Thermochemical Data of Elements and Compounds @WILEY-VCH... British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library.. Die
Trang 2Thermochemical Data of Elements and Compounds
@WILEY-VCH
Trang 4Institut fur Anorganische Chemie
I
First Edition 1999
Second, Revised and Extended Edition 2002
Library of Congress Card No.: Applied for
British Library Cataloguing-in-Publication Data: A catalogue record for this book is available from the British Library
Die Deutsche Bibliothek - CIP Cataloguing-in-Publication Data:
A catalogue record for this publication is available from Die Deutsche Bibliothek
ISBN 3-527-30524-6
0 Wiley-VCH Verlag GmbH, Weinheim, 2002
Printed on acid-free paper
All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form - by photoprinting, microfilm, or any other means - nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not considered unprotected by law
Printing: Strauss Offsetdruck, Morlenbach
Bookbinding: Litges & Dopf, Heppenheim
Cover-Design: Wolfgang Scheffler, Mainz
Printed in the Federal Republic of Germany
Trang 61
I Introduction
This book contains a compact collection of thermochemical data of elements of many inorganic and some organic compounds In this second edition well established selected values (references [I] [ 81) are compiled together with about 500 original references In several cases roughly estimated entropy and molar heat data are given in addition to measured enthalpy data
We deliberately limited our enthalpy and entropy data to a temperature of 298 K,
because by using the C,-data it is very simple to calculate thermochemical data for other temperatures Thus, it was possible to collect about 5200 entries in one volume
Formulae are given in alphabetical order of the elements present in a compound: e.g AIC13 but CI2Mg The next principle of arrangement is the number of atoms: e.g Pp appears before P4 and CCh before CC4 Due to this principle of order, we obtain a very unambigious criterion for compound searching, even though the formulae are presented in an unusual way For clarity, customary chemical formulae and names are also given So, it should be no
problem to find a certain substance, even if the rules of nomenclature have in some cases not been followed
It is a great pleasure for us to thank Dr T Plaggenborg and C Rose for her help
Hannover (Germany) 2002
M Binnewies, E Milke
Trang 72 Comments on the Data
The following data are (maximally) given (standard pressure 1 bar)
1st line: alphabetical formula (state) name alphabetical formula (state)
((s) =solid, (I) = liquid; (9) = gaseous)
2nd line: chemical formula (state) chemical formula (state)
(not given if alphabetical and chemical formula are identical)
3rd line: melting point (K) and (“C) boiling point (K) and (“C)
(These values are always listed at the first entry of a substance)
4th line: heat of formation at 298 K [reference], entropy at 298 K [reference]
or heat of formation at T [reference], entropy at T [reference]
5th line: molar heat capacity at constant pressure as a fixed value or in the form of the polynomial
Trang 86th line: special equilibrium constant as a function of temperature in the form of the equation
Ig(p, K) = e.10~ T-’ + f.Ig(T) + g
(often values are given for evaporation, sublimation (p) or decomposition
reactions (4)
(T-range) [reference]
7th line: Remarks to line 6
Estimated values are given in [ 1
In many cases data are given for one substance in several states (for instance several solid states, liquid or gaseous states) For each state a new entry is made Usually data are given for the minimum and the maximum of the stability range
1st entry Data at 298 K a-Co
2ndentry Dataat 700K a-Co
3rd entry Data at 700 K p-Co
4th entry Data at 1768 K p-Co
5th entry Data at 1768 K Co(l)
6th entry Data at 298 K Co(l)
7th entry Data at 298 K Co(g)
Enthalpies of transformation, melting and evaporation can simply be calculated from
these values
Trang 9Calculation of Enthalpy and Entropy Values for Other Temperatures:
Trang 10standard heat of formation (298 K, 1 bar) (kJ.mol-I)
heat of formation (T, 1 bar) (kJ.mol-')
standard entropy (298 K, 1 bar) (JK'.mol-I)
entropy (T, 1 bar) (J.K-l.mo1-l)
estimated values
Trang 111.240.104 1
9.869.10-6 7.501.10-3 0.986923 750.062
1.316.10-3 1
M Binnewies, E Mike copyright 0 Wiley-VCH Verlag GmbH, Weinheim, 2002
Trang 12c speed of light (vac.) 299792458 ms-‘
F Faraday constant 9.648456.104 A.s.mo1-l
Trang 135 Data
Trang 14Ig(p,K) = - 14.71 .IO3.r1 - 1.53 Ig(T) + 11.23 (1235 2300 K) [4]
{Reaction: evaporation (total pressure)}
Trang 15AgBr (1) Silver Bromide AgBr (1)
AH0298 = 140.5 kJ.rno1-l [4] SO298 = 272.2 Jmol-’K’ [4] Cpo= 37.41 - 0.14 1O6.T-’ J.rnol-’.K’ (298 2000 K) [4]
= 146 kJ.mol-’ [2]
cpo= 66.5 J.rnol-’.K-’ (298 K) [2]
AH0298 = - 95 kJ.mol-’ [7] SO298 = 121 J.mol-’.K-‘ [7]
Trang 16AgCl (s) Silver Chloride AgCl (s)
Trang 17Silver Uranium Fluoride
= - 2353.3 f 8.3 kJmol-’ [245]
Cpo= [180.22] J.mol-‘K’ (298 K) [271]
Silver Iodide gamma
SO420 = 136.4 Jmol-‘K’ [4]
Silver Iodide alpha AH0420 = - 48.2 kJ.mo1-I [4]
cpo= 43.66 + 14.83 10-37 + 1.52 106.T-2 Jmol-’K’ (420 830 K) [4]
Ig(p,K) = - 11.32 IO3.T-’ + 2.28 Ig(T) + 14.12 (700 830 K) [4]
{Reaction: evaporation (total pressure)}
SO420 = 151.3 Jmol-‘K’ [4]
= - 24.7 kJmol-’ [4]
cpo= 58.18 Jmol-‘K’ (830 K) [4]
Silver Iodide alpha
Trang 18Ig(p,K) = - 4.56 IO37-’ - 3.54 Ig(T) + 18.43 (298 517 K) [4]
{Reaction: AgN02(s) = Ag(s) + NOZ(g)}
Silver Nitrate alpha
= 180.1 J.rnol-’K’ 141
Trang 19AH’483 = - 90.6 kJ.rno1-l [4]
Cpo= 128.03 Jmol-lK’ (483 665 K) [4]
Silver Perrhenate
mp = 728 K (455 “C)
cpo= 90.65 + 112.45 m37 - 0.7 ?o6.T-’ Jmol-’.K-’ (298 500 K) [4]
= - 736 kJmol-’ [4] sozg8 = 153.1 Jmol-’.K-’ [4]
Trang 20= - 31.4 kJmol-‘ [5] SO298 = 133.9 J.rnol-‘.K-‘ [5] Cpo= I66.71 Jmol-’.K-’ (298 K) [I51
Silver Carbonate beta
= - 485.8 kJ.rnol-’ [4]
C p o = 79.37 + 108.16 IO”.T J.rnol-’.K-’ (457 491 K) [4]
Silver Oxalate
A/-/0298 = - 731.8 kJmol-’ [2] SO298 = 217.6 J.rnol-’K’ [2]
cpo= 132.21 + 66.94 10-34- - 0.89 lo6.? J.rnol-’.K-’ (298 500 K) [3]
Trang 21Ag20 (s) Silver Oxide Ag20 (s)
mp = 933 K (660 “C)
Cpo= 96.65 + 116.73 m37 J.rnol-’.K-’ (298 703 K) [4]
AH0298 = - 717.1 kJmol-’ [4] SO298 = 199.8 Jmol-’.K-‘ [4]
Silver Sulfate alpha
Silver Sulfate beta AH0703 = - 638.7 kJ.rno1-l [4]
Cpo= 96.65 + 116.73 w37 J.rnol-’.K-’ (703 933 K) [4]
AH0933 = - 594.5 kJmol-’ [4]
Cpo= 205.56 Jmol-’K’ (933 K) [4]
Silver Sulfate beta
s0933 = 406.5 J.rnol-’K‘ [4]
Silver Sulfate
AH0933 = - 576.5 kJmol-’ [4]
cpo= 205.02 Jmol-‘.K-’ (933 1300 K) [4]
Trang 22Silver Tungstate
Silver Sulfide alpha mp= 1115K(842”C)
Silver Sulfide beta
= - 15.5 kJmol-’ [4] s0451 = 185.2 Jmol-’K’ [4]
Cpo= 81.34 + 2.93 10-37 Jmol-’.K-’ (451 895 K) [4]
Ig(p,K) = - 9.75 lO37-’ - 2.1 1 Ig(T) + 10.81 (800 895 K) (41
{Reaction: 2Ag2S(s) = 4Ag(s) + S2(g)}
Cpo= 83.96 Jmol-’.K-’ (895 K) [4]
Silver Sulfide beta
Trang 23Silver Sulfide
gamma AH0895 = 22.0 kJmol-’ [4]
AH01115 = 48.1 kJmol-’ [4]
Cpo= 93.09 Jmol-‘K’ (1115 K) [4]
sollq5 = 268 J.mol-’K‘ [4]
Silver Selenide alpha
SO406 = 176.2 Jmol-’.K-’ [4]
Trang 24Silver Selenide beta
A/-/ ‘406 = 0 kJmol-’ [4] SO406 = 193.5 Jmol-’.K-‘ [4]
cpo= 80.5 + 9.45 10“.T J.rnol-’K’ (406 1170 K) [4]
Ig(p,K) = - 8.22 1037-’ - 2.18 Ig(T) + 10.2 (700 1170 K) [4]
{Reaction: 2Ag2Se(s) = 4Ag(s) + Se2(g)}
Silver Telluride alpha rnp = 1232 K (959 “C)
Cpo= 49.2 + 109.62 m 3 T + 0.28 1O6.T-’ Jmol-’K’ (298 421 K) [4]
= - 36 kJmol-’ [2] SO298 = 153.6 Jmol-’.K-’ [2]
AH0421 = - 24.9 kJmol-’ [4]
cpo= 96.9 Jmol-’.K-’ (421 K) [4]
Silver Telluride alpha
Silver Telluride beta AH’421 = - 18.3 kJmol-’ [4]
Trang 25Silver Iodide
AH0298 = - 405.4 kJmol-‘ [71] SoZ98 = [510.4] J.rnol-’.K-’ [71]
mp = 933 K (660 “C)
AHoZg8 = 0 kJmol-‘ [I]
cpo= 20.11 + 13.17 1O3.T + 0.03 1O6.T-’ J.mol-‘K’ (298 933 K) [4]
{Reaction: evaporation (total pressure)}
AH0298 = 10.6 kJ.rno1-I [A]
Cpo= 31.75 Jmol-‘K’ (933 2790 K) [4]
SoZ98 = 39.6 Jmol-’K’ [I]
AH0298 = 329.7 k 4.2 kJmol-’ [I]
Cpo= 20.78 + 0.05 1O6.T-’ J.mol-’K’ (298 3000 K) 141
SO298 = 164.6 J.mol-’.K-’ [I]
mp = 2013 K (1740 “C)
AH0298 = - 116.3 kJmol-’ [2]
C p o = 43.93 + 6.28 m 3 T J.rnol-’.K-’ (298 2013 K) [4]
Sozg8 = 60.3 J.rnol-’.K-’ [2]
Trang 26AIAs04 (s) Aluminium Arsenate AIAs04 (s)
AH0298 = 15.9 f 12.6 kJ.mo1-I [I]
cpo= 37.26 + 0.59 .w37 - 0.16 lo6.? J.mol-’.K-’ (298 2000 K) [4]
SO298 = 239.6 f 0.2 J.mol-’K’ [I]
Trang 27AIBr3 ( 5 ) Aluminium(lll) Bromide AIBr3 (s) A/i0371 = - 503.5 kJmol-’ [4]
AHoZg8 = - 501.4 kJmol-‘ [I]
Cpo= 125 Jmol-’K’ (298 K) [I] sozg8 = 206.5 Jmol-‘K’ [I]
AHoZg8 = - 410.5 f 1.7 kJmol-’ [I]
Cpo= 80.71 + 2.81 m37 - 0.55 .106.T-’ Jmol-’.K-’ (298 2000 K) [4]
sozg8 = 349.4 k 1.26 J.rnol-’K’ 111
cpo= 32.26 J.rnol-’K’ (298 K) [I]
Sozg8 = 223.4 f 4 J.mol-’.K-’ [I]
Aluminium(1) Chloride AlCl (9)
AHoZg8 = - 51.5 f 6.3 kJ.rnol-‘ [I]
cpo= 37.38 + 0.46 m37 - 0.31 1O6.T-’ J.rnol-’K’ (298 2000 K) [4]
Trang 28AlClF (9) Aluminium Chloride Fluoride AlClF (9)
= - 489.5 f 63 kJ.rno1-l [I]
C, O= 48.81 J.rnol-’.K-’ (298 K) [ I ]
sozg8 = 282.9 f 4 Jmol-’.K-’ [I]
= - 999.1 f 6.3 kJmol-’ [I]
Cpo= 65.45 J.rnol-’K’ (298 K) [I]
So298 = 297.8 f 4 J.mol-’K’ [I]
SO298 = 289.4 f 2.4 J.rnol-’.K-’ [I]
= - 790.8 k 6 kJ.rno1-l [I] SO298 = 31 1.4 f 4 Jmol-’K’ [I]
Cpo= 68.8 Jmol-’-K-’ (298 K) [I]
Trang 29AlCl3 (I) Aluminium(lll) Chloride AIC13 (I) AHoZg8 = - 674.8 kJmol-‘ [ I ]
Cpo= 125.5 J.mol-’.K-’ (298 K) [ I ]
= 172.9 Jmol-’.K-’ [I]
AHoZg8 = - 584.6 ? 2.9 kJmol-’ [I]
Cpo= 81.97 + 0.63 IO”.T - 0.99 106.T-2 Jmol-’K’ (298 2000 K) [4]
SO298 = 314.5 ? 2.9 J.mol-‘K’ [I]
SO298 = 196.6 f 8 J.mol-‘K’ [I]
Trang 30AICI5Mn (9) Manganese Aluminium Chloride AICI5Mn (9)
= - 992.3 kJmol-’ [283] Sozg8 = 468 J.rnol-’K’ [283]
AHoZg8 = - 1979 & 4 kJmol-’ [I]
cpo= 244.1 J.rnol-’K’ (298 K) [I]
Vanadium Aluminium Chloride
Trang 31AIF (9) Aluminium(1) Fluoride AIF (9) AHoZg8 = - 265.7 k 3.4 kJmol-’ [I]
Cpo= 37.28 + 0.44 w 3 T - 0.77 106.T-2 Jmol-’.K-’ (298 2000 K) [4]
SO298 = 215.2 Jmol-’K’ [I]
Aluminium Oxide Fluoride
= - 581.6 kJ.rnol-’ [41 so298 = 237.3 Jmol-’K’ [4]
Cpo= 58.66 + 2.05 IO”.T - 1.1 1 1O6.T-’ Jmol-‘K’ (298 2000 K) [4]
Aluminium(l1) Fluoride
AHoZ98 = - 695 k 40 kJmol-’ [I]
cpo= 57.87 + 0.13 10-37 - 1.73 1O6.T-’ Jmol-’K’ (298 2000 K) [4]
SO298 = 264.2 k 2.1 J.rnol-’.K-’ [I]
Aluminium Oxide Difluoride
AHoZg8 = - 1108.8 f 30 kJmol-’ [I]
cpo= 63.39 J.rnol-’.K-‘ (298 K) [I]
Trang 32bp = 1548 K (1 275 “C) So2g8 = 66.5 f 0.4 Jmol-’K’ [ I ]
AHoZg8 = - 1510.4 f 1.3 kJ.mol-’ [I]
cpo= 70.58 + 51.09 lO”.T - 0.92 1O6.T-’ Jmol-’K’ (298 728 K) [4]
AHoZg8 = - 1422.8 kJmol-’ [ l ]
cpo= 97.48 J.mol-’.K-‘ (298 K) [ l ]
= - 1209.3 ? 2.5 kJmol-’ [ I ] SO298 = 276.7 f 0.8 Jmol-’.K-’ [ I ]
Cpo= 79.16 + 2.26 10-3.T - 1.54 1O6.T-’ Jmol-’K’ (298 2000 K) [4]
LiAIF4 (9)
Lithium Tetrafluoroaluminate AIF4Li (9)
LiAIF4 (9)
= - 1854 f 12 kJ.mol-’ [ l ] so298 = 326.5 ? 8 J.rnol-‘.K-’ [I]
cpo= 132.76 + 0.11 1O3.T - 4.06 1O6.T-’ Jmol-’K’ (298 2200 K) [4]
Sodium Tetrafluoroaluminate
AHoZg8 = - 1841 f 12 kJmol-’ [I]
cpo= 128.67 + 2.42 1O3.T - 2.39 1O6.T-’ J.rnol-’K’ (298 2000 K) [4]
Cpo= 238.61 + 41 m37 - 2.59 1O6.T-’ Jmol-‘.K-’ (298 1247 K) [4]
SO298 = 284.5 f 4 Jmol-‘K’ [I]
Trang 33AIF& (s) Trilithium Hexafluoroaluminate AIF6Li3 (s)
mp = 1058 K (785 “C)
Cpo= 205.94 + 109.83
= - 3380.5 kJ.rnol-’ [4] SO298 = 187.9 J.rnol-’K’ [4]
- 3.23 106.T-’ Jmol-’K’ (298 748 K) [4]
= - 3268.5 kJmol-’ [4]
cpo= 282.32 Jmol-’.K’ (748 K) [4]
= - 3266.4 kJmol-’ [4]
Cpo= 284.51 J.rnol-’K’ (748 K) [4]
SO748 = 414.2 J.rnol-’.K-’ [4]
AH0g78 = - 3198.4 kJmol-‘ [4]
cpo= 294.97 Jmol-’K‘ (978 K) [4]
Trang 34AIF& (s) Trilithium Hexafluoroaluminate
Na3AIF6 (s)
AH0836 = - 3155.2 kJmol-’ [4]
Cpo= 294.89 Jmol-’K’ (836 K) [4]
Trang 35AH01153 = - 3061.7 kJmol-’ [4]
Cpo= 294.89 J.rnol-‘.K-’ (1153 K) [4]
Cryolite beta
AH0298 = 259.4 f 20 kJmol-’ [I]
Cpo= 29.46 + 4.52 1Om3.T - 0.14 106.T-2 Jmol-‘.K-’ (298 2000 K) [S]
SO298 = 187.9 f 0.5 J.rnol-’.K-‘ [I]
Aluminium Hydride Oxide
Trang 36= - 11.4 kJmol-‘ [2]
Cpo= 45.19 J.rnol-’.K-‘ (298 K) [4]
Trang 37Aluminium(l1l) Hydroxide amorphous, Hydrargillite
AH0298 = - 117.2 f 8.4 kJmol-’ [I]
Cpo= 86.4 J.rnol-’K’ (298 K) [I]
KAI(S04)2 1 2H20 (s) Dodeca hyd rate KAI(S04)2 12H20 (s)
AH0298 = - 6061.8 kJmol-‘ [2]
cpo= 651.9 Jmol-’.K-’ (298 K) [2]
AINH4(S04)2 12H20 (s) Dodecahydrate AINH4(S04)2 12H20 (s)
AH0298 = - 5942 kJmoi-’ [7]
cpo= 683 Jmol-’.K-’ (298 K) [7]
Trang 38= 68 f 4.2 kJmol-’ [I] SO298 = 247.8 f 0.2 Jmol-’.K-’ [I]
Trang 39Leucite AIK06Si2 (s)
KAISi206 (s)
= - 2470.2 kJ.mol-‘ [2] Sozg8 = 204.6 J.mo1-I.K-l [2]
Cpo= 234.14 + 82.34 10-3.T - 5.84 lo6.? J.rnol-‘.K-‘ (298 1100 K) [4]
Trang 40AlLi02 (s)
LiA102 (s)
Lithium Aluminium Oxide
AH0298 = - 1188.7 f 2.1 kJmol-‘ [I]
cpo= 67.78 J.rnol-’K‘ (298 K) [I]
LiA102 (s)
AlLi02 (I)
LiAI02 (I)
AH0298 = - 1107.7 kJmol-‘ [I]
cpo= 67.78 Jmol-’.K-’ (298 K) [I]
Lithium Aluminium Oxide AILiOz (I)
LiAISi206 (s)
AH0298 = - 3026.7 kJmol-‘ [2] SO298 = 154.4 J.mol-’.K-’ [2]
cpo= 162.8 Jmol-’K’ (298 K) [2]
AH029e = - 318 * 2.5 kJmol-‘ [I] SO298 = 20.1 f 0.2 Jmol-’K’ [I]
cpo= 47.82 + 1.85 m37 - 1.67 1O6.TS Jmol-’K’ (298 2500K) [4]
Trang 41AH0298 = 523 f 38 kJmol-‘ [I]
Cpo= 32.37 Jmol-’.K-‘ (298 K) [I]
NaA102 (s)
= - 1133.2 f 0.7 kJmol-’ [I]
cpo= 73.6 Jmol-’.K-’ (298 K) [I]
Sodium Aluminate AINa02 ( 5 )
Trang 42AlNi (s) Alumi nium Nickel AlNi (s)
m p = 1911 K(1638”C)
AH0298 = - 118.4 kJmol-‘ [2]
Cpo= 46 J.rnol-’.K-l (298 K) [2]
AIP04 (s)
soas3 = 222.2 J.rnol-’.K-’ [4]
Trang 43A104P (s)
AIP04 (s)
Aluminium Phosphate
beta AH0853 = - 1659 kJmol-’ [4]
Alp04 (s)
SO978 = 247.7 Jmol-’K‘ [4]
= - 164.4 kJmol-‘ [4] SO298 = 47.3 Jmol-’K‘ [4]
Cpo= 40.17 + 6.28 10-37 Jmo1-l.K-l (298 1800 K) [4]
AH0298 = 238.5 ? 8.5 kJmo1-l [I] SO298 = 230.6 f 0.4 J.rnol-’.K-’ [I]
cpo= 36.84 + 0.7 m37 - 0.33 .1O6.Tw2 J.rnol-’.K-’ (298 2000 K) [4]
m p = 1333 K(1060”C)
cpo= 43.51 + 9.62 IO”.T J.rnol-’K’ (298 1333 K) [4]
AH0298 = - 50.4 kJmol-’ [2] SO298 = 65 J.rnol-’K’ [2]
= 2.9 kJmol-’ [4]
cpo= 56.34 Jmol-’K’ (1333 K) [4]
Trang 44AlSb (I) Aluminium Antimonide AlSb (I)
AH01333 = 85 kJ.rnol-’ [4]
cpo= 58.99 J.rnol-’.K-‘ (1333 K) [4]
= 221.3 kJmol-‘ [4] Sozg8 = 243.2 Jmol-’K’ [4]
Cpo= 37.25 + 0.08 lO”.T - 0.21 .1O6.T-’ Jmol-’.K-’ (298 2000 K) [4]
Trang 45cpo= 105.4 J.rnol-‘K’ (298 K) [I]
Beryllium Aluminate AI2BeO4 (I)
Be0 A1203 (I)
Trang 46CaO A1203 Si02 (s) Pyroxene CaO A1203 Si02 (s)
AH0298 = - 3293.2 kJ.mol-’ [4] SO298 = 144.8 J.mol-’K’ [4]
cpo= 233.22 + 21.13 10”7 - 7.37 106.T-2 J.mol-’.K-’ (298 1700 K) [4]