563 Leray-˛ ADM, 574 Leray-deconvolution, 574 multifractal subgrid scale, 618 Navier–Stokes-˛, 575 rational LES, 547 rational LES model with auxiliary problem, 551 rational LES model with convolution, 549, 551 Smagorinsky, 482, 486, 550, 614, 620 Smagorinsky, stationary, 535 Taylor LES, 545, 551 viscous Camassa–Holm, 576 momentum linear, momentum equation, 13 monotonicity, 499 strong, 499, 511 multi-index, 681 multigrid method algebraic, 614 coupled, 654 natural boundary condition, see boundary condition Navier–Stokes equations dual linearized, 324 stationary, 19, 301 steady-state, 19, 301 Navier–Stokes-˛ model, see model Newton’s method, see iteration Newtonian fluid, 15 809 nodal functionals, 707 non-conforming finite element method, see finite element method norm, 678 norm, induced, 679 norms equivalent, 678 operator adjoint, 701 bounded, 696 continuous, 697 discrete divergence, 56 discrete gradient, 56 discrete Laplacian, 568 divergence, 43 Fortin, 72 gradient, 43 Green’s, fine-scale, 597 interpolation, Clément, 739 linear, 696 orthogonal complement, 680 element, 680 Oseen equations, 244, 336, 398 OSS-VMS method, see method outer layer, 453 parametric finite element, see finite element patch test, 79 PCD preconditioner, see preconditioner Picard iteration, see iteration Poincaré’s inequality, 166, see inequality Poincaré–Friedrichs’ inequality, 166, see inequality Poincaré-type inequality, see inequality precompact set, 678 preconditioner, 652 augmented Lagrangian-based, 673 boundary-corrected LSC, 671 left, 652 LSC, 669, 675 PCD, 672 right, 653 pressure, 7, 14 at initial time, 376 Bernoulli, 24, 304 dynamic, 751 pressure Poisson equation, 375 pressure stabilization Petrov–Galerkin term, see PSPG term 810 pressure-correction scheme non-incremental, 433 rotational incremental, 441 standard incremental, 436 pressure-projection equation, 434 projection L2 ˝/, 743 elliptic, 743 Galerkin, 656 Helmholtz, 131, 139, 433 local, L2 !i /, 740 local, L2 K/, 661 orthogonal, 743 Riesz, 743 projection method, see method prolongation, 656 PSPG method, see method PSPG term, 264 range, 696 rational LES model, see model rational LES model with auxiliary problem, see model rational LES model with convolution, see model Rayleigh quotient, 680 reactive term, 243 residual, 259 dual, 347 primal, 346 residual vector, 651 residual-free bubble method, see method Reynolds equation, 465 Reynolds number, 17 Reynolds stress tensor, see tensor Richardson energy cascade, 449 Ritz approximation, 702 rms turbulence intensity, 770 rotation, 127 saddle point problem, 26, 40 generalized, 41 scalar product, 679 scale integral length, 484 Kolmogorov, 450 Kolmogorov length, 450 large, 458, 621 small, 458 small resolved, 621 subgrid, 458 unresolved, 458 Index of Subjects viscous dissipation length, 565 viscous length, 453 Schur complement matrix, see matrix Scott–Vogelius element, see finite element seminorm, 678 sequence Cauchy, 677 convergent, 678 sgs term, 541, 549 SIMPLE, 666 simplex, 711 unit, 712 simulation robust, 482 Smagorinsky coefficient, 485 Smagorinsky model, see model Sobolev spaces, see space interpolation, 687 solution local, 375 Smagorinsky model, weak, 487 strong, 373 variational, 357 weak, 356, 357 weak in the sense of Leray–Hopf, 358 space C1 ˝/, 682 C1 ˝/, 682 Cm;˛ ˝/, 683 Cm ˝/, 681 Cm ˝/, 682 C0m ˝/, 683 C01 ˝/, 683 CBm ˝/, 682 ˝/, 683 C0;div H div; ˝/, 44 H m ˝/, 685 Hdiv ˝/, 45, 129 Lp ˝/, 683 Lp t0 ; t1 I X/, 689 Pk , 713 Qk , 720 W 1;p ˝/, 685 Banach, 678 complete, 678 discretely divergence-free, 56 finite element, 710 finite element, unisolvent, 708 for tensor-valued function, 42 for vector-valued function, 42 Hilbert, 679 isometric, 677 Lebesgue, 683 metric, 677 Index of Subjects null, 696 Sobolev, 684 wave number, 452 weakly divergence-free, 45 space-averaged momentum equation, 469 space-averaged Navier–Stokes equations, 463, 465 sparse direct solver, 650 spurious pressure mode, 63 stabilization grad-div, 218, 332, 430, 436, 510, 599, 612, 624, 673 residual-based, 258 Stokes complex, 238 equations, 19, 137, 335 operator, 579 operator, discrete, 389 problem, dual, 150 projection, 163 stopping criterion, 403 stream function, 132, 133, 752 streamline diffusion term, 264 Streamline-Upwind Petrov–Galerkin term, 264 stress normal, 16 shear, 16 wall shear, 453 stress tensor, see tensor Strouhal number, 17, 762 subgrid scale term, 541, 598 subscale static, 607 SUPG term, 264, 599 support, 682 Taylor LES model, see model Taylor–Hood finite element, see finite element tensor residual-stress, 465 Reynolds stress, 465, 770 stress, 12, 16 subgrid, 465 subgrid-scale (sgs) stress, 465 velocity deformation, 14 viscous stress, 14 theorem Carathéodory, 691 closed range, 698 Lax–Milgram, 701 Reynolds transport, Riesz, 699 Sobolev imbedding, 687 811 trace, 686 time-continuous Galerkin formulation, 377 top hat filter, see filter torque, 13 torsion vector, 10 trapezoidal rule composite, 415 triangulation, 709 admissible, 709 quasi-uniform family of, 734 regular family of, 735 turbulence isotropic, 449 turbulent channel flow, 539, 552, 638 turbulent viscosity, see viscosity unisolvence, 708 unit cube, 719 upwind, 297 Samarskij, 298 simple, 298 van Cittert family of approximate deconvolutions, 556, 590 Vanka smoother, 663 mesh-cell-oriented, 663 pressure-node-oriented, 664 variational multiscale method, see method variational solution, see solution vector potential, 133 velocity, friction, 453 mean, 770 subgrid scale, 602 velocity deformation tensor, see tensor vertex, 707 viscosity dimensionless, 18 dynamic, 15 eddy, 484 kinematic, 16 shear, 15 turbulent, 484 viscous length scale, see scale, 618 viscous sublayer, 453 viscous term deformation tensor formulation, 183 gradient formulation, 184, 340 Laplacian formulation, 184 viscous wall region, 453 VMS method, see method 812 vortex stretching, 454 vorticity, 454 vorticity equation, 454 wall law, 481 wall shear stress, 453 wall unit, 453 wave number, 459 wave number space, see space Index of Subjects weak convergence, see convergence weak divergence, 44 weak solution, see solution weakly convergence, see convergence Yosida approximation, 358, 548 Young’s inequality, see inequality Young’s inequality for convolutions, see inequality ... Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics 51, DOI 10.1007/978-3-319-45750-5_3 25 26 Finite Element Spaces for Linear Saddle Point Problems. .. for numerical simulations, which are divided into three groups: • examples for steady-state flow problems, • examples for laminar time-dependent flow problems, • examples for turbulent flow problems. .. considers finite element methods Finite element methods are very popular and they are understood quite well from the mathematical point of view First applications of finite element methods for the

Ngày đăng: 14/05/2018, 11:41

TỪ KHÓA LIÊN QUAN