1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Design of concrete structures-A.H.Nilson 13 thED Back Matter

46 72 0
Tài liệu được quét OCR, nội dung có thể không chính xác

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 1,53 MB

Nội dung

Design of concrete structures-A.H.Nilson 13 thED Back Matter

Trang 1

Wison-Darwn-Dolon: [Back Matar T appendix A Design Ais © The tan Designo Concrete — Swcire, TÐiteenh Em DESIGN AIDS TABLE A.1

Designations, diameters, areas, and weights of standard bars

Bạt Ni Cross-Sectional Nominal Weight,

Trang 2

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids Design of Coner es, 200 Sites Thirteenth Em 736 DESIGN OF CONCRETE STRUCTURES Appendix A TABLE A.2

Areas of groups of standard bars, in?

—Bar No Inch- Number of Bars Pound SI + 2 3 4 5 6 7 8 9 10 11 12 13 020 040 0.60 0.80 1.00 1.20 140 1.60 1.80 2.00 2.20 2.40 5 16 03L 062 093 124 L5 8G 27 24B 279 310 341 42 6 19 044 088 lÃ3 lJ6 220 261 A0 Ã52 396 440 484 528 7 232 060 120 180 240 C300 360 420 480 540 600 660 720 8 25 079 l5 237 CẢl6 395 474 S5 6Ã 7Í! 190 869 948 9 2 100 200 300 400 500 600 700 800 900 1000 1100 1200 HD Họ 36 32 LƠ 254 312-468 RBI 6242 78Ô 936 1092 1248 H401 1560 1716 1872 50 635 762 889 1016 H43 70 1397 1524 HO l5 400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400 4800 450 675 900 1125 1350 1575 1800 2025 2350 2475 2700 TABLE A.3

Areas of bars in slabs, in?/ft

Trang 6

Back Mater —— (© The Metra Cunpanes, 200 Sites Thirteenth tion

Trang 7

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids 7 Design of Concr Structures, Thirtoonth tion DESIGN AIDS 741 TABLE A.7

Maximum number of bars as a single layer in beam stems

Zin Maximum Size Aggregate, No 4 (No 13) Stirups Bar No Beam Width -, in Inch- Pound Si 8 10 12 14 1ó 18 20 22 24 26 28 30 5 6 2 4 5 6 7 8 0 WO 2 B l5 l6 6 19 2 3 4 6 7 8 9 10 1 12 14 15 7 2 2 3 4 5 6 7 8 910 " 2 lạ 8 2% 2 3 4 5 6 7 8 910 " RB 9 0% 1 2 3 4 5 6 7 8 9 5 10 4 wo 2 1 2 3 4 5 6 6 7 8 9 0 0 noo 1 2 3 3 4 5 5 6 7 3 § 9 14 43 1 2 2 3 3 4 § 5 6 6 8 8 5Ð 1 1 2 2 3 3 4 4 5 6

11 in, Maximum Size Aggregate, No 4 (No 13) Stirrups Bar No Beam Width -_, in Inch- Pound Si 8 10 12 14 16 18 20 22 24 26 30 5 6 2 3 4 5 6 7 8 9 10 " B 6 9 2 3 4 5 6 7 8 9 9 10 2 7 2 1 2 3 4 5 6 7 8 9 0 0 ou 8 2% 1 2 3 4 5 6 7 8 9 0 1 9 8 1 2 3 4 5 6 7 7 8 9 9 10 wo 2 1 2 3 4 5 6 6 7 7 8 9 10 Minimum conerete cover assumed to be LỆ ín, tò the No, 4 (No, 13) stsrup

Trang 8

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids Design of Concrote Structures, Thirtoonth Edition 742 DESIGN OF CONCRETE STRU Appendix A TABLE A.8

Minimum number of bars as a single layer in beam stems governed by crack control requirements of the ACI Code

(-) 2 in clear cover, sides and bottom

Minimum Number of Bars as a Single Layer of a Beam Stem Bar No Beam Stem Width —_, in Inch- Pound Sĩ 8 10 12 14 1ó 18 20 22 24 26 28 30 32 34 36 3-14 1048 Pot 2 2 3 3 3 3 38 4 4 4 4 4 5 18 sĩ Pot 2 2 2 303 3 3 4 4 4 4 4

(-) 1} in clear cover, sides and bottom

Trang 10

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids he Mean Design of Concr —¬ Structures, Thiteonth Ediion 744 DESIGN OF CONCRETE STRUCTU Appendix A TABLE A.10

Simplified tension development length in bar diameters for

uncoated bars and normal-weight concrete

No 6 (No 19) and Smaller No 7 (No 22) and Larger psi Ps „ke 4000 5000 6000 4000 5000 6000 (1) Bottom bars Spacing cover 40 25 2 21 32 28 26 and ties as per 50 32 28 26 40 35 32 Case a or b 60 38 34 31 4T 2 39 Other cases 10 38 3 31 47 42 39 50 47 2 39 59 53 48 60 37 SI 46 1 64 58 2) Top bars Spacing cover 40 33 29 ” 41 37 34 and ties as per 50 41 37 3d SI 46 2 Case a or b ó0 49 44 40 a 55 50 Other cases 40 49 44 40 a 5s 50 50 6 55 50 7 9 68 60 14 66 60 92 83 16

Case a: Clear spacing of bars being develo

the Code minimom, cd or spliced = d, clear cover = dy and stierups or ties throughout fy not less than Case br Cleur spacing of bars being developed or spliced = 2d, and clear cover not less than d

Trang 11

Nilson-Darwin-Dotan Design of Concr Structures, Thirtoonth Edition TABLE A.11

Development length in compression, in

Back Mater ‘Appendix A: Design Aids DESIGN AIDS 745 = greater of (0.02 )- or 0.0003 (Minimum length 8 in in all cases.) psi Bar No 3000 4000 5000 6000 Inch- + Basic Basic Basic Basic

Trang 12

Nilson-Darwin-Dotan Design of Concr Structures, Thirtoonth Edition Back Mater ‘Appendix A: Design Aids 746 DESIGN OF CONCRETE STRUCTU Appendix A TABLE A.12

Common stock styles of welded wire reinforcement (WWR)

Trang 13

Nilson-Darwin-Dotan Design of Concr Structures, Thirtoonth Back Mater ‘Appendix A: Design Aids taiion DESIGNAIDS 747 TABLE A.13A Coefficients for slabs with variable moment of inertia cig og I Load w pst [ tuy HH 1 H —————:——Ừ urd

A qin perp I in perpendicular direction $ 8

Column Uniform Load Stiffness Carryover

Trang 14

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids he Mean Design of Coner — Sites Thirteenth tion

748 DESIGN OF CONCRETE STRUCTURES Appendix A TABLE A.13B Coefficients for slabs with variable moment of inertia oa Cịg | Load w psf | by Ỳ LH Lt 125, h 2l h hg 3 et ————¡———m A g 1a in perpendicular direction nạn 8 g

Trang 15

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids he Mean Design of Concr panes, 2004 Structures, Thirtoonth Edition DESIGN AIDS 749 TABLE A.13C Stiffness factors for columns with variable moment of inertia Slab Half-depth Stiffness Factor Slab Half-depth Stiffness Factor 000 400 014 943 002 443 016 Hới 004 494 0.18 1301 006 5.34 0.20 15.56 008 625 022 18.87 0.10 T1 024 23.26 0412 $15 Adipted írom S H, Sinumonds and J, Mide, “Desje

68, no, 11, I971, pp 825-831 Factors for the Equivalent Prame Method,” J, ACI, vol TABLE A.14 Size and pitch of spirals, ACI Code pai

Diameter of Out to Out

Trang 16

Wison-Darwin-Dolan: | ack Mater Appendic A Design Aids he Mean Design of Coner — — tion 750 DESIGN OF CONCRETE STRUCTU Appendix A TABLE A.15

Properties of prestressing steels

Seven-Wire Strand, = 270 ksi Nominal

Diameter Area, Weight, 0.7 , , 0.8 ,

(in) in? pif kips kips kips ‡0.315 0,085 0.29 16.1 112 184 23.0 104500) 0.153 052 280 31.0 33.0 413 ts! 0.167 053 316 338 36.1 45.1 (0.600) 0.215 074 40.7 435 46.5 58.1 Prestressing Wire Area, Weight, : : 08, Diameter in? pit ksi kips kips kips 0.192 0.0289 0,098 250 5.05 578 122 0.196 0/0302 0.100 0 5.28 6.04 T55 0250 0.0491 0.170 240 825 942 118 0216 00598 0.200 235 9.84 1124 1405 Deformed Prestressing Bars Nominal

Diameter Area, Weight, 0.7 0.8 , (in.) in? pH ksi kips kips kips H 028 098 157 30.5 448 43.5 1 9 301 150 89.3 102.0 1215 1 085 3.01 160 952 1088 136.0 B 125 4.239 150 BIS 150.0 1815 Ỷ 125 4.39 160 H00 160.0 200.0 1.58 5.56 150 165.9 159.6 237.0

“Adapted from PCI Design Handbook, Sib ed., PrecasuPrestressed Conerete Institute, Chic in, special strand has a slightly larger actual diameter than the $n, strand,

Trang 18

Nisoa-Darwin-Dolon: | Back Mater Append A Desig ids _—

Design of Con Siazares Thdgenh ges, 208

Eldon

752 ĐESIGN OF CONCRETE STRUCTU Appendix A

GRAPH A.L pmrmpmrmrmmimmmmimrrmrimimmrmrirmirmrimirm

Moment capacity of L cove cove 3

Trang 19

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids he Mean Design of Concr mats, 2004 Sites Thirteenth tion DESIGN AIDS 753 GRAPH A.2 0

Location of points where bars can be bent up oF cut off

Trang 21

Nilson-Darwin-Dotan: | Back Mater Design of Concr Structures, Thirtoonth Edition GRAPH A

Interpolation charts for lateral distribution of stab moments, Column strip moment, percent 100 80 60 40 100 80 60 40 100 80 60 40 05

‘Appendix A: Design Aids

Trang 22

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids 7 Design of Concr Structures, Thirtoonth Edition 156 DESIGN OF CONCRETE STRUCTU Appendix A 20 Interaction diagram f= 4 ksi f= 60 ksi hn 18 7 = 0.60 fh ng 17 2 S 19 Ss; ề 1.6 18 14 13 12 141 1.0 09 08 07 06 05 04 03 02 041 00 0.00 0.05 0.10 0.15 0.20 025 030 035 0.40 0.45 0.50 0.55 0.60 0.65 Pre _ Pye GAgh BhAgh GRAPHAS

Trang 23

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids Design of Concrote Structures, Thirtoonth Edition SIGN AIDS T57 20 Interaction diagram 19 f= a ksi fy = 60 ksi h 18 y= 0.70 pony tứ fs 16 15 14 13 12 14 10 09 08 07 08 05 04 03 02 04 Ss we 00 000 005 0.10 015 020 0.25 0.30 0.35 0.40 045 050 0.55 0.60 0.65 Pre Ro= RAG 74 GRAPH A.6

Column strength interaction diagram for rectangular section with bars on four faces and - — 070 (for

Trang 24

Nilson-Darwin-Dotan Design of Concrote Structures, Thirtoonth Edition Back Mater IGN OF CONCRETE STRUC 2.0 19 18 17 16 16 14 18 12 11 10 09 < 08 07 06 0.5 04 03 02 01 00 0.00 0.05 0.10 0.15 0.20 0.25 GRAPH AT

Column strength interaction dia

instructional use only),

Trang 25

Nilson-Darwin-Dotan: | Back Mater ‘Appendix A: Design Aids Design of Concrote Structures, Thirtoonth Edition SIGN AIDS 759 20 Interaction diagram 19 fs = 4 ksi 60 ksi h 18 0.90 re 17 16 18 14 13 12 R tt IS 10 09 08 07 06 05 04 03 02 01 005, 00 0.00 005 0.10 015 0.20 0.25 0.30 0.35 0.440 0.45 0.50 0.55 0.60 0.65 A, = fae h ĐA Poe GRAPH A.8

Column strength interaction diagram for fectangular section with bar on four faces and- = 0.90 (for

Trang 34

Back Mater T geen 851 Conversion Factors: ach-Poud Unis © The tan — testunits SI CONVERSION FAcTOoRs: INCH-POUND UNITs To SI UNits Overall Geometry Spans 1 ft = 0.3048 m Displacements, Surface area Volume Structural Properties Cross-sectional dimensions Area 6152 mm” Section modulus Lin’ = 16.39 10° mm* Moment of inertia 1 in‘ = 0.4162 x 10° mm*

Material Properties

Density 1 ib: fe? = 16.08 kg-m* Modulus and stress 1b in® = 0.006895 MPa

Lkip in’ = 6.895 MPa Loadings ‘Concentrated loads Hb = 4.448N kip = 4.448 kN Density be fe? = 0.1571 kN-m?

Linear loads I kip: ft = 14.59 kN-m Surface loads 1 Ib: £2 = 0.0479 kN m?

1 kip 2 = 47.9 KN mẺ

Stress and Moments

Stress | Ib: in? ~ 0.006895 MPa

| kip: in? = 6.895 MPa Moment or torque 1 ftlb = 1.356 Năm,

Trang 35

Back Mater Index Index AASHTO specifications, 10, 16, 26, 147 Abeles, P W., 697 Accelerators, 37 ACI Code, 16 ‘Code Commentary, 16 load factors, 18 moment coefficients, 395 safety provisions, 17 strength reduction factors, 18 Adams, P E, 317 Adebar, P., 161 573 Admixtures, concrete, 36, 50 Advanced strip method, 533 Aggregates, 29 coarse 30 fine, 30 heavyweight, 30 lightweight, 30 Ahmad, S H., 63, 160 Air entrainment, 32, 36 Akiayma, Y., 160 Alcocer, $., 345,

Alignment charts for columns, 303 Allowable stress design, 16 Analysis of continuous beams and frames, 375 approximate, 389 clastic, 381 limit, 397 portal method, 392 preliminary, 388 subframe, 380 Anchorage hooked, 176 in joints, 354 mechanical, 178 in nodal zones, 325, 330 web reinforcement, 180 welded wire fabric, 181 Anchorage zone, prestress, 689 Anderson, N S., 373 Anderson, R G., 633 Approximate analysis, 389 Arches, concrete, 7 AREMA manual, 10, 17, 26 Armer, G S T., 541 ASCE Load Specification, 10, 11, 26 ASTM specification, 30, 34, 36, 54, 58, 59, 204 Avraham, C H., 503 Axial compression, 21, 251, 288 Axial forces, effect on shear, 139 Axial tension, 25 Azizinamini, 63 B-regions, 321 Balanced strain condition beams, 79, 98 columns, 261 Balanced steel ratio compression-reinforced beams, 96 T beams, 106, tension-reinforced beams, 79 Bao, A, 478 Bardhan-Roy, B K., 697 Bar designations, 53 Barham, S., 62 Bamey, G B., 732 Bars, reinforcing cutoff and bend points, 183, (© The Meant Companies, 204 detailing 183, 347 selection of, 93 spacing of, 93 splices, 195, 197 Beam-and-girder floors, 601 Beam-column joints, 348 Beams compression-reinforced, 95 cracked elastic section analysis, 70 deep, 335, 336 doubly reinforced, 95 overreinforced, 90 proportions of, 95, 107 T section, 104 tension-reinforced, 67, 77 uncracked elastic section analysis, 69 underreinforced, 80 Beaulieu, D., 317 Bending, See Flexure Biaxial column bending, 274

computer analysis 280 load contour method, 276

Trang 36

2 Booth, B., 732 Bowles, J E., 573 Brackets, 368 Brandtzacg, A 282 Branson, D 43, 62, 228, 478, 698 Breen, J E., 198, 317, 409, 698 Bresler, B 62, 160, 283 Bridges, 6,7 Broms, B., 228 Brown, R L., 27, 282 Building Seismic Safety Council, T07, 132 Building systems, 599 flat plates, 609 flat slabs, 608 one-way joists, 605 precast, 617 steel-deck reinforced slabs, 604 two-way joists, 611 two-way slabs, 608 Bundled reinforcement, 182 Burdett, O., 698 Burns, N H., 697

Canadian National Standard, 147 Cantilever retaining walls, S87 Capacity reduction factors, 19 Capitals, column, 2, 4, 607 Captive column, 706 Cardenas, A E., 632 Carino, N 1 62, 63 Camasquillo R L 62 Cement, 28 composition, 29 high early strength, 1, 29 hydration of, 29 portland, 28, 29 types, 29 Chang, D C., 317, 409 Chen, K C., 373, 633 Chen, W F, 732 Choi, 0 C., 198 Chu, K H S03 Clifton, J E., 63, 198

Back Mater Index

OF CONCRETE STRUCTURES _ Index Collins, M P, 62, 147, 161, 249, 573, 697 Column footings, $51 Columns, 251 ACI Code provisions, 269 axially loaded, 20 balanced failure, 261 with bending, 258, 291 biaxial bending of, 274

Trang 37

Back Mater Cutoff points for bars in beam, 183 Cylindrical shells, 3, Š Deregions, 321, 327 Dapped beams, 342 Darwin, D., 62, 198 Davis, H E., 61 Debaiky, 8 ¥., 160 Deep beams, 328 ACI Code provision, 335 reinforcement of, 336 shear in, 336 Deflections, 209 ACI Code provisions, 215 continuous beams, 217 control of, 209 creep, 217 effective moment of inertia for, 210 elastic, 216, 219 flat plates and flat slabs, 469 immediate, 208, 216 load-history effect, 212 Jong-term multipliers, 212, 217 permissible, 218, shrinkage, 221 sustained load, 212 thermal, 221 (wo-way edge-supporled slabs, 420 Demsky, B C., 503 dePaulo, N 1, 198 Depth, minimum beams and one-way slabs, 215 two-way slabs, 435 Design aids, 90, 271, 735 Design methods allowable stress, 16 alternative basis, 16 elastic, 16 service load, 16 strength, 16 ultimate strength, 16 working stress, 16 Detailing, joint, 347 Detwiler, G., 62 Index Development length, 169 ACI Code provisions, 172 bundled bars, 182 compression, 182 hooked bars, 176, 179 modification factors, 172 seismic design, 718 stirrups, 180 tension, 172 Diagonal cracking, 118, 122 Diagonal tension homogeneous beams, 117 prestressed concrete beams, 681 reinforced concrete beams, 115, 118 Diaphragms, seismic, 723 Direct design method for slabs, 427 column design, 433 lateral distribution of ‘moments, 429 minimum thickness, 435 ‘moments at eritical sections, 427

shear on supporting beams, 432 Discontinuity lines in slabs, 511 Discontinuity regions, 321 Distribution steel in slabs, 417 Dolan, C, W„ 111, 633 Domel, A W., 732 Drawings, typical engineering, 632 Dumonteil, P, 317 Earth pressure on walls, 575 Eccentric columns, 258 Edge-supported slabs, 414, 420 Effective flange width, 104 Effective length of columns,

289, 303

Effective moment of inertia, 210 Effective span length, 383 Ehsani, M R., 280, 283 Elgabry, A A., 478 Ellingwood, B., 27 Elmiema, E, I 160 Elzanaty, A H., 160 Engineering drawings, typical, 632 (© The Meant Companies, 204 INDEX 773 Epoxy-coated bars, 58, 171 Equilibrium method for slabs, See

Strip method for slabs Equilibrium torsion, 231 Equivalent column, 444 Equivalent frame method for slabs, 442 basis, 442 by computer, 450 deflection analysis, 469 equivalent column, 444 for horizontal loads, 476 moment analysis, 445 shear design, 450 Equivalent lateral force procedure, 709 Equivalent loads from prestress force, 637 Emst, G C., 409 Euler load, 288 Extended nodal zones, 325, 331 Pactored loads, 18 Fallsen, H, B Fanella, D, A 73 Fang, H Y., 573 Pans, yield line, 501 Fatigue strength conerete, 43 reinforcing bars, $7 FEMA provisions, 26 Ferguson, P M., 198 Fintel, M., 598, 633, Fiorato, A E., 63, 732 Flange width of T beams, 104 Flat plates, 2, 4, 608 Flat slabs, 2, 4, 607 Flexural bond, 165,

Trang 38

7714 Floor systems beam and girder, 2 edge-supported siab, 420, 608 flat plates, 2, 4, 609 fat stabs, 2, 4, 608 arid slabs, 611 lift slabs, 611 one-way joists, 2, 3, 605 precast, 617 steel deck reinforced, 604 two-way joists, 611 two-way slabs, 420 wattle slabs, 611 Fly ash, 37, 50 Folded plates, $ Footings, 545 srid, 569 loads on, 547 mat, 560 spread, 545 strip, S68 two-column, 562 wall, 549 Ford, J S., 317, 409 Foundations See Footings Fracture energy, 170 Fracture mechanies, 45 Frosch, R J 205, 228 Furlong, R W., 317 Galambos, TV, 317 Gallagher, R H., 409 Galvanized bars, S8 Gamble, W L., 478, 503, 541 Gardner, M 1 478 Gebler, S H., 63 Gere, J M., 317 Gergely, P, 198, 228 Gergely-Lutz equation, 205, 228 Gerstle, K H., 63 Gesund, H., 503 Ghaffari, H H., 198 Ghali, A., 478, 503 Ghoneim, M G., 249 Ghosh, 8 K., 63, 732 Gosain, N K 198

Back Mater Index

OF CONCRETE STRUCTURES _ Index Goto ¥., 198 Gouwans, A., 283, 478, 632 Graham, C.1., 478 Gravity retaining walls, 585 Grid slabs, 611 Guralnick, S Gustafson, P Guyon, Y., 697 „478 478, 632 Hage, 8 E., 317 Hamad, B S., 198 Hammering, 704 Hanna, S N., 478 Hansen, W., 62 Hanson, J M., 63, 632, 697 Hanson, N W., 697 Hanson, W E., 573, 598 Hatcher, D S., 478, 503 Hadfield, E„ 63 Hawkins, N M., 161, 478, 503 Hayes, B., 503 Heiman, J L., 478 Helgason, T., 63 Hester, C.J., 198 Heteneyi, M., 573 High-strength concrete, 50 Hillerborg, A., 489, 541 Hillerborg method See Strip method for slabs Hilsdorf, H K., 62 Hinojosa, R C., 478 Hoffman, B S 478, 632 Hognestad, E 110, 283, 503, 573, 632 Hooks development length, 177 modification factors, 177 standard dimensions, 176 for stirrups, 180 Hover, K C., 62, 63, 228 Hsu, T.T C., 61, 62, 160, 249, 258 Huntington, W C., 598 Idealization of structure, 382 Adun, E K., 198 (© The Meant Companies, 204 Iguro, M., 160 Inelastic moment redistribution, 399, 405 Inflection points for approximate analysis, 390 Ingerslev, A., 503 Integral beams in slabs, 460 Integrity, structural, 190, 631 Interaction diagrams for axial load plus bending, 259 753

Trang 39

Back Mater Kramriseh, F573 Kreger, M E., 478 Kripanarayanan, K, M., 633 Kriz, L B., 110, 283, 373 Kuchma, D., 62, 160, 573 Kupfer, H., 62 LaFraugh, R W 478 Lai, S M.A 317 Lampert, P., 249 Lateral ties in columns, 21, 264 Lee, S.L., 10 Leet, K M., 409 Leigh, W., 409 Lenschow, R., 503 Leon, R 478 Libby, J R 697 Lift slabs, 611 Light-gauge steel deck slabs, 604 Lightweight concrete, 30 Limit analysis, 397 Limit states design method, 77 Lin, T Y., 672, 697 Linse, D H 63 Live loads buildings, 9, 10, 11 placement, 377 Load balancing in prestressed beams, 673 Load contour method for columns, 276 Load combinations 378 Load factors, ACI, 17, 18 Loads ASCE live loads 9, 10, 26 combinations, 378 dead 8 earth pressure, 575 environmental, 10 factored, 18 live, 10 placement of live loads, 9,377 seismic, 707 snow, 10 variability of, 12 wind, 11 Losberg, A., 373, 598 Index separate losses, 677 time-step method, 681 Lower bound theorem, 486 Luan, S., 62 Lutz, L A., 198, 228 MacGregor, J G., 27, 147, 160, 161, 249, 317, 697 Magura, D D., 632 Maher, D R H., 503 Mains, R M., 198 Malhotra, V M., 62 Marques, G L J., 373 Marshall, W T., 698 Manti, P, 147, 161, 345 Martinez, S., 62, 160, 283 Mast, R F., 161 Mathey, R G., 198 Matrix analysis, 382 Mattock, A H., 110, 161, 167, 228, 249, 283, 373, 409, 698 McCabe, S L., 198 McGuire, W., 409 McHenry, D., 62 Mehta, P.K., 62 Meinheit, D, E„ 373 Mesti, G., 573, 598 Microsilica, See Silica fume Mindess, S 62

Minimum depth of slabs, 417, 435 Minimum stee! ratio in flexure, 84 Minimum web steel area, 133 Mirza, S A., 27, 198 Mitchell, D., 161, 198, 249, 478, 697 Mixing of conerete, 32 MLC Centre, 601 Modified compression field, 147, 149 Modular ratio, 22 Modulus of elasticity of concrete, 39 of prestressing steels, 60 of reinforcing bars, 55 Modulus of rupture, 45 Moehle J P 478 (© The Meant Companies, 204 INDEX T15 Mokhtar, A S., 478

Moment coefficients, ACI, 393 Moment vs curvature in beams, 224 Moment distribution method, 382 Moment magnification in columns, 288, 293, Moment of inertia, 385 Moment redistribution ACI Code provisions, 405 in beams, 402 in slabs, 485 Moment reduction in beams, 408 Morsch, E 161 Naaman, A E., 62, 697 Nawy E G., 697 NEHRP recommendations, 27 Nervi, L., 408

Trang 40

Back Mater Index (© The Meant Companies, 204

Sites Thirteenth tion

716 DESIGN OF CONCRETE STRUCTURES Index

One-way slabs—Cont, single Ts, 619 Reinforcement, 52 temperature steel, 417 slabs, 619 bar selection, 94 typical steel ratios, 416 walll panels, 619 bars, 52

Openings in slabs, 467, 528 Preliminary design, 388 bend points, 183 Orangun, C O., 198 Preston, H K., 697 compression, 95 Overreinforced beams, 90 Prestressed concrete, 634 cover requirements,

allowable stresses in 94, 207 conerete, 645 cutoff points, 183 allowable stresses in deformations, S3 + steel, 644 epoxy-coated, 58 P-delta method, 314, 710 anchorage zones, 689 fatigue strength, 57 Pannell, F N., 283, bond stresses, 688 galvanized, 58

Pavel, R., 63 crack control, 696 grades and strength, 54 Park, R., 373, 501, 538, 541 deflection, 693 maximum number of bars in

Parme, A L 283 elastic analysis, 646 beams, 95 Partial prestressing, 657 equivalent loads, 637 maximum ratio, 81

Pattern loading of beams and flexural design, 658, 671 minimum number of bars in frames, 378 flexural strength, 652 beams, 95

Pauley, T., 373, 732 load balancing, 671 modulus of elasticity, 55 Paulson, K A, 63, 228 loss of prestress force, 677 prestressed, 59, 642 Paz, M., 409 partial prestressing, 657 slab, 433

Peabody, D., Jn, 478 post-tensioning, 640 spacing requirements, Peck, R B., 573, 598 pretensioning, 640 94, 207

Penelis, G shape selection, 668 splices in, 195 Pfrang B shear design, 681 standard sizes, $3 Pickett G., 63 transfer length, 688 stress-strain curves, 55 Pile caps, 570 Prestressing steels, 642 torsional, 242

Pister, K., 62 allowable stresses, 644 welded wire fabric, 58 Plastic analysis, 397 grades and strengths, 59 welding of, 55

Plastic centroid of columns, 267 relaxation of stress, 61 Relaxation of prestressing Plastic hinges stress-strain curves, 60 steels, 61

in beams and frames, 399 Pretensioning, 640 Resistance factors, flexural, 83 in slabs, 484 Priestly, M J N., 732 Retaining walls, 575

Plasticity theory Proveda, A., 160 cantilever, 587 Jower bound theorem, counterfort, 594

486, 508 design basis, 583 upper bound theorem, drainage for, 584

486, 508 : gravity, 585

Plasticizers, 37 Rabbat, B G., 732 stability analysis, $80 Portal method, 392 Ramamurthy, L N., 283 structural design, 583, Portland cement, 28 Ramezanianpour, A A., 62 Retarders, set, 37

Post-tensioning, 641 Ramirez, J A 373 Richart, F.E., 27, 282, 573 Precast concrete Raths, C H., 373, 633 Ritter, W., 161, 146

beams, 620 Rebars, See Reinforcement Roberts, C., 698 brackets, 368 Reciprocal load analysis of Rogaisky, D M., 161 building examples, 624, 625 columns, 277 Roller, 1 160

columns, 621 Rectangular stress block, 78 Rotation capacity at hinges, 404 connections, 626 Redistribution of moments, 398 Rotation requirement at

corbels, 368 ACI Code method, 405 hinges, 402 double Ts, 619 in frames, 397 Rusch, H., 43, 62, 110

Ngày đăng: 05/05/2018, 09:17