V E Borisenko S V Gaponenko V S Gurin C H Kam editors PROCEEDINGS OF INTERNATIONAL CONFERENCE NANOMEETING - 2011 REVIEWS AND SHORT NOTES PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES REVIEWS AND SHORT NOTES This page is intentionally left blank PROCEEDINGS OF INTERNATIONAL CONFERENCE NANOMEETING - 2011 PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES REVIEWS AND SHORT NOTES Minsk, Belarus, 24 - 27 May 2011 editors Victor E Borisenko Betarusian State University of Informatics and Radioelectronics, Belarus S V Gaponenko / Stepanov Institute of Physics, National Academy of Sciences of Belarus, Belarus V S Gurin Belarusian State University, Belarus C H Kam Hanyang Technological University, Singapore World Scientific NEW J E R S E Y • LONDON • SINGAPORE • BEIJING • SHANGHAI • HONG KONG • TAIPEI • CHENNAI Published by World Scientific Publishing Co Pte Ltd Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES Reviews and Short Notes to Nanomeeting–2011 Proceedings of the International Conference Copyright © 2011 by World Scientific Publishing Co Pte Ltd All rights reserved This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher ISBN-13 978-981-4343-89-3 ISBN-10 981-4343-89-7 Printed in Singapore Julia - Physics, Chemistry & Application.pmd 4/18/2011, 2:52 PM INTERNATIONAL CONFERENCE NANOMEETING-2011 Minsk, Belarus, May 24-27, 2011 ORGANIZERS Ministry of Education of Belarus Belarusian State University of Informatics and Radioelectronics Université de la Méditerranée Aix-Marseille II FP7-266529 Nanyang Technological University EU FP7 project FP7-266529 BY-NANOERA CAPACITIES BY-NANOERA Centre National de la Recherche Scientifique Belarusian Republican Foundation for Fundamental Research Faldes Motorola 1C Company Professional Radio Systems v INTERNATIONAL ORGANIZING COMMITTEE V E Borisenko – Co-chairman F Arnaud d'Avitaya – Co-chairman L J Balk S V Gaponenko S A Gavrilov D Grützmacher R Heiderhoff C H Kam J.-L Lazzari S A Maksimenko A Nassiopoulou S Nozaki S Ossicini (Belarus) (France) (Germany) (Belarus) (Russia) (Germany) (Germany) (Singapore) (France) (Belarus) (Greece) (Japan) (Italy) BELARUSIAN NATIONAL ORGANIZING COMMITTEE S A Maskevich – Chairman M P Batura V E Borisenko V S Gurin G F Karpinchik V A Labunov A A Leshok vi FOREWORD The Nobel Prize in Physics awarded in 2010 to A K Geim and K S Novoselov “for groundbreaking experiments regarding the two-dimensional material graphene” has stimulated an avalanche increase of the practical interest to carbon based nanostructures It has inevitably influenced the thematic of contributions to the International conference on Physics, Chemistry and Applications of Nanostructures, NANOMEETING-2011 organized in Minsk (Belarus) for the period from May 24 to May 27, 2011 Carbon nanotubes, graphene, fullerenes and diamond-like nanostructures have been demonstrated to be of extended research and application interest along with traditional quantum dots and quantum wells structures They have, of course, received a special attention and a large place in the Conference program Moreover, two hot topics “Frontiers of Nanotechnologies and Nanomaterials in Energy Conversion" and “Nanoelectromagnetics” have been covered within two special thematic sessions The most interesting results have been selected for presentation and discussion at the Conference This book presents invited reviews and short notes of the contributions to the Conference The papers are arranged within the traditional sections of the previous publications: Physics of Nanostructures, Chemistry of Nanostructures, Nanotechnology and Nanostructure Based Devices, while “Frontiers of Nanotechnologies and Nanomaterials in Energy Conversion” and “Nanoelectromagnetics” are presented separately The papers have been mainly preserved in their original form The camera-ready version of the Proceedings was prepared by V L Shaposhnikov and A V Krivosheeva The art design of the book cover belongs to V A Pushkarchuk The Sponsors who kindly provided the financial support for the Conference are deeply acknowledged Minsk and Marseille February 2011 Victor E Borisenko Francois Arnaud d'Avitaya Co-chairmen of NANOMEETING-2011 vii This page is intentionally left blank CONTENTS Foreword vii PHYSICS OF NANOSTRUCTURES Functionalization of graphene with atomic species (invited) R Larciprete, P Lacovig, S Gardonio, S Lizzit, A Baraldi Photonic, electronic, and acoustic applications of nanosilicon (invited) 11 N Koshida, T Ohta, Y Hirano, R Mentek, B Gelloz Electron energy spectrum and optical phenomena in dense arrays of Ge quantum dots in Si (invited) 19 A V Dvurechenskii, A I Yakimov Electric transport properties and critical characteristics of superconductor/ferromagnet nanostructures (invited) 27 V N Kushnir, S L Prischepa, C Cirillo, C Attanasio Decay of the second-order population in quantum dots 35 S Mokhlespour, J E M Haverkort Thermal formation of switching resistivity nanowires in hafnium dioxide 39 A L Danilyuk, D B Migas, M A Danilyuk, V E Borisenko, X Wu, N Raghavan, K L Pey Rabi waves in one-dimensional quantum dot chain: effect of spatially inhomogeneous exciton-photon coupling 43 G Ya Slepyan, Y D Yerchak Matrix calculations of critical states of superconductor/ferromagnet multilayers 47 V N Kushnir Molecular dynamics simulation of polymers in nanoconfined geometries 51 H Eslami ix 618 An analysis of the frequency variations after adsorption of bilayers of different polycations and TiO2 in air (Table 1) shows that more bulky films are formed in the case of PAH, while the mass of any (polycation/TiO2)4 film does not exceed ca µg/cm2 Table Frequency variations of resonators in different media after adsorption of a (polycation/TiO2)4 film Polycation PEI PAH PDDA ∆Fw, Hz 288.0 273.7 194.0 ∆Fair, Hz 170.3 219.3 112.0 ∆Fair/∆Fw 0.59 0.80 0.58 m, µg/cm2 3.0 3.9 2.0 3.2 Adsorption of methylene blue by the modified pulp After addition of dry pulp fibers into a MB solution, their swelling and MB adsorption onto fiber surface occur simultaneously MB forms strong complexes with negatively charged groups on the surface of materials allowing for surface charge density determination [4] Virgin fibers have surface bearing ca 3.76±0.03 µmol of negatively charged sites per g (Table 2) Assuming that they uniformly cover the surface and taking into account the pulp specific surface, we estimate the surface charge density Z to be (4.0±0.1)·10-2 µmol/m2 Table Amount of methylene blue dye adsorbed on virgin and modified fibers Q after h and pulp surface charge density Z Pulp fibers Initial (PEI/TiO2)4 (PDDA/TiO2)4 (PAH/TiO2)4 PEI+PSS/TiO2 PDDA+PSS/TiO2 PAH+PSS/TiO2 Q, µmol/g 3.76±0.03 2.00±0.10 0.63±0.15 4.00±0.27 1.20±0.07 1.54±0.08 3.50±0.01 Z, 10-2 µmol/m2 4.0±0.1 2.1±0.1 0.7±0.2 4.3±0.3 1.3±0.1 1.6±0.1 3.7±0.1 Attached to the fiber surface, all polyelectrolyte/TiO2 layers decrease the amount of sites available for MB adsorption Fibers modified by a (PDDA/TiO2)4 film adsorb less MB than others, while (PAH/TiO2)4-coated ones were colored to the same degree as virgin pulp because of porous, rough, and loosely attached to the surface coating A decrease of Q for pulp modified by (polycation+PSS/TiO2)4 aggregates is apparently caused by primary polycation adsorption The higher, as compared to other polyelectrolytes, values of Q for fibers modified with PAH can be explained in terms of low ionization degree of the polymer at pH = 7.0 [2] 619 3.3 Photocatalytic activity of TiO2 modified pulp Protected from light, the modified fibers not show any activity in the reaction of MB degradation (Fig 2a), while under indirect ambient light a slow bleaching of the dye both in solution and adsorbed onto fiber occurs (Fig 2b) The results are in good agreement with TiO2 photocatalytic activity [1] Figure Optical absorbance of a MB solution at 664 nm in the presence of TiO2-modified fibers as a function of time (h) under ambient (a) and DRT-1000 lamp (b) light During swelling in a MB solution, (PEI/TiO2)4 and (PAH/TiO2)4 modified fibers become brightly colored After 60-90 irradiation of such mixture with the light of a high pressure mercury lamp DRT-1000, the color of the fibers completely disappears, but turbidity of the supernatant increases due to the partial degradation of polyelectrolyte/TiO2 films The fibers modified by a (PDDA/TiO2)4 coating, in which almost no adsorption of MB was observed show the highest photocatalytic activity in the reaction of MB degradation and stability after a long irradiation (Fig 2b) Fibers modified with polycation+TiO2/PSS aggregates possess very low photocatalytic activity Conclusion Lignocellulose fibers modified with a series of polyelectrolyte/TiO2 nanolayers demonstrate different adsorption efficiency with respect to MB dye A choice of the polyelectrolyte nature allows control of the photocatalytic activity of the layers References M Peplow, Nature 429, 620 (2004) K Kekalo, T Shutava, G Zhavnerko, V Agabekov, Magnetohydrodynamics 44, 105 (2008) D Kommireddy et al., J Nanosci Nanotech 5, 1081 (2005) C Randorn, S Wongnawa, P Boonsin, Science Asia 30, 149 (2004) PHYSICS, CHEMISTRY AND APPLICATION OF NANOSTRUCTURES, 2011 PROPERTIES OF NOVEL CHALCOPYRITE SEMICONDUCTORS FOR OPTOELECTRONICS A V KRIVOSHEEVA, V L SHAPOSHNIKOV Belarusian State University of Informatics and Radioelectronics P Browka 6, 220013 Minsk, Belarus anna@nano.bsuir.edu.by F ARNAUD D’AVITAYA, J.-L LAZZARI Centre Interdisciplinaire de Nanoscience de Marseille (CINaM) UPR CNRS 3118 conventionnée Aix-Marseille Université Case 913, Campus de Luminy, 13288 Marseille cedex 9, France A family of new Mg(Si,Ge,Sn)(As,Sb)2 semiconductor compounds was theoretically estimated to be used in optoelectronics Theirs enthalpies of formation, electronic and optical properties have been evaluated Introduction A use of solar radiation is becoming economically competitive among renewable sources of energy Different materials, e.g AIIIBV, AIIBVI, AIVBVI and AIBIIICVI2 semiconductors, are currently employed for that [1-6] Ternary CuIn(Ga)Se2 (CIGS) chalcopyrites and CdTe thin films seem to be the most promising providing the solar cell efficiency of about 20 % Their growing industrial production could consume all the world resources of indium and as well of selenium and tellurium Moreover, most of the materials used in the production of thin films photodetectors and solar cells, like CdS, PbS, AlGaAs and (In)GaAs, PbSe, PbTe, InSb and HgCd(Zn)Te, are built on environmentally hazardous, toxic, scarce or costly elements [1-3] Thus, a search for new environment friendly semiconductor materials with suitable characteristics and free from the above disadvantages is a hot topic of both fundamental and applied researches In this paper we present results of theoretical ab initio simulation of structure, electronic and optical properties of new semiconductors which includes ternary Mg(Si,Ge,Sn)(As,Sb)2 compounds considering to be of practical interest These compounds have not been experimentally fabricated yet but their properties demonstrated below make them promising for efficient solar cells and infrared (IR) photodetectors [6] 620 621 Details of calculations The methodology of the work includes calculations within the density functional theory (DFT) implemented in Vienna ab initio simulation package (VASP) with projector augmented-wave (PAW) method using the generalized gradient approximation (GGA) of Perdew and Wang [7] and the local Perdew-BurkeErnzerhof (PBE) exchange-correlation functional [8] The full-potential linearized augmented plane wave (FLAPW) method realized in WIEN2k code was used for calculation of optical properties [9] We compared our results with those obtained within GW (many-body perturbation theory) approach The 7×7×7 k-point mesh of Monkhorst-Pack points was used for calculation of AIIIBV materials, 10×10×5 grid – for DFT calculation of AIIBIVCV2 compounds and 6×6×3 grid was used for calculations with GW0 corrections (where only eigenvalues of the Green’s function G are updated) The energy cut-off parameter was chosen to be 380 eV First we tested our methodology with the evaluation of the band gaps of Si and some cubic AIIIBV (GaP, GaAs, and InP) compounds Then we applied the DFT technique for calculation of new AIIBIVCV2 compounds like Mg(Si,Ge,Sn)(As,Sb)2 Chalcopyrite-like structure was considered for them Results and discussion Table presents band gaps, calculated for Si and several AIIIBV semiconductors within GGA and PBE approximations, compared with the ones, calculated with GW0 corrections, and with an experimental data It is evident that the gaps obtained within GW0 are close to experimental values Moreover, PBE+GW0 gaps are closer than GGA+GW0 ones Table The band gaps (eV) of Si and some of AIIIBV compounds calculated by various techniques as compared with experimental data [10] Si GaAs GaP InP GGA 0.58 0.11 1.50 0.32 GGA+GW0 1.23 1.29 2.54 1.42 PBE 0.58 0.16 1.51 0.38 PBE+GW0 1.13 1.20 2.28 1.27 Experiment 1.12 1.42 2.26 1.35 The negative values of enthalpies of formation calculated (in a range of -0.9÷2.5 eV) let us to conclude all Mg(Si,Ge,Sn)(As,Sb)2 compounds to be energetically stable The lattice constants obtained within GGA are given in Table Most of the compounds are found to match InSb substrate (a=6.48 Å [10]), whereas MgGeAs2 and MgSnAs2 are close to GaSb one (a=6.1 Å [10]) 622 The total densities of states (DOS) for Mg(Si,Ge,Sn)(As,Sb)2 compounds demonstrate them to be semiconductors and not show significant changes upon variation of anion type (Fig 1) It is obvious that band gaps for As-containing compounds are always larger in comparison with Sb-containing ones for the same IV-group element Table Lattice constants of Mg(Si,Ge,Sn)(As,Sb)2 compounds obtained within GGA MgGeAs2 MgSnAs2 MgSiSb2 MgGeSb2 MgSnSb2 Compound MgSiAs2 a, Å 5.95 6.01 6.14 6.434 6.48 6.61 c, Å 10.80 11.27 12.06 11.96 12.33 13.05 DOS, states/eV 30 MgSiSb2 MgGeSb2 MgSnSb2 MgSiAs2 MgGeAs2 MgSnAs2 20 10 -4 -2 -4 -2 -4 -2 Energy, eV Figure Total densities of states of Mg(Si,Ge,Sn)(As,Sb)2 compounds All Mg(Si,Ge,Sn)As2 compounds considered are found to be direct-gap semiconductors with the values of 1.26, 0.57, and 0.42 eV, respectively Band-gap values of Mg(Si,Ge,Sn)Sb2 class were estimated as well with the GW0 corrections (Table 3) No experimental data is available Table The band gaps (eV) of Mg(Si,Ge,Sn)Sb2 compounds calculated by various techniques GGA GGA+GW0 PBE PBE+GW0 MgSiSb2 0.81 1.00 0.81 1.67 MgGeSb2 0.16 0.85 0.14 1.19 MgSnSb2 0.23 0.94 0.23 1.29 The band gaps calculated within GGA and PBE are practically identical, while the gaps estimated by PBE+GW0 are larger than those got with GGA+GW0 The results for cubic semiconductors allow us to suppose the GW values to be quite reasonable for Mg(Si,Ge,Sn)Sb2 compounds The averaged reflectance and absorption spectra of Mg(Si,Ge,Sn)As2 compounds are presented at the Fig Shapes of the reflectance curves of MgGeAs2 and MgSnAs2 look similar to the ones of CuInSe2, but they are higher at 1.5 eV and above Both reflectance and absorption curves of MgSiAs2 are approaching to ones of GaAs CuInSe2 0.5 400 600 800 CuInSe2 GaAs GaAs α, 10 cm -1 MgSiAs2 MgGeAs2 R 0.4 0.3 1000 400 600 800 10 1200 λ, nm λ, nm 1000 1200 623 MgSiAs2 MgSnAs2 MgGeAs2 MgSnAs2 0.2 1.0 1.5 2.0 2.5 Photon energy, eV 3.0 3.5 1.0 1.5 2.0 2.5 Photon energy, eV 3.0 3.5 Figure Reflectance and absorption spectra of Mg(Si,Ge,Sn)As2 compounds averaged over different directions Vertical lines correspond to the boundaries of visible spectral range Conclusion Ab initio calculations predict novel Mg-IV-(As,Sb)2 chalcopyrite compounds to be stable semiconductors having direct gaps and lattice parameters close to GaSb and InSb, respectively Their reflectance and absorption spectra are comparable with those for widely used GaAs and CuInSe2 and suppose Mg-based materials to be good candidates to replace them Acknowledgments This work was performed in the framework of the CNRS working contract № 232776 of Ms Anna Krivosheeva (2010) and was supported by State Scientific Program “Functional and engineering materials, nanomaterials” References V Ryzhii, Intersubband Infrared Photodetectors (World Scientific, Singapore, 2003), 345 p Infrared Applications of Semiconductors - Materials, Processing, and Devices, ed by M O Manasreh et al (MRS, 1997), 485 p J Piotrowski, A Rogalski, High-operating-temperature Infrared Photodetectors (SPIE Editions, Washington, USA 2007), 256 p K Jimbo, R Kimura et al., Thin Solid Films 515, 5997 (2007) L P Marushko et al., J Alloys Compd 484, 147 (2009) A Zunger et al., J Electronic Materials 22, (1993) J Perdew, Y Wang, Phys Rev B 45, 13244 (1992) J P Perdew, K Burke, M Ernzerhof, Phys Rev Lett 78, 1396 (1997) P Blaha et al., “WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties” (Karlheinz Schwarz, Techn Universität Wien, Austria, 2001) 10 S M Sze, Physics of Semiconductor Device (New York, 1981), p 848 This page is intentionally left blank AUTHOR INDEX Bokshits Y V., 385 Boltovets P., 393 Bondar A I., 146 von Borczyskowski C., 185, 349 Borisenko V E., 39, 138 Borkovskaya O Yu., 99 Boyko V., 219 Bozek P., 504 Bozhko S I., 451 Briddon P R., 311 Brönstrup G., 412 Bubel’ O N., 110 Bui D N., 604 Burlutskaya N., 283 Bychanok D., 319 Byrne S J., 433 A.-Almuhanna Muhanna K., 353 Abadias G., 458 Adolphi B., 226 Adomavicus R., 295 Agabekov V E., 353, 616 Ahmed K A M., 472 Aleksandrova G., 389 Ali M., 531 Al-Khowaiter Soliman H., 353 Alyamani Ahmed, 440 Andreeva D V., 361 Andrievski R A., 245 Ara M., 349 Arnaud d’Avitaya F., 444, 620 Artemyev M V., 181, 196 Asarko I., 234 Attanasio C., 27 Atzberger A., 433 Auer G., 592 Aufray B., 430 Cammalleri N., 584 Cavaliere S., 588 Chaika A N., 451 Chalykh А Е., 539 Chiesa M., 70 Chizhik S A., 483 Chkhartishvili L., 118, 126 Christiansen S., 412 Christol P., 584 Chulkin P V., 337 Chusovitin E A., 154 Cichos F., 185 Cirillo C., 27 Coderoni L., 299 Cuminal Y., 584 Bagmut A., 455 Balucani M., 404 Bandarenka H., 404 Baraldi A., Baranchikov A E., 462, 469 Baranov A., 192 Barczewski M., 479 Batrakov K., 307 Bauer G., 412 Baumgärtel T., 349 Bellucci S., 283, 299 Belonenko M., 263, 303 Berberashvili T., 126 Biberian J P., 430 Bietti S., 200 Blaudeck T., 185 Bochmann A., 412 Bodnar I V., 341 Bogdanov E V., 211 D’yachkov P N., 287 Danilyuk A L., 39 Danilyuk M A., 39 Danylenko M I., 122 Davletova O A., 238 Demyanov S E., 230 625 626 Di Vona M Luisa, 592 Djenizian T., 574 Dmitruk N L., 99 Dohah Mohammed Iqbal, 519 Dolbik A V., 596 Dolgopolova E A., 469 Dollet A., 584 Dorofeev S., 189 Dovbeshko G., 291 Drozd E S., 483 Dvurechenskii A V., 19 Dyakov S A., 146 Ebrahimi-Nejad S., 130, 396 Efimova A I., 146 Ensinger W., 531 Ermakova A V., 543 Ermolenko M V., 550 Escoubas L., 580 Eslami H., 51 Eychmüller A., 325, 329 Fedorov A., 192 Fedotov A K., 165 Fesenko O., 291 Filipenia V A., 543 Filipovich A., 357 Filonov A B., 106, 134 Fisenko S P., 81 Flory F., 580 Fokin D A., 451 Frigeri C., 200 Frolov A A., 122 Frolova E A., 114 Frolova E V., 381 Gadelrab K R., 70 Galkin K N., 150, 154 Galkin N G., 150, 154 Galkin R A., 408 Gaponenko S V., 196 Gaponik N., 173 Garamus V M., 230 Gardonio S., Gavrilov S., 423 Gelis L G., 483 Gelloz B., 11 Gerlach G., 226 Ghadimi M., 396 Gnatyuk O., 291 Golovan L A., 146 Golovynskyi S L., 207 Golubkov V V., 345 Goncharova O., 612 Gongalsky M B., 408 Gorbachuk N I., 543 Gordeev N Yu., 204 Gorokh G., 95 Graaf H., 349 Gremenok V., 612 Grodzyuk G Ya., 337 Gronin S V., 440 Gun'ko Y K., 433 Gurin V S., 341, 345 Gurinovich L I., 196 Gurskii L I., 226, 230 Gusakov V., 142 Gusakova J., 142 Gutakovski A K., 154 Hadi Ahmed Adnan, 519 Haverkort J E M., 35 Havrylenko T S., 99 Hickey S G., 325, 329 Hirano Y., 11 Hoffmann B., 412 Hong Wang, 138 Hourdakis E., 512 Huang K., 472 627 Il’chenko L G., 66 Il’chenko V V., 66 Ilin A., 504 Ionov A M., 451 Ivanov S V., 440 Ivanov V K., 462, 469 Ivanova O S., 469 Ivanovskaya M., 234, 357 Ivashkevich O A., 377 Jakubov T., 102, 241 Jaworska L., 158 Jones D J., 588 Jones R., 311 Kalanda N A., 230 Kalinichenko D., 416 Kam C H., 596 Kang S.-Z., 604, 608 Kanygin M., 319 Karakose S., 523 Karatay N V., 400 Katsuba P S., 475 Kawai T., 535 Kehrbusch J., 504 Khosroshahi R A., 396 Khrushcheva A A., 466 Khrutchinsky A A., 78 Kibis O V., 259 Kilin S Ya., 78, 106 Kim D.-H., 62, 223 Kislyakov E F., 110 Klimczyk P., 158 Klimsa A A., 226 Knauth P., 574, 592 Kobets A., 369 Koỗ E., 523 Koguchi N., 200 Kolesnik E E., 365 Kondratenko S V., 207 Kop'ev P S., 440 Korolik O V., 165 Korolovych V., 84 Korotchenkov O., 416 Koshida N., 11 Kotomin E A., 91 Kotov D A., 230 Kotsikau D., 234, 357 Kovalev L V., 230 Kovalevskii A A., 448, 600 Kowerko D., 185 Krivosheeva A V., 620 Krotkus A., 295 Ksenevich V., 299 Kuchmiy S Ya., 337 Kudryavtsev A A., 408 Kukharenko L V., 479, 483 Kukhta A V., 365 Kukhta I N., 365 Kulakovich O., 192 Kulmas M., 412 Kumar N., 241 Kupreeva O., 444 Kurenya A G., 114, 319 Kurilin A S., 114 Kushnir V N., 27, 47 Kuten S A., 78, 106 Kutlubav D V., 287 Kutsev S V., 466 Kuzhir P P., 114, 299 Kuznetsov V L., 295 Kyriienko O., 58 Labunov V A., 87, 596 Lachinov A A., 547 Lachinov A N., 547 Lacovig P., Lalmi B., 430 Lambin Ph., 274 Lapko K N., 114 Larciprete R., Lastovskii S B., 169 Latyshev A V., 154 628 Lazareva I V., 483 Lazarouk S., 444, 596 Lazzari J.-L., 620 Lebedev N., 263, 303 Lebedeva N N., 523 Lee Joo-Kyung, 535 Lee Seung-Woong, 437 Leshok A A., 475 Lesnichaya M., 389 Lesnikovich A I., 114, 333 Lesnyak V., 173 Levdansky V V., 162 Li C C., 608 Li X Q., 608 Liebscher L., 329 Lizzit S., Lobanov V V., 66 Lomonosov V A., 114 Lutsenko E V., 440 Ma X.-P., 62, 223 Macutkevic J., 295 Maffucci A., 251 Magnusson E B., 54 Mainwaring D E., 102, 241 Makaev D V., 287 Makei A M., 158 Maksimenko S A., 114, 291 Malashkevich G E., 385 Malyarevich А М., 345 Mamontova I B., 99 Marintsev P S., 211 Markevich A., 311 Markevich V P., 142, 169 Markova L V., 158 Martynenko V V., 81 Maskevich S., 192 Mazanik A V., 165 Mazov I N., 295 Mccarthy J E., 433 Medvedeva E A., 483 Medzvedz A., 192 Melnikau D., 173 Mentek R., 11 Merlen A., 580 Miao S., 325 Micciulla F., 299 Migas D B., 39, 138 Mikhailovska L., 74 Milevich I A., 365, 373 Minin K A., 226 Minina N Ya., 211 Mironov D E., 211 Misevich A V., 365 Mohammed Abubakar Saddiq, 519 Möhwald H M., 527 Mokhlespour S., 35 Molochko A P., 341 Motuzuk A V., 408 Mu J., 604, 608 Mukha Y., 519 Murin L I., 169 Murugaraj P., 241 Murusidze I., 126 Myachin Ju., 389 Myslivets S A., 270 Nadtochiy A., 416 Nassiopoulou A G., 512 Naumenko D O., 99 Nefedov I., 267 Nemati N., 396 Nemilentsau A M., 315, 319 Nenzi P., 404 Nguyen V C., 596 Nichick M N., 377 Nizovtsev A P., 78, 106 Öberg S., 311 Obukhov I., 95 Oesterschulze E., 504 Oh S K., 62, 223 Ohta T., 11 629 Okatova G P., 158 Okotrub A N., 114, 319 Olendski O., 74 Orbukh V I., 523 Orekhovskaya T., 444 Orlova A., 192 Osminkina L A., 408 Ovodok E., 234 Pankov V., 357 Paribok I V., 353 Parinova E V., 165 Park Bae Ho, 437, 535 Pavlovskii V N., 440 Payusov A S., 204 Peaker A R., 169 Pellenq R J.-M., 557 Perona A., 584 Petrov A V., 226 Pey K L., 39 Piao H.-G., 62, 223 Pietsch M., 412 Pisarev S A., 539 Piskunov S., 91 Piskunovitch I Y., 385 Pita K., 596 Pliushch A O., 114, 319 Pochtenny A E., 365 Poddubskaya A., 295, 319 Podolian A., 416 Poklonski N A., 110, 543 Polikarpov D I., 238 Popov A K., 270 Portnoi M E., 259 Prina-Mello A., 433 Prischepa S L., 27 Prislopski S Ya., 196 Prudnikau A., 181 Prudnikava A., 87 Pujol L., 584 Pushkarchuk A L., 78, 106 Pushkarchuk V A., 78, 106 Rabchynski S M., 337 Rachkovskaya G E., 345 Radtke G., 215 Raevskaya A E., 337 Raghavan N., 39 Ragoisha G A., 337 Rakovich A., 433 Rakovich T., 433 Rakovich Y P., 173, 566 Redko S., 404 Rellinghaus B., 325 Rinaldi G., 299 Rochdi N., 444 Rozière J., 588 Rumyantsev O I., 204 Rusli, 138, 489 Saad A M., 78 Sacco I., 299 Salamianski A E., 400 Salamov B G., 523 Sanguinetti S., 200 Sarantopoulou E., 365 Sartinska L L., 122 Sasinovich D., 444 Saul A., 215 Savateeva D., 173 Savenko I G., 54, 204 Schaaf B., 504 Schimmel Th., 479 Schreivogel M., 412 Sedova I V., 440 Sedyshev P V., 114 Semenova E M., 333, 365 Sergentu M N., 315 Sevostyanov S., 393 Shabunya S I., 81 Shakerzadeh M., 87 Shamirsaev T S., 154 Shaporev A S., 462 Shaposhnikov V L., 134, 620 Shchukin D G., 527 630 Shelekhov E V., 539 Shelykh I A., 54, 58 Shevchenko G P., 381, 385 Shevchenok A A., 600 Shevtsov V N., 114 Shim J.-H., 62, 223 Shirakashi Jun-Ichi, 495 Shirokov S S., 211 Shman T V., 479 Shokuhfar A., 130, 396 Shpakovski S V., 543 Shpilevsky E M., 99 Shpotyuk O., 219 Shuba M V., 291, 319 Shulitski B., 87 Shunin Yu N., 283 Shutava T., 616 Siegele R., 241 Simonova I A., 295 Singh Navab, 489 Sivakov V., 412 Skorb E V., 361, 527 Skuratov V A., 543 Slepyan G Ya., 43, 315 Smirnov A., 519 Smolik J., 162 Solovei D., 95 Solovei N P., 341 Somaschini C., 200 Son J Wan, 535 Sorokin S V., 440 Soroko V., 307 Sperling E., 329 Steblenko L., 416 Strekal N., 192 Streltsov E A., 337 Strogova A S., 448, 600 Stroyuk A L., 337 Stsiapanau A., 519 Stupak A P., 196, 381 Suchaneck G., 226 Sudnik L V., 158 Sun Yongshun, 489 Sveklo I F., 451 Sviridov A P., 408 Sviridov D V., 527 Syroezhkin S V., 483 Tada H., 349 Takami T., 535 Talkenberg F., 412 Tamarov K P., 408 Tan Dunlin, 87 Tarasova A V., 479 Tay Beng Kang, 87 Telesh E V., 226, 230 Terekhov V A., 165 Timofeeva I I., 122 Timoshenko V Yu., 189, 408 Tin’kov V A., 122 Torchio P., 580 Tretyakov S., 267 Trofimov B., 389 Trusova E A., 466, 539 Trusova E E., 345 Trutnev N S., 466 Tselikov G., 189 Turishchev S Yu., 165 Tzibylsky V V., 448 Uglov V V., 458 Urbanovich V S., 158 Ushakou D., 315 Vainilovich A G., 440 Vakulenko O V., 207 Valusis G., 295 Vedraine S., 580 Vervisch W., 580 Veselova T., 299 Voigt F., 412 Voitekhovich S V., 377 Vokhmintcev K V., 539 631 Volkov Y., 433 Vorob’eva N V., 547 Vorobyova S A., 333, 373 Vorobyova T., 369 Vyrko S A., 110 Vysotski V B., 475 Waurisch C., 325, 329 Wieck A., 543 Willumeit R., 230 Wu X., 39 Yablonskii G P., 440 Yakimov A I., 19 Yakovkin K., 291 Yan Y., 608 Yanyushkina N., 263, 303 Yerchak Y D., 43 Yu S.-C., 62, 223 Zagainov I V., 466 Zakharevich G B., 345 Zaporotskova I V., 238 Zare-Shahabadi A., 130 Zdimal V., 162 Zenkevich E., 177, 185 Zhao X L., 604 Zhavnerko G K., 353, 400 Zhdanok S A., 81 Zhukovskii Yu F., 91, 283 Zhuravkov V A., 385 Zlotski S V., 458 Zolriasatein A., 130, 396 s*-, C ' / and original short notes of recent results obtained in studies concerning the % B ^^^k L L ^^^^7Mr%0vm f JF^^4S^"W I ** Mm i ML *** MH J \ / ~ ' his book presents invited reviews fabrication and application of nanostructures, which hold great promise for the new generation of electronic and optoelectronic devices Governing exciting and relatively new topics such as fast-progressing nanoelectronics and optoelectronics, molecular electronics and spintronics, nanophotonics, nanosensorics and PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES nanobiology as well as nanotechnology and quantum processing of information, this book ^' ^ complete understanding of the practical uses of nanotechnology and v e s r e a t e r s a m o r e nanostructures World Scientific i MHTBBlfflMWffiM ... available from the British Library PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES Reviews and Short Notes to Nanomeeting 2011 Proceedings of the International Conference Copyright © 2011 by World.. .PHYSICS, CHEMISTRY AND APPLICATIONS OF NANOSTRUCTURES REVIEWS AND SHORT NOTES This page is intentionally left blank PROCEEDINGS OF INTERNATIONAL CONFERENCE NANOMEETING - 2011 PHYSICS, CHEMISTRY. .. of the practical interest to carbon based nanostructures It has inevitably influenced the thematic of contributions to the International conference on Physics, Chemistry and Applications of Nanostructures,