1. Trang chủ
  2. » Giáo Dục - Đào Tạo

CÁC DẠNG BÀI TẬP SÓNG CƠ

24 297 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 24
Dung lượng 762,31 KB

Nội dung

CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ CÁC DẠNG BÀI TẬP SÓNG CƠ

Trang 1

LOẠI I : ĐẠI CƯƠNG VỀ SÓNG CƠ HỌC

A.Tóm tắt lí thuyết :

1.Định nghĩa sóng cơ

- Sóng cơ học là dao động lan truyền trong các môi trường theo thời gian

2 Phân loại:

- sóng ngang: là sóng có phương dao động vuông góc với phương truyền sóng

- Sóng dọc: là sóng có phương dao động song song với phương truyền sóng

3.Đặc điểm của quá trình truyền sóng:

 Quá trình truyền sóng là quá trình truyền pha dao động

 Tốc độ truyền sóng là tốc độ truyền pha dao động

4.Các đặc trưng của quá trình truyền sóng:

a) Vận tốc truyền sóng (v): Gọi Δs là quảng đường sóng truyền được trong thời gian Δt Vận

b) Tần số sóng (f ): Tất cả các phần tử vật chất trong môi trường mà sóng truyền qua đều

dao động cùng với một tần số, bằng tần số của nguồn sóng gọi là tần số sóng

c) Chu kì sóng (T ): T =

f

1

d) Bước sóng ( λ): là quãng đường sóng truyền được trong một chu kì hay là khoảng cách

giữa hai điểm dao động cùng pha gần nhất trên phương truyền sóng

khoảng cách giữa hai điểm đang xét

 Những điểm dao động cùng pha : d = n λ (n Ζ )

5.Phương trình sóng:

 Giả sử phương trình sóng tại O : uO = acos(2πft)

 Sóng đi từ O đến M cách một đoạn x mất thời gian Δt = x/v

 Sóng đến M sẽ dao động t’ = t – Δt = t – x/v

 Phương trình sóng tại M: uM = acos(2πft’) = acos[2πf(t

-v x

)]

Trang 2

)

Nhận xét:

.Sóng tuần hoàn theo thời gian t

Sóng tuần hoàn theo không gian λ

B.Phương pháp giải bài tập:

Dạng 1: Tìm các yếu tố của sóng cơ học

 Những điểm dao động cùng pha: d = nλ

 Những điểm dao động ngược pha: d = (n + ½ )λ

 Độ lệch pha giữa hai điểm dao động trên cùng một phương truyền:

Ví dụ 1: Một nguồn sóng cơ học dao động điều hoà theo phương trình x = a.cos(10πt + π/2)

Khoảng cách gần nhất trên phương truyền sóng giữa hai điểm mà tại đó các phân tử trong môi trường lệch pha nhau một góc π/2 là 5 m Tìm v =?

Ví dụ 2: Tại điểm S trên mặt nước yên tĩnh có nguồn dao động điều hoà theo phương thẳng với

tần số f Khi đó, mặt nướchình thành hệ sóng đồng tâm Tại 2 điểm M,N cách nhau 5 cm trên đường thẳng đi qua S luôn dao động ngược pha Biết tốc độ truyền sóng trên mặt nước là 80 cm/s và tần số dao động của nguồn có giá trị trong khoảng từ 46 đến 64 Hz Tìm tần số dao động của nguồn?

Giải:

Trang 3

Ta có 2 điểm M, N dao động ngược pha:

.2

)12.( 

)12(

80 k

= 16k + 8

Từ giả thiết bài toán ta có: 46 < 16k + 8 < 64 38 < 16k < 56 2,375 < k < 3,5

Vì k Ζ nên chọn k = 3

Vậy tần số dao động của nguồn là : f = 16.3 + 8 = 56 Hz

Ví dụ 3: Biểu thức sóng tại một điểm nằm trên dây cho bởi u = 6.sin

3 (

3(sin

=4

u

u = 3 3 cm

Trang 4

LOẠI II: GIAO THOA SÓNG CƠ

A.Tóm tắt lí thuyết:

 Hiện tượng 2 sóng kết hợp, khi gặp nhau tai nhưng điểm xác định, luôn tăng cường nhau

hoặc triệt làm yếu nhau được gọi là sự giao thoa sóng

 Hai nguồn dao động có tần số và độ lệch pha không đổi theo thờid gian gọi là hai nguồn

kết hợp

 Hai sóng do hai nguồn kết hợp tạo ra gọi là hai sóng kết hợp

 Điều kiện để có giao thoa sóng: là 2 sóng phải xuất phát từ hai nguồn dao động có cùng tần

số, cùng phương dao động và độ lệch pha không đổi theo thời gian

B Phương pháp giải bài tập:

1, Dạng 1: Viết phương trình sóng tại M cách S 1, S 2 lần lượt là d 1 , d 2

 Giả sử phương trình dao động tại các nguồn S1, S2 là u1 = u2 = a.cos(2πf.t)

 Phương trình dao động tại M do sóng S1 truyền đến: uM1 = acos(2πf.t -

d   

2)

2)12(

2 1

Trang 5

Ví dụ 1 Trong thí nghiệm giao thoa trên mặt nướccó 2 nguồn két hợp S1, S2 dao động với tần số

f = 10 Hz Tại điểm M cách S1, S2 lần lượt là d1 = 16cm, d2 = 10cm có một cực đại Giữa M và

đường trung trực S1S2 có hai cực đại Tìm tốc độ truyền sóng

Ta có giữa đường trung trực S1S2 và M có k cực đại , suy ra n = k +1

Điều kiện cực đại :

1

1 2 1 2 1

d d n

a.viết phương trình sóng tại M cách S1,S2 lần lượt là 10cm và 6 cm, biết v = 0,8 m/s

b tìm điểm N nằm trên S1,S2 về phía S2 và gần S2 nhất nằm ngoài khoảng S1S2 dao động cùng

2

S S d d

k d

Dạng 2: Tìm độ lệch pha giữa M và S 1 ,S 2 ; tìm quỹ tích những điểm dao động cùng pha hoặc

ngược pha với S 1 ,S 2

Trang 6

Ví dụ 1( ĐH_2009) Ở bề mặt một chất lỏng có hai nguồn phát sóng kết hợp S1 , S2 cách nhau 20 cm.Hai nguồn này dao động

thẳng đứng có phương trình lần lượt là u1=5.cos(40πt + π) mm và u2 = 5.cos(40πt) mm Tốc độ truyền sóng trên mặt chất lỏng là 80 cm/s Số điểm dao động với biên độ cực đại trên S1 S2 là bao nhiêu?

cos(

) 2 ) (

2 ) (

1()

(d1 d2  k

2

1(

S

-5,5≤ k ≤ 4,5 (kΖ )

Suy ra k ={ -5, ±4, ±3, ±2, ±1,0} :có 10 điểm thoả mãn: dao động cực đại trong đoạn S1 S2

Trang 7

Ví dụ 2 Trong thí nghiệm giao thoa trên mặt nước có hai nguồn kết hợp S1 , S2 cách nhau 10cm, dao động với λ = 2 cm.Tìm số điểm cực đại, cực tiểu trên khoảng S1S2 và suy ra số Hypebol lồi

 - 5 < k < 5 (kΖ ).Có 9 giá trị k (chú ý đề yêu cầu

“khoảng” S1 S2 nên không lấy giá trị “=”).suy ra có 9 cực đại hay 9 gợn lồi  có 5 hhypebol lồi

Số điêm cực tiểu:

2

12

S

 - 5,5 < k < 4,5 có 10 giá trị k có 10 cực tiểu hay 10 gợn lõm suy ra có 5 hypebol lõm

LOẠI III: DÃY CỰC ĐẠI - CỰC TIỂU TRONG GIAO THOA TRƯỜNG

A.Tóm tắt lí thuyết:

 Tại vùng gặp nhau của hai song S1, S2 ta quan sát thấy những gợn lồi và gợn lõm xen kẽ nhau

+Gợn lồi: là nơi điểm dao động với biên độ cực đại

+Gợn lõm: là nơi điểm dao động với biên độ cực tiểu

 Cực đại giao thoa : là nơi mà hai sóng tăng cường lẫn nhau

 Cực tiểu giao thoa : là nơi mà hai sóng triệt tiêu lẫn nhau

B.Phương pháp giải bài tập:

Dạng 1: Số điểm dao động cực đại trên S 1 S 2 :

Gọi điểm M trên S1S2 mà điểm dao động cực đại.Ta có:

S S d d

2 1

2 1 2 1

(kΖ )

Cộng vế theo vế ta được: d1=

22

 (2) ( lấy dấu “=” nếu là đoạn)

Trang 8

Chú ý: +các điểm dao động cực đại thoả mãn (2)

+ vị trí các điểm dao động cực đại dựa vào (1)

Dạng 2: Số điểm dao động cực tiểu trên S 1 S 2 :

2 1

2 1 2 1

k d

d

S S d d

(kΖ ) d1=

4

)12(2

2

S S

(3) Mà 0 ≤ d1 ≤ S1S2

Suy ra:

2

12

S

(lấy dấu “=” nếu là đoạn) (4)

Chú ý: + các điểm dao động cực thoả mãn phương trình (3)

+ vị trí các điểm dao đọng cực tiểu xác định từ phương trình (4)

Dạng 3: Tìm số cực đại , cực tiểu trên đoạn S 1 S 2 – khoảng cách giữa hai cực đại (cực tiểu) liên tiếp nhau

Ta có : dn =

22

2

1Sk 

S

gọi i là khoảng cách giữa hai cực đại (cực tiểu

) liên tiếp, khi đó: i = dn+1 - dn =

2

Ví dụ 1: Để xác định bước sóng và vận tốc của âm, người ta dùng một dụng cụ (gọi là ống

Koeing ) có cấu tạ như sau : -một ống thuỷ tinh T hình chữ U có 2 lỗ O, S - một ống thuỷ tinh T’ cũng có hình chữ U, lồng khí vào hai nhánhống T và có thể trượt được dể dàng.Rồi dùng phép

đo như sau:

1.Đặt âm thoa vào sát lỗ S và ghé tai vào lỗ O.cho âm thoa dao động rồi dịch chuyển ống T’thì

thấy có lúc nghe rõ có lúc không nghe rõ âm Giải thích hiện tượng

2.Bên trong ống chứa không khí ở 0oC Dịch chuyển ống T’

thì thấy hai vị ttrí gàn nhau nhất cách nhau33 cm đều

không vnghe thấy âm Tìm tần số dao độgn của âm

thoa biết vkk= 330 m/s

3.Thay đổi không khí bên trong ống bằng khí H2 ở 00C thì

để có 2 lần im lặng liên tiếp phải dịch chuyển ống T’ một

khoảng 125,6 cm Tìm vận tốc truyền âm trong không khí

Trang 9

4.Ống bây giờ lại chứa không khí ở nhiệt độ t và muón nhận được 2 lần im lặng liên tiếp phải

dịch chuyển ống T’ một khoảng 36,3 cm Xác định nhiệt độ t ?

273

273363

Ví dụ 2 Hai thanh nhỏ cùng gắn trên một âm thoa đang chọn trên mặt nước, giữa 2 điểm A, B

cách nhau r = 4 cm Âm thoa rung với tần số f = 400 Hz, tốc độ truyền sóng trên mặt nước là 1,6 m/s Giữa hai điểm AB có bao nhiêu gợn sóng, tróng đó có mấy điểm đứng yên?

Trang 10

Suy ra : -10 < k < 10 ( kΖ ) k{±9, ±8, 0} , vậy có 19 gợn sóng

Số điểm đứng yên( dao động cực tiểu) thoả mãn:

2

12

S

- 10,5 < k < 9,5 k{-10, ±9, ±8, 0}có 20 điểm đứng yên

Ví dụ 3 Trong thí nghiệm về giao thoa sóng trên mặt chất lỏng Hai nguồn kết hợp S1, S2 cách nhau 10 cm dao động với bước sóng λ = 2 cm:

a) Tìm số điểm dao động cực đại, cực tiểu quan sát được trên mặt chất lỏng

b) Tìm vị trí các điểm cực đại trên đoạn S1S2

±4, 0}: có 11 giá trị thoã mãn hay có 11 điểm dao động cực đại

- Số điểm dao động cực tiểu:

2

1 2

S

-5,5 ≤ k ≤4,5 Suy ra có 10 giá trị k thỏa mãn hay 10 điểm dao động cực tiểu

b vị trí các điểm dao động cực đại : d1 =

22

1.Định nghĩa: Sóng dừng là sóng có bụng và nút cố định trong không gian

2.Giải thích: Sóng dừng là sự tổng hợp sóng tới và sóng phản xạ trên dây

 Bụng: là nơi hai sóng tâưng cường lẫn nhau

 Nút : là nơi hai sóng triệt tiêu lẫn nhau

 Khoảng cách giữa hai bụng ( nút) liên tiếp là: i = λ / 2

3.Điều kiện để có sóng dừng trên hai đầu dây cố định:

 Sóng phản xạ tại O có phương trình: upx0 = - ut0

Trang 11

Điều kiện chiều dài l để có sóng dừng trên dây : (trên dây có n múi.) :

1

n

B.Phuơng pháp giải bài tập:

Dạng 1: Các yếu tố liên quan đến sóng dừng:

1,Điều kiện để có sóng dừng trên dây:

- Hai đầu cố định: l = nλ / 2

- Một đầu cố định một đấu tự do: l =

2

)2

1

2,Viết phương trình sóng dừng tại M, cách đầu cản d trên dây dài l:

Phương trình dao động tại O: u0 = a.cos(ωt)

Phương trình sóng tới tại M: uM t = acos[ωt - 2 (ld)

Trang 12

tl

Ví dụ 1 Một dây cao su căng ngang, một đầu gắn vào cố định, đầu kia gắn vào âm thoa dao

động với tần số f = 40Hz Trên dây hình thành hệ sóng dừng gồm 7 nút ( không kể hai nút hai đầu) , dây dài 1 m

a, Tìm tốc độ truyền sóng trên dây

b, Cho âm thoa dao động với f’ bằng bao nhiêu để trên dây có 5 nút (kể cả hai nút hai đầu)

.2

' '  = 20 Hz

Ví dụ 2 Một dây treo lơ lửng, đầu A gắn gắn vào âm thoa dao động với tần số f = 100 Hz, đầu B

lơ lửng

a) Biết khoảng cách từ A đến nút thứ 3 là 5 cm tìm tốc độ truyền sóng trên dây ?

b) Tìm khỏng cách từ B đến các nút, các bụng trên dây nếu chiều dài của dây là 21 cm Tìm

số bụng, số nút quan sát được trên dây?

Giải

a ta có: d =

2

)2

12

Trang 13

+ Trên dây có số bụng < số nút thì : hai đầu là hai nút : l =

2

n

Ví dụ 3 Trên day OA, đầu A cố định, đầu O dao động điều hoà với tần số f = 20 Hz thì trên dây

có 5 nút Muốn trên dây rung thành hai bụng thì đầu O phải dao động với tần số bằng bao nhiêu ?

.2

, l =

2

' '

n

'.2

f

v k

4

2.'

k

f k

Dạng 2: Dưới sợi dây treo thêm vật nặng m

- Vận tốc truyền trên sợi dây được tính theo công thức:

P

v , với P là trọng lượng vật treo và

μ là khối lượng dây trên một dơn vị chiều dài (kg/m)

Ví dụ 1 Một đoạn dây dài 60 cm có khối lượng 6 g, một đầu gắn vào cần rung, đầu kia vắt qua

ròng rọc và bị căng bởi một lực F = 2,25 N Tìm tốc độ truyền sóng trên dây?

25,2

Ví dụ 2: Một sợi dây dài 0,4 m, một đầu gắn với vần rung, đầu kia treo trên một đĩa cân rồi vắt

qua ròng rọc Cần rung với tần số f = 60 Hz, ta thấy dây rung thành một múi Tốc độ truyền sóng trền dây là bao nhiêu? Để dây rung thành 3 múi thì lực căng dây sẽ thay đổi như thế nào?

Giải

Dây rung thành 1 múi  l = λ / 2  λ = 2.l = 0,8 m Vậy vận tốc : v = λ f = 0,8.60 = 48 m/s

3

13

22

Ví dụ 3 Một sợi dây OA thẳng đứng không, đầu O gắn vào một nhánh của âm thoa dao động

với tần số f = 50 Hz Đầu A treo một vật có trọng lượng P để làm căng dây Dây xuyên qua một

Trang 14

lỗ thủng nhỏ đục trên một cái đĩa Đ, nhờ đó mà điểm M được giữ chặt Với P = 20N và dây OM

= l = 1m ta thấy chỉ có một bụng sóng

a) Tìm vận tốc truyền sóng trên dây?

b)Biết rằng vận tốc truyền sóng trên dây được tính theo công thức:

P

v , với P là trọng

lượng vật treo và μ là khối lượng dây trên một dơn vị chiều dài (kg/m).Tính μ?

c) Với P bằng bao nhiêu thì trên đoạn dây OM hình thành 4 bụng sóng với O, M là các nút sóng?

4

50.1.4.10.2 4

2

2 2 3 2

2 2

-************************************** -

LOẠI V: SÓNG ÂM – NGUỒN NHẠC ÂM - HIỆU ỨNG DOPPLE

A- Tóm tắt lí thuyết:

1 Nguồn gốc của âm và cảm giác âm:

 Nguồn gốc của âm là do các vật dao động

 Cảm giác về âm phụ thuộc vào nguồn âm và tai người nghe

 Sóng âm là những sóng âm truyền trong các môi trường rắn, lỏng, khí

 Trong chất khí và lỏng, sóng âm là sóng dọc Trong chất rắn sóng âm gồm cả sóng ngang

và sóng dọc

2 Nhạc âm và tạp âm :

 Nhạc âm là những dao động âm biến thiên tuần hoàn và có tần số xác định

 Tạp âm là những dao động âm không biến thiên tuần hoàn và không có tần số xác định

3 Những đặc trưng của âm:

a, Độ cao của âm:

 Âm càng cao tần số càng lớn

Trang 15

 Tai người nghe được âm có tần số từ 16 Hz đến 20 000 Hz : với f > 20 000 Hz gọi là siêu

âm

f < 16 Hz gọi là hạ âm

b, Âm sắc:

 Âm sắc là một đặc trưng sinh lí của âm giúp ta phân biệt âm do các nguồn âm phát ra

 Âm sắc khác nhau khi dạng đồ thị dao động của âm khác nhau

c, Độ to của âm- Cường độ âm – Mức cường độ âm

 Cường độ âm được xác định là năng lượng được sóng âm truyền qua một đơn vị diện tích đặt vuông góc với phương truyền sóng trong một đơn vị thời gian Đơn vị của cường độ âm là W/ m2

 Cường độ âm càng lớn ta nghe âm càng to Tuy nhiên độ to không tỉ lệ với cường độ âm

 Mức cường độ âm đơn vị là Ben (B) cho bởi công thức: L(B) = lg

0

I

I

, với I là cường độ

âm, I0 là cường độ âm chuẩn

 Nếu dùng đơn vị đêxiben (dB) thì: L(dB) = 10.lg

.2

,với n = 1, 2, 3,…khi n = 1 : âm phát ra là âm cơ bản khi n = 2, 3, …

thì âm phát ra là các hoạ âm bậc 2, 3, ….trong đó v được tính theo công thức :

T

v T là lực căng dây- μ là mật độ dài kg/m

b,Ống sáo:

Tần số của ống sáo : f =

l

v m

.4

với m = 1, 3, 5, … Khi m = 1 :âm phát ra là âm cơ bản

Khi m = 3, 5, 7, âm phát ra là các hoạ âm bậc 3, 5, 7,…

5 Hộp cộng hưởng:

 Đặt âm thoa trên một hộp gỗ rồi gõ vào âm thoa thì âm phát ra có cường độ âm tăng lên

so với khi không có hộp.Hộp đó gọi là cộng hưởng và đó là hiện tượng cộng hưởng âm

Trang 16

 Hộp đàn là một hộp cộng hưởng

B Phương pháp giải bài tập:

Dạng 1: Cường độ âm tại một điểm

Dạng 3: Tần số do dây đàn phát ra

Tần số : f =

l

v n

.2

4 âm phát ra là âm cơ bản

Khi m = 3, 5, 7, âm phát ra là các hoạ âm bậc 3, 5, 7,…

Chú ý: Số nút và số bụng của sóng dừng trong ống sáo được xác định như sau: số nút = số bụng

Dạng 5: Hiện tượng cộng hưởng âm

 Hộp cộng hưởng là một vật rỗng, một đầu kín, một đầu hở có kích thước thích hợp thì âm phát ra sẽ giữ nguyên độ cao của nguồn âm nhưng có cường độ âm tăng lên rất rõ rệt

Trang 17

 Tần số riêng của hộp cộng hưởng: f0 =

l

v m

Bài 1.Một nguồn âm phát ra sóng âm hình cầu truyền đi giống nhau theo mọi hướng và năng

lượng âm được bảo toàn Lúc đầu ta đứng cách nguồn âm một khoảng d, sau đó ta đi lại gần nguồn thêm 10 m thì cường độ âm nghe được tăng lên gấp 4 lần.Tính khoảng cách d

Giải

Cường độ âm :

t S

W I

)10(

d

P I

(d

d I

) 10 (

 d = 20 m

Bài 2: Một ống sáo dài 50 cm Tốc độ truyền sóng trong ống là 330 m/s Ống sáo này khi phát ra

âm có hai bụng sóng thì tần số hoạ âm là bao nhiêu ?

Giải

Hoạ âm có hai bụng sóng nên:

21

5,0.4

330

Ngày đăng: 29/03/2018, 02:28

TỪ KHÓA LIÊN QUAN

w