Edited by Nazario Martin and Jean-Francois Nierengarten Supramolecular Chemistry of Fullerenes and Carbon Nanotubes Related Titles Klauk, H (ed.) Martín, N., Giacalone, F (eds.) Organic Electronics II Fullerene Polymers More Materials and Applications Synthesis, Properties and Applications 2012 2009 ISBN: 978-3-527-32647-1 ISBN: 978-3-527-32282-4 Siebbeles, L D A., Grozema, F C (eds.) Cademartiri, L., Ozin, G A Charge and Exciton Transport through Molecular Wires Concepts of Nanochemistry 2011 ISBN: 978-3-527-32626-6 2009 ISBN: 978-3-527-32501-6 Steed, J W., Atwood, J L Samori, P., Cacialli, F (eds.) Supramolecular Chemistry Functional Supramolecular Architectures ISBN: 978-0-470-51234-0 for Organic Electronics and Nanotechnology Atwood, J L., Steed, J W (eds.) 2011 ISBN: 978-3-527-32611-2 Organic Nanostructures 2008 ISBN: 978-3-527-31836-0 Guldi, D M., Martín, N (eds.) Carbon Nanotubes and Related Structures Synthesis, Characterization, Functionalization, and Applications 2010 ISBN: 978-3-527-32406-4 Diederich, F., Stang, P J., Tykwinski, R R (eds.) Modern Supramolecular Chemistry Strategies for Macrocycle Synthesis 2008 ISBN: 978-3-527-31826-1 Edited by Nazario Martin and Jean-Francois Nierengarten Supramolecular Chemistry of Fullerenes and Carbon Nanotubes The Editors Prof Dr Nazario Martín Universidad Complutense de Madrid Departamento de Química Orgánica Ciudad Universitaria s/n 28040 Madrid Spain Prof Jean-Franc Nierengarten Université de Strasbourg UMR 7509 25 rue Becquerel 67087 Strasbourg Cedex France All books published by Wiley-VCH are carefully produced Nevertheless, authors, editors, and publisher not warrant the information contained in these books, including this book, to be free of errors Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate Library of Congress Card No.: applied for British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at http://dnb.d-nb.de # 2012 Wiley-VCH Verlag & Co KGaA, Boschstr 12, 69469 Weinheim, Germany All rights reserved (including those of translation into other languages) No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers Registered names, trademarks, etc used in this book, even when not specifically marked as such, are not to be considered unprotected by law Print ISBN: ePDF ISBN: ePub ISBN: mobi ISBN: oBook ISBN: 978-3-527-32789-8 978-3-527-65015-6 978-3-527-65014-9 978-3-527-65013-2 978-3-527-65012-5 Typesetting Thomson Digital, Noida, India Printing and Binding Markono Print Media Pte Ltd, Singapore Cover Design Formgeber, Eppelheim Printed in Singapore Printed on acid-free paper V Contents Preface XI List of Contributors 1.1 1.2 1.3 1.3.1 1.3.2 1.4 1.4.1 1.4.2 1.5 2.1 2.2 2.3 2.4 3.1 3.2 3.2.1 3.2.2 3.2.3 3.3 3.4 XIII Carbon Nanostructures: Covalent and Macromolecular Chemistry Francesco Giacalone, Ma Ángeles Herranz, and Nazario Martín Introduction Fullerene-Containing Polymers Carbon Nanotubes 10 Defect Functionalization 11 Sidewall Functionalization 13 Graphenes 16 Covalent Functionalization 17 Noncovalent Functionalization 17 Summary and Conclusions 20 References 20 Hydrogen-Bonded Fullerene Assemblies 27 José Santos, Beatriz M Illescas, Luis Sánchez, and Nazario Martín Introduction 27 Hydrogen-Bonded Fullerene-Based Supramolecular Structures 28 Hydrogen-Bonded Fullerene-Based Donor–Acceptor Structures 32 Applications 46 References 49 Receptors for Pristine Fullerenes Based on Concave–Convex p–p p Interactions 55 Takeshi Kawase Introduction 55 Fullerene Receptors Based on Traditional Hosts 56 Simple Traditional Hosts 56 Modified Traditional Host Molecules 59 Receptors Bearing a Dimeric Structure of Traditional Host Molecules 62 Hydrocarbon Receptors 64 Receptors Bearing a Curved Conjugated System 66 VI Contents 66 3.4.1 3.4.2 3.4.3 3.5 Receptors Based on Bowl-Shaped Conjugated Systems Receptors Bearing a Cylindrical Cavity 67 Carbon Nanorings 68 Conclusions 72 References 72 Cooperative Effects in the Self-Assembly of Fullerene Donor Ensembles 79 Jean-Franỗois Nierengarten Introduction 79 Allosteric Cooperativity 80 General Principle 80 Allosteric Cooperativity in Supramolecular Fullerene Donor Ensembles 81 Chelate Cooperativity 88 General Principle 88 Binding of a Divalent Ligand AA to a Divalent Receptor BB Binding of a Divalent Asymmetric Ligand AC to a Complementary Receptor BD 95 Conclusions 98 Experimental Details 99 General 100 UV–Visible Titrations 100 Luminescence Titrations 100 References 104 4.1 4.2 4.2.1 4.2.2 4.3 4.3.1 4.3.2 4.3.3 4.4 4.5 4.5.1 4.5.2 4.5.3 5.1 5.1.1 5.1.1.1 5.1.1.2 5.1.2 5.2 5.2.1 5.2.2 5.2.3 5.3 6.1 6.2 Fullerene-Containing Rotaxanes and Catenanes Aurelio Mateo-Alonso Introduction 107 Synthetic Strategies 107 Rotaxanes 107 Catenanes 108 Bistable Rotaxanes and Catenanes 109 Fullerene Rotaxanes and Catenanes 110 Metal Coordination 110 p Stacking Interactions 111 Hydrogen Bonds 113 Conclusions 123 References 124 91 107 Biomimetic Motifs Toward the Construction of Artificial Reaction Centers 127 Bruno Grimm and Dirk M Guldi Introduction 127 Supramolecular Architectures for Solar Energy Conversion 130 Contents 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.3 General Considerations 130 Coulomb Interactions 134 p–p Stacking 137 Hydrogen Bonding 143 Metal–Ligand Coordination 150 Outlook 154 References 154 Supramolecular Chemistry of Fullerene-Containing Micelles and Gels 159 Hongguang Li, Sukumaran Santhosh Babu, and Takashi Nakanishi Introduction 159 Solubilization of Pristine C60 in Surfactant Assemblies 160 Solubilizaiton in Micelles 160 Solubilization in Vesicles 162 Self-Assemblies of Amphiphilic C60 Derivatives 164 Gels of Fullerenes 166 Conclusions and Outlook 169 References 170 7.1 7.2 7.2.1 7.2.2 7.3 7.4 7.5 8.1 8.2 8.3 8.3.1 8.3.2 8.3.3 8.4 8.4.1 8.4.2 8.5 9.1 9.2 9.2.1 9.2.2 9.2.3 9.2.4 9.3 Fullerene-Containing Supramolecular Polymers and Dendrimers 173 Takeharu Haino and Toshiaki Ikeda Introduction 173 Fabrication of [60]Fullerene Polymeric Array 174 Supramolecular Polymerization of Functionalized [60]Fullerene 178 Ionic Interaction 179 Hydrogen Bonding Interaction 182 Host–Guest Interaction 185 Supramolecular [60]Fullerene Dendrimer 188 Dendrimers with Peripheral Fullerene 188 Dendrimers with Inner Fullerene 193 Conclusions 198 References 198 [60]Fullerene-Containing Thermotropic Liquid Crystals 203 Daniel Guillon, Bertrand Donnio, and Robert Deschenaux Introduction 203 Noncovalent C60 Derivatives 204 The Liquid–Crystalline Supramolecular Complex of C60 with a Cyclotriveratrylene Derivative 204 Supramolecular Complex Composed of Rigid Dendritic Porphyrin and Fullerene 206 Self-Assembled Columns of C60 207 Phthalocyanine-[60]Fullerene Dyads in Liquid Crystals 208 Covalent C60 Derivatives 208 VII VIII Contents 9.3.1 9.3.2 9.3.3 9.3.4 9.3.5 9.4 10 10.1 10.2 10.2.1 10.2.2 10.2.3 10.3 10.3.1 10.3.2 10.3.3 10.4 10.4.1 10.4.2 10.5 11 11.1 11.2 11.2.1 11.2.1.1 11.2.2 11.2.2.1 11.2.2.2 11.2.2.3 11.2.3 11.2.4 Liquid–Crystalline Methanofullerene- and Fulleropyrrolidine-Based Poly(Aryl Ester) Dendrons 208 Liquid–Crystalline Fulleropyrrolidine-Based Poly(Benzyl Ether) Dendrons 212 Liquid–Crystalline Fullero(Codendrimers) 218 Polypedal [60]Fullerenes 223 Conical-Like ‘‘Shuttlecock’’ [60]Fullerenes 227 Conclusions 232 References 233 Supramolecular Chemistry of Fullerenes on Solid Surfaces 237 Roberto Otero, José María Gallego, Nazario Martín, and Rodolfo Miranda Introduction 237 Fullerenes on Nonpatterned Metal Surfaces 238 Nature and Strength of Fullerene–Metal Interactions 238 Translational and Orientational Order of Fullerene Layers on Flat Metal Surfaces 239 Conventional Approaches to 2D Fullerene Supramolecular Chemistry: Fullerene Functionalization 240 Surface Templates for Fullerene Adsorption 243 0D Point Defects and Single-Molecule Arrays 243 1D Line Defects: Molecular Chains 244 2D Nanomeshes 246 Supramolecular Aggregation of Fullerenes and other Organic Species on Surfaces 248 Self-Assembled Monolayers as Hosts for Fullerenes on Solid Surfaces 249 Coassembly of Fullerenes and Other Organic Species 251 Outlook 258 References 259 Supramolecular Chemistry of Carbon Nanotubes 263 Bruno Jousselme, Arianna Filoramo, and Stéphane Campidelli Introduction 263 Supramolecular Carbon Nanotube Hybrids 264 Carbon Nanotube and Surfactants 264 Suspension of Single-Wall Carbon Nanotubes (Why, How, and What for?) 264 p Stacking Interactions 270 Pyrene Derivatives 270 Other Cyclic Aromatic Compounds 276 Porphyrins and Derived Structures 277 Polymers and Wrapping 280 Filling Nanotubes 283 Contents 11.3 Conclusions 288 References 288 12 Supramolecular Chemistry of Fullerenes and Carbon Nanotubes at Interfaces: Toward Applications 301 Riccardo Marega, Davide Giust, Adrian Kremer, and Davide Bonifazi Introduction 301 Fullerene Interfaces 302 Fullerenes at the Liquid–Liquid and Micellar Interfaces 303 Fullerenes at the Solid–Liquid Interface 307 Fullerenes at the Gas–Solid Interface 310 Fullerenes at the Biological Interface 313 Carbon Nanotubes 317 Carbon Nanotubes at the Liquid–Liquid Interface 317 Carbon Nanotubes at the Solid–Liquid Interface 320 Carbon Nanotubes at the Gas–Solid Interface 325 Carbon Nanotubes at the Biological Interface 327 Conclusions 334 References 335 12.1 12.2 12.2.1 12.2.2 12.2.3 12.2.4 12.3 12.3.1 12.3.2 12.3.3 12.3.4 12.4 13 13.1 13.2 13.2.1 13.2.1.1 13.2.1.2 13.2.1.3 13.2.1.4 13.2.1.5 13.2.1.6 13.2.2 13.3 13.3.1 13.3.2 13.4 14 14.1 14.2 Applications of Supramolecular Ensembles with Fullerenes and CNTs: Solar Cells and Transistors 349 Hiroshi Imahori and Tomokazu Umeyama Introduction 349 Solar Cells 350 Fullerene-Based Solar Cells 350 Self-Assembled Monolayers 350 Layer-by-Layer Deposition 353 Electrochemical Deposition 354 Solution-Processed Bulk Heterojunction Solar Cells 359 Hydrogen Bonding Systems 360 Coordination Bonding Systems 362 Carbon Nanotubes 363 Transistors 366 Fullerenes 366 Carbon Nanotubes 366 Summary 368 References 369 Experimental Determination of Association Constants Involving Fullerenes 375 Emilio M Pérez Àlvarez and Nazario Martín Planning a Titration Experiment 375 Performing a Titration 376 IX X Contents 14.3 14.4 14.5 14.6 14.7 14.8 14.9 Choosing the Spectroscopic Method 378 Analyzing the Data 379 Determining Stoichiometry 380 Estimating Errors 381 Fullerenes as Guests: Spectroscopic Properties 381 Determination of the Binding Constant of an exTTF-based Host toward C60: A Practical Example 385 Conclusions 389 References 390 Index 391 14.9 Conclusions Figure 14.11 Jobs plot for versus C60 4) Determination of stoichiometry At this point, taking into account the precedents, the structural information about 1, and the very good fits to : binding models, the fact that the 1ÁC60 associate presents a : stoichiometry is a fair assumption Nevertheless, we carried out continuous variation analysis (Jobs plots) to confirm the stoichiometry To this, it is important to keep in mind that the Jobs plot technique works best for systems where there is only one type of complex present, and concentrations at which the system is fully saturated (i.e., at a total concentration significantly higher than KaÀ1 ) [1] Thus, in our case, we decided to work at [1] ỵ [C60] ẳ 104 M We recorded UV–vis spectra of mixtures of molar fraction of C60 from to 1, at 0.1 intervals, and plotted the difference between the observed experimental absorbance at a given wavelength and the expected theoretical absorbance assuming there is no complex formation, calculated as Atheor ẳ e1[1] ỵ eC60[C60] for a cuvette of cm optical path length The resulting graph for l ¼ 425 nm is shown in Figure 14.11 The maximum at 0.5 molar fraction confirms the : stoichiometry 14.9 Conclusions The correct determination of association constants is far from a trivial experimental technique Each host–guest system has its own peculiarities, which should be taken into account when deciding the concentration, the spectroscopic technique, and the method of analysis for our titration experiments The design of receptors for fullerenes is attracting a great deal of attention, and many groups are starting research lines in this topic In this chapter, we have j389 j 14 Experimental Determination of Association Constants Involving Fullerenes 390 presented an overview of what we consider good practice with regard to the experimental determination of binding constants involving fullerenes (C60 and C70) as guests, from a very practical, hands-on perspective based on our own experience We hope these brief guidelines will be useful for those interested in developing their own research lines within the field References Thordarson, P (2011) Chem Soc Rev., 40, 1305 Connors, K.A (1987) Binding Constants The Measurement of Molecular Complex Stability, John Wiley & Sons, Inc., New York Rahman, A.F.M.M., Bhattacharya, S., Peng, X., Kimura, T., and Komatsu, N (2008) Chem Commun., 1196 Stella, L., Capodilupo, A.L., and Bietti, M (2008) Chem Commun., 4744 See, for example, (a) Sun, D., Tham, F.S., Reed, C.A., Chaker, L., Burgess, M., and Boyd, P.D.W (2000) J Am Chem Soc., 122, 10704; (b) Wu, Z.-Q., Shao, X.-B., Li, C., Hou, J.-L., Wang, K., Jiang, X.-K., and Li, Z.-T (2005) J Am Chem Soc., 127, 17460; (c) Yanagisawa, M., Tashiro, K., Yamasaki, M., and Aida, T (2007) J Am Chem Soc., 129, 11912 (a) Eckert, J.-F., Byrne, D., Nicoud, J.-F., Oswald, L., Nierengarten, J.-F., Numata, M., Ikeda, A., Shinkai, S., and Armaroli, N (2000) New J Chem., 24, 749; (b) Lijanova, I.V., Flores Maturano, J., Dominguez Chavez, J.G., Sanchez Montes, K.E., Hernandez Ortega, S., Klimova, T., and Martınez-Garcia, M (2009) Supramol Chem., 21, 24 (a) Huerta, E., Isla, H., Perez, E.M., Bo, C., Martın, N., and de Mendoza, J (2010) J Am Chem Soc., 132, 5351; (b) Isla, H., Gallego, M., Perez, E.M., Viruela, R., Ortı, E., and Martın, N (2010) J Am Chem Soc., 132, 1772 Tong, L.H., Wietor, J.-L., Clegg, W., Raithby, P.R., Pascu, S.I., and Sanders, J.K.M (2008) Chem Eur J., 14, 3035 For an example where we resorted to H NMR titrations for the determination of binding constants toward C60, see Perez, E.M., Capodilupo, A.L., Fernandez, G., Sanchez, L., Viruela, P.M., Viruela, R., Ortı, E., Bietti, M., and Martın, N (2008) Chem Commun., 4567 Leach, S., Vervloet, M., Despres, A., Breheret, E., Hare, J.P., Dennis, T.J., Kroto, H.W., Taylor, R., and Walton, D.R.M (1992) Chem Phys., 160, 451 (a) Sun, Y.P and Bunker, C.E (1993) Nature, 365, 398; (b) Gallagher, S.H., Armstrong, R.S., Lay, P.A., and Reed, C.A (1995) J Phys Chem., 99, 5817 Song, J., Aratani, N., Shinokubo, H., and Osuka, A (2010) J Am Chem Soc., 132, 16356 Sun, Y.-P., Bunker, C.E., and Ma, B (1994) J Am Chem Soc., 116, 9692 Gil-Ramırez, G., Karlen, S.D., Shundo, A., Porfyrakis, K., Ito, Y., Briggs, G.A.D., Morton, J.J.L., and Anderson, H.L (2010) Org Lett., 12, 3544 Canevet, D., Gallego, M., Isla, H., de Juan, A., Perez, E.M., and Martın, N (2011) J Am Chem Soc doi: 10.1021/ ja111072j (a) Perez, E.M., Sanchez, L., Fernandez, G., and Martın, N (2006) J Am Chem Soc., 128, 7172; (b) Gayathri, S.S., Wielopolski, M., Perez, E.M., Fernandez, G., Sanchez, L., Viruela, R., Ortı, E., Guldi, D.M., and Martın, N (2009) Angew Chem., Int Ed., 48, 815 Tashiro, K and Aida, T (2007) Chem Soc Rev., 36, 189 10 11 12 13 14 15 16 17 j391 Index a acidic polymers 182 adenosine triphosphate 129, 130 adsorbed photon-to-current efficiency (APCE) 350, 351 agarose gel shift assay 330 amidinium–carboxylate interaction – supramolecular dyad based 33 ammonium cation/crown ether self-assembly – SWNT-porphyrins/SWNT-fullerene hybrids 275 ammonium–crown ether motifs 42 ammonium-functionalized CNTs, structural representation 330 amphiphilic C60 derivatives, biological activities 159 amphiphilic macromolecules 161 arene/arene distances 59 aromatic macrocycles 277 artificial helical nanotube 177 aryl diazonium salts 17 arylmagnesium bromide derivatives 230 association constants 376, 384 – determination 389 atomic absorption spectroscopy (AAS) 329 atomic force microscopy (AFM) technique 237, 265 azacalix[3]arene[3]pyridine 60 azacalix[n]arenes 61 azacrown ethers, lipophilic cavity of 56 azomethine ylides – 1,3 dipolar cycloaddition 15, 303, 310 b barbiturate-coated gold surface – linear ADA triads deposition 45 barbiturate-labeled electron acceptor fullerene 362 BC2 – and an ammonium derivative lacking 88 – chemical structure of 86 – p-conjugated system of 95 – stability constants 87 Benesi-Hildebrand plot 149 benzonitrile 36 benzylamine 17 bicontinuous donor–acceptor arrays 363 binding constants 375, 381, 385 binding isotherm 376, 377, 379, 380, 387, 388 Bingel reaction 17 Bingel-type C60-cycloadduct 28 bioinspired nanotubular cyclopeptidic heterodimers 44 biological redox processes 317 biomimetic bacterial photosynthetic reaction 37 biomolecules, facile immobilization 276 bis-benzo-18-crown-6-appended porhyrins 37 bisporphyrin cleft molecule 198 bisporphyrin macrocycle 198 5,15-bis(4-pyridyl)-porphyrin – spontaneous complexation 278 bis(zinc porphyrin)–fullerene supramolecular triad 35 bovine serum albumin proteins (BSA) 314 BTEX -S 320 buckyferrocenes 228 bulk heterojunction (BHJ) devices – active layer of 46 – solar cells 47 – used in 47 bulk heterojunction solar cells 359, 360, 364 buoyant density 268 p-tert-butylcalix[5]arene 175 p-tert-butylcalix[8]arene 57 Supramolecular Chemistry of Fullerenes and Carbon Nanotubes, First Edition Edited by Nazario Martin and Jean-Francois Nierengarten Ó 2012 Wiley-VCH Verlag GmbH & Co KGaA Published 2012 by Wiley-VCH Verlag GmbH & Co KGaA j Index 392 c C60–acridine-9-carboxylic acid (ACA) 253 calix[4]arene 174 calix[5]arene 58, 62, 63 – schematic molecular models of 58 calix[6]arene 60 calixarene-based fullerene receptors 58 calix[4]arene complexes, schematic molecular models of 58 calix[5]arene derivatives 62 calix[6]arene derivatives 59 calix[5]arene dimer 62 calixarene receptors 57 calix[5]arenes 175 calixarenes, association constants 58 calix[4]naphthalene 59 calix[n]arenes 55, 56 calix[1]pyreno[3]pyrrole 61 calix[4]pyrrole derivatives 61 C60–aniline-linked dyad 355 carbohydrate-modified CNTs 334 carbon allotropes 334 – applications 203 carbon-free energy sources 127 carbon nanorings 68 – ring-in-ring complexes of 71 carbon nanostructures – carbon nanotubes – – defect functionalization 11–13 – – sidewall functionalization 13–16 – fullerene-containing polymers 2–10 – graphenes 16 – – covalent functionalization 17 – – noncovalent functionalization 17–20 carbon nanotube field-effect transistors (CNT-FETs) – characteristics 275 – fabrication 274 – sensitivity advantage 274 carbon nanotubes (CNTs) 1, 10, 283, 317–334, 350, 363–366 – applications 321 – association 280 – at biological interface 327–334 – dispersion 276 – functionalization 263, 264 – – defect 11–13 – – sidewall 13–16 – functional structures 13 – gas phase method 283 – at gas–solid interface 325–327 – high aspect ratio structure 331 – at liquid–liquid interface 317–320 – liquid phase method 283, 284 – noncovalent modification of 11 – one-dimensional wire structures 350 – oxidation of 11 – photothermal conversion indicator 170 – processing 263 – properties 302 – at solid–liquid interface 320–324 – sp2 framework 263 – supercritical phase method 283, 284 – supramolecular carbon nanotube hybrids 264–288 – supramolecular chemistry 263–288 – – at interfaces 301–335 – supramolecular ensembles applications 349–368 – water-soluble 14 carbon networks 312 catenanes 107 See also rotaxanes – bistable 109 – dyads assembled by metal coordination 112 – fullerenes 110 – synthesis from pseudorotaxane 114 – synthetic strategies 108, 109 – templated synthesis of 109 cavitand 59 p cavity 55 cavity of hosts, diameters 70 C60-based rotaxane, chemical structures of 29 C60-bissadduct 180 – macromolecular helicity induction 181 C60–CNT hybrids, types of 10 CDCl3 – 1H NMR spectra 94, 97 – ring-in-ring complexes, thermodynamic parameters of 71 C60–D dyads, preparation of 40 CdSe–SWNT composites 367 cell–cell interactions 301 cetyltrimethylammonium bromide (CTAB) 18 C60–exTTF–C60 supramolecular triad 43 C60 FET, schematic presentation 367 C60–f-SWNTdevice 366 charge transfer processes 238 chelate cooperativity 91 – binding of divalent – – ligand AA to divalent receptor BB 91–95 – – ligand AC to complementary receptor BD 95–98 – general principle 88–90 chelate cooperativity, assessment of 88 chiral amplification 226 chiral supermolecule, helical structure 226 chiral (6,5)-SWNTs, representation 279 Index cholesterol-appended C60 gelator 166, 167 (2-C60)Ir(CO)Cl supramolecular polymer 175 circular dichroism (CD) 135, 177 – based polyrotaxane 186 – of nanotube solutions 280 cisplatinum derivative 328 close-packed hexagonal islands formation 243 close space sublimation 129 CNTs See carbon nanotubes (CNTs) C60–oligophenylene vinylene (OPV) 40 – covalent fullerene 40 CoMoCat carbon nanotubes, chemical pretreatment 265 complex formation constants 275, 324 compressive stress 244 concave–convex pÀp interactions 55 concave tetrathiafulvalene-type donor 67 concentrating thermal power (CSP) plants 129 conducting polymers 282 conical-like [60]fullerene pentaadduct derivatives 228 conical-like shuttlecock [60]fullerenes 227–232 p-conjugated polymer 280 cooperativity 79, 80, 379 – allosteric 80, 81, 99 – chelate 88, 91, 92, 98 – between hydrogen bonding and 148 – negative 80, 90 – positive 83, 88, 146 coordination bonding systems 362, 363 copper nitride islands array 248 copper porphyrin, gelation of 168 corannulene 57, 66 Cotton effects 280 Coulomb interactions 134–137, 265 covalent C60 derivatives 208–232 – conical-like shuttlecock [60] fullerenes 227–232 – fulleropyrrolidine-based poly(aryl ester) dendrons 208–212 – liquid–crystalline fullero (codendrimers) 218–222 – liquid–crystalline fulleropyrrolidine-based poly(benzyl ether) dendrons 212–217 – liquid–crystalline methanofullerene dendrons 208–212 – polypedal [60]fullerenes 223–226 C60–porphyrin interactions 96 C60-pyridine derivatives 79, 81 C60-pyridine with metalloporphyrins 79 C60 receptor 64 critical micellar concentration (CMC) 160, 265 crown ether-appended porphyrin–ferrocene dyad 36 cryogenic electron microscopy (Cryo-EM) 306 crystallographic analyses 62 C60@SWNTs peapods, HR-TEM image 285 C60-tethered 2,5-dithienylpyrrole triad 352 cucurbit[7]uril 57 CVT-based hydrogen-bonded dimeric receptors 63 cyanuric acid functionalities 34 cyclacenes 68 cyclic aromatic compounds 276, 277 cyclic [n]paraphenyleneacetylenes ([n] CPPAs) 55, 69, 70 – crystallographic analysis of 69 cyclic receptors 68 cycloaddition reactions 14 c-cyclodextrin (c-CD) 57 – water-soluble complex of 57 cyclodextrin molecule 185 b-cyclodextrins-tethered ruthenium complexes 276 cyclohexane-THF mixture, CD spectra in 167 cyclopeptidic heterodimer 45 cyclophenacenes 68 cyclotriveratrylene (CTV) 55, 56, 195 – based dendrimers 196 – derivative, liquid–crystalline supramolecular complex 204–206 – macrocycle 204 cylindrical supramolecular dendrimers 213 d d–d strong interaction 311 delayed fluorescence (DF) quenching 312 dendrimer 60 dendritic molecule 189 dendron – self-assembly 189 dendronized perylene bisimide 20 density functional theory calculations 241, 311 density gradient ultracentrifugation (DGU) technique 267, 268 diacetylene moieties (DA) 310 diacetylenic tethers 62 1,4-diazabicyclo [2.2.2]octane (DABCO) 352 dibenzylammonium fullerene 32 diblock copolymer, advantages 182 dichloromethane 38 1,3-diethynylphenylene tether 62 j393 j Index 394 differential scanning calorimetry (DSC) 206 diffuse reflectance spectra 303 dihexadecyl hydrogen phosphate (DHP) 162 1,5-dihydroxynaphthalene (DNP) 111 dimeric host molecules 63 dimers, chemical structures of 30 dimethylmethylphosphonate (DMMP) 327 1,2- dimyristoyl-3-trimethylammonium propane (DMTAP) 319 dioctadecyldimethylammonium bromide (DODAB) vesicular system 162 dipolar interactions 210 diporphyrin 313 – chiral 279 – preadsorbed monolayer 252 direct electron transfer 354 discotic triphenylene cores, selforganization 207 dislocation networks 243, 245 dispersive forces 237 2-distearoyl-sn-glycero-3phosphoethanolamine-N-amino(PEG)2000 (PL-PEG-NH2) 328 2-[9-(1,3-dithiol-2-ylidene)anthracen-10(9H)ylidene]1,3-dithiole (exTTF) 189, 254 – based organogelator 169 ditopic benzocrown ether receptor BC2 86 ditopic calix[5]arene 187 ditopic Hamilton receptor 146 ditopic receptor AA, interaction of monovalent ligand B with 80 2D metallosupramolecular nanocavities, STM image 253 2D metal–organic coordination networks (MOCNs) 250 2D nanomeshes 246–248 DNA sequences 269 – design 269 dodecyltrimethylammonium bromide (DTAB) 319 donor–acceptor dyads 208 donor–acceptor interactions 249 donor–acceptor-linked systems 349 donor–acceptor molecules – self-assembly 362 – supramolecular assembly 356 donor–donor–acceptor–acceptor (DDAA) hydrogen bonding motif 183 donor gelator hybrid gels 168 donor-linked carbon nanotube composites 365 dumbbell [60]fullerene 187 dye-sensitized bulk heterojunction solar cells 355 – fullerene derivatives, and porphyrins employed in 46 dye-sensitized solar cells (DSSC) 128 dynamic light scattering (DLS) 305, 306 e electrochemical deposition 354–359 electrochemical impedance spectroscopy (EIS) 317 electrodeposition 129 electron donor–acceptor complexes, self-assembly of 33 electronically coupling redox-active biomolecules 316 electron-positive silicon atom 70 electron-rich aromatics 55, 111, 383 electron transfer (ET) mechanisms 259, 314, 384 – applications in 319 – rate constant 317 electron transfer processes 27, 79 – photoinduced 37 – size and shape effect of fullerenes on 132 electrospray mass spectrometry (ESMS) 95 electrostatic interactions 33, 71, 72, 135, 189, 196, 273, 282, 314, 315, 318, 321, 330, 353, 364 electrotonic hypothesis, to explain physical interactions between 332 energy production pathways 301 enhanced green fluorescent protein (EGFP) 314, 315 Er3N@C80 chemical structure 246 ether oxygen atoms 67 3,4-ethylenedioxythiophene (EDOT), oxidative polymerization 181 Eu8 complex, chemical structure 325 Eu8-SWNT devices 326 extended TTF (exTTF) 42–44, 55, 66–68, 141, 142, 149, 193, 385 – based receptors 67 – chromophore 386 f fabrication techniques 263 face-to-face-type interaction 64 fan-shaped poly(benzyl ether) dendrimers 218 fast Fourier transform (FFT) analysis 303, 304 ferrocene-porphyrin–crown 36 ferrocene–porphyrin–fullerene triads 352 field-effect transistors (FETs) 10, 281, 285, 324 Index – to detect organic molecules based on 367 – exhibit clear photoresponse 285 – noncovalent functionalization of SWNTs 368 fitting process 388 flame ionization detector (FID) 327 flexible porous network 253 fluorescence spectroscopy 135, 378, 379, 383 fluorescent biscrown ether 193 fluorescent host molecules 65 fluorine atoms, nucleophilic substitution of 14 Förster resonant energy 145 Fourier transform infrared spectroscopy (FTIR) analysis 310 Fréchet-type dendrimers 60, 193, 195 [60]fullerene barbituric acid 183 fullerene-based solar cells 350–363 – coordination bonding systems 362, 363 – electrochemical deposition 354–359 – hydrogen bonding systems 360–362 – layer-by-layer deposition 353, 354 – self-assembled monolayers 350–352 – solution-processed bulk heterojunction solar cells 359, 360 fullerene-containing gels – amphiphilic C60 derivatives, selfassemblies 164–166 – gels of fullerenes 166–169 – pristine C60 solubilization in surfactant assemblies solubilization 160–164 – solubilizaiton – – in micelles 160–162 – – in vesicles 162–164 – supramolecular chemistry 159–170 fullerene-containing micelles – amphiphilic C60 derivatives, selfassemblies 164–166 – gels of fullerenes 166–169 – pristine C60 solubilization in surfactant assemblies solubilization 160–164 – solubilizaiton in micelles 160–162 – solubilization in vesicles 162–164 – supramolecular chemistry 159–170 fullerene-containing polymers 2–10 See also fullerene-containing supramolecular polymers – all-fullerene polymers – carbon nanotube–fullerene hybrids 9–10 – cross-linked C60 polymers 3–4 – end-capped polymers – fullerene–gold nanoparticles (Au NP) 10 – heteroatom-containing polymers 2–3 – star-shaped C60 polymers 5–6 – supramolecularC60 polymers 8–9 fullerene-containing supramolecular dendrimers – [60]fullerene polymeric array fabrication 174–178 – functionalized [60]fullerene, supramolecular polymerization 178–188 – supramolecular [60]fullerene dendrimer 188–198 fullerene-containing supramolecular polymers 173–198, 179 – complementary noncovalent interactiondriven synthesis 182 – construction 174 – [60]fullerene polymeric array fabrication 174–178 – functionalized [60]fullerene, supramolecular polymerization 178–188 – supramolecular [60]fullerene dendrimer 188–198 [60]fullerene-containing thermotropic liquid crystals 203–233 – covalent C60 derivatives 208–232 – noncovalent C60 derivatives 204–208 fullerene derivatives 71 – anti-HIV properties of 315 – bearing aliphatic chains 305 – cationic 181 – chemical structure 242 – to construct supramolecular triads by 38 – coordination bonding of 362 – with crown ether functionality 116 – disulfide-containing 10 – as efficient DNA photocleavage agent 314 – modified with diacetylene moieties 310 – multisubstituted – PCBM 47 – polymeric – and porphyrins employed in 46 – pyridine coordinating ligand 37 – for solution-processed bulk heterojunction solar cells 359 – thiol-containing 351 – unable to form complexes(F) 101 – used with TiO2 nanostructured electrode 47 – water-soluble dicationic 354 fullerene–ferrocene rotaxanes, structures of 42 fullerene–fullerene interactions 86, 88 fullerene-functionalized dendrimers 193 – charge transfer-driven supramolecular assembly 192 fullerene–gold nanoparticles (Au NP) 10, 358 j395 j Index 396 fullerene-grafted polyacetylene, supramolecular cross-linking 187 fullerene/host interactions 59 [60]fullerene in st-PMMA helical cavity, encapsulation 178 [60]fullerene–iridium complex 175 fullerene peapod 68 [60]fullerene polymeric array fabrication 174–178 fullerene/polythiophene derivatives 308 [60]fullerene/porphyrin/DNA ternary complex 181 fullerene–porphyrin–ferrocene supramolecular rotaxane-type triad 43 fullerene–pyridine substrates, self-assembly of 81 fullerene receptors 56 – curved conjugated system – – bowl-shaped conjugated systems 66–67 – – carbon nanorings 68–72 – – cylindrical cavity 67, 68 – modified traditional host molecules 59–61 – simple traditional hosts 56–59 – traditional host molecules, dimeric structure of 62–64 fullerenes 56, 58 See also carbon nanotubes (CNTs) – ammonium salt, chemical structure of 44 – at biological interface 313–317 – bound gold nanoclusters 10 – complexes 57, 68, 71, 185, 195, 196 – containing noncovalent systems 79 – dendritic structures, preparation of 92 – embedded matrix 312 – extraction of 55 – functionalization conventional approaches (See nonpatterned metal surfaces) – at gas–solid interface 310–313 – at solid–liquid interface 307–310 – supramolecular wires 35 fullerite 57 fullero(codendrimers) 220 – liquid–crystalline properties 218, 220 – smectic phases formation 220 – supramolecular organization 221 fullerodendrimers 40, 213, 214, 216, 218, 220, 222 – supramolecular organization 215 fullerodendrons – dendritic wedges of 193 – molecular structures of 40 fulleropyrrolidine-based poly(aryl ester) dendrons 208–212 fulleropyrrolidine N-oxides 121 fulleropyrrolidines, supramolecular organization 213 full-width at half-maximum (FWHM) 327 functionalized [60]fullerene, supramolecular polymerization 178–188 – host–guest interaction 185–188 – hydrogen bonding interaction 182185 ionic interaction 179182 g gas-phase process 286 G2NH3ỵ and G3NH3ỵ, chemical structure 89 G-octadodecylamine (G-ODA) 17 grafting functionalized [60]fullerene 182 graphenes 16, 20 – covalently functionalized few-layer 17 – functionalization, and solubilization of – mechanical isolation of 16 – noncovalent functionalization 17–20 – noncovalent interactions 18 – optical applications of 18 h p-halooxacalix[3]arenes 57 Hamilton receptor/cyanuric acid, hydrogen binding 34 H-bonded C60–D dyad 32 H-bonded supramolecular structures 28 headspace/gas chromatographic/mass spectrometric (HS/GC/MS) determination 320 hexafluoro-2-propanol (HFIP) 42 hexylene alkyl spacer 34 highest occupied molecular orbital (HOMO) 128, 129, 360 highly oriented pyrolitic graphite (HOPG) 185, 187, 242, 250, 309, 310 high-resolution transmission electron microscopy (HR-TEM) 283 HIV-1 protease 159 HOMO–LUMO gap 238 hoop-shaped cyclic p electron-conjugated benzenoid system 230 host–guest calix[4]arene 313 host–guest complexes 163, 205 host–guest interaction 185–188 host–guest motif 193 host–guest systems 249, 375 – equilibrium of association 375 hydrocarbon molecules 64 hydrocarbon receptors 64–65 hydrogen bond 113 Index – between ammonium salts and crown ethers 113 – in aqueous solution 306 – barbiturate fullerene, chemical structure of 48 – binding energies 143 – in biological systems 46 – with carboxylic acid group 37 – cooperativity between 148 – CVT-based hydrogen-bonded dimeric receptors 63 – cytidine–guanosine hydrogen bonding interactions 38 – dendrimer possessing [60]fullerene molecules at periphery 195 – donor–acceptor systems assembled by 115 – energies 134 – fullerene polymer 184 – interactions 27, 32, 166, 182–185, 193, 265, 360 – interfaced with 40 – low stability of one-point 145 – between macrocycle and peptide 42 – motifs 28, 29, 49 – networks 248, 251 – between N–H and C¼O functional groups 30 – oligothiophene–fullerene polymer 184 – photoelectrochemical devices, donor and acceptor molecules 361 – potential use of 48 – pseudorotaxane assembled by 114 – recognition between ammonium salts and 113 – ribbon 48 – rotaxanes assembled by 115 – supramolecular structures 28 – synergy of 33 – use of three-point 35, 144 – weak 148 hydrogen-bonded fullerene assemblies 27–49 – applications 36–49 – donor–acceptor structures 32–46 – in dye-sensitized bulk heterojunction solar cells 46 – electron transfer (eT) 27 hydrophilic–lipophilic balance (HLB) 164 hydrophilic residues 30 hydrophobic interaction 41, 99, 159, 164, 185, 265, 334, 353 hydroxylation methods, to increase C60 solubility in 306 i indium tin oxide (ITO) 306 inorganic photovoltaic devices 128 in situ variable-temperature scanning tunneling microscopy (VT-STM) 312 p–p interactions 113, 120, 148, 149, 307 intermolecular interactions 229 internal photoconversion efficiencies (IPCE) 48, 49, 272, 353, 356, 358, 360, 364, 366 intersystem crossing (ISC) 129, 325 intramolecular fullerene–fullerene interactions 88 intrinsic polymers ion exchange chromatography (IEX) 269 ionic interaction 179–182 IPCE See internal photoconversion efficiencies (IPCE) isothermal titration calorimetry (ITC) 378 ITO/SnO2 (C60)m electrode, schematic presentation 355 j Jobs plot 380, 381, 389 l Langmuir–Blodgett deposition techniques 302 Langmuir–Blodgett (LB) films, formation 302 laser light scattering measurements 164 lauric acid (LA) 162 layer-by-layer (LBL) – assembled SWCNT 272, 332 – deposition 353, 354 – self-assembly approach 179, 180 light-emitting diodes (LEDs) 10 linear acceptor–donor–acceptor (ADA) 47 liquid–crystalline – buckyferrocenes 228 – fullero(codendrimers) 218–222 – fulleropyrrolidine-based poly(benzyl ether) dendrons 212–217 – hexaadduct 223 – hexakis(methano)fullerenes 223 – methanofullerene-based poly(aryl ester) dendrons 208–212 liquid crystals (LCs) 160, 174, 203, 218, 232, 310 liquidliquid extraction (LLE) 320 liquid-phase process 284 LNH3ỵ, chemical structure of 95 L(NH3ỵ)2, chemical structure of 94 j397 j Index 398 lowest unoccupied molecular orbital (LUMO) 128, 129 LZn – absorption and emission spectra of 85 – bis-porphyrin, ability of 91 – chemical structure of 81, 84, 91 – ditopic receptor 86 – porphyrin 82 – spectrophotometric titrations of 85 – stability constants 83, 85 – structure of 84 – thermodynamic studies of 83 – UV–visible absorption spectrophotometric titration 82 LZn24, chemical structure of 93 m macrocycle 205 – chemical structures 250, 385 – design 385 – liquid–crystalline phase 205 macrocyclic fullerene receptors 56 macrocyclic : supramolecular complex 91, 95 MALDI-TOF mass spectroscopy 193 malonate-containing mesogens 223 melamine–PTCDI network 250 meso-(benzo-15-crown-5)porphyrinatozinc 38 mesogenic molecules, polyaddition 232 mesomorphic discotic mesogen Zn(II)-octakis (hexadecylthio)-phthalocyanine 208 mesomorphism 212, 223 – columnar 213, 220 – consequences for 228 – destruction of 230 – of hexaadducts of C60, [6:0] and 223 – smectic 220 mesotetraphenylporphyrins, substituent effects 356 metal coordination 27, 107, 110, 111, 131, 152, 188 metal–ligand coordination 151 metallocenes like ferrocenes 284 metalloporphyrins 79, 82, 98, 118, 383 metal–organic frameworks (MOFs) 310 methanofullerene 70 methanofullerene carboxylic acid 182 micelles, solubilizaiton in 160–162 microelectromechanical system (MEMS)-based microgas chromatography (mGC) 326 microelectronic devices, architecture 325 micro/nanoelectromechanical systems (MEMS/NEMS) 305 molecular dynamics calculations 222 molecular dynamics simulation 226 molecule–substrate interaction 238 multifullerene dendrimers 356 – molecular structures 357 multiporphyrin-modified gold nanoparticles 357 multiwall carbon nanontubes (MWNTs) 281, 321 – 1-butyl-3-methylimidazolium hexafluorophosphate 287 – suspension 281 n NAD/ NADH oxidation processes 317 nanocarbon allotropes – biological aspects 159 – fullerene (C60) 159 nanostructured devices 302 nanostructured TiO2 electrodes 361 – photovoltaic properties 362 nanotemplates, site-selective adsorption on 238 nanotube field-effect transistor device 278 nanotube/polyporphyrin composite 282 nanotube/porphyrin hybrids 274 naphthalenediimide (NDI) 64, 177 – guest-induced helical assembly 178 naphthalene imide 64 naphthylene rings 69 noncovalent C60 derivatives 204–208 – C60, self-assembled columns 207 – with cyclotriveratrylene derivative 204–206 – phthalocyanine-[60]fullerene dyads in liquid crystals 208 – supramolecular complex composed of 206 noncovalent interactions 11, 18, 27, 28, 107, 174, 179, 182, 243, 305, 310, 314 nonionic surfactants 265 – micellar solutions 161 nonionic triton (TX100) 264 nonlinear optical (NLO) response, of fullerenes 122 nonpatterned metal surfaces – 2D fullerene supramolecular chemistry 240–243 – fullerene layers on flat metal surfaces, translational and orientational order 239, 240 – fullerene–metal interactions, nature and strength 238, 239 nuclear magnetic resonance (NMR) 29, 34, 94, 378, 382, 383 Index o octadodecylamine (ODA) 11 a,c-octapeptide 30 octyloxybiphenyl derivatives 224 oligothiophene–fullerene dyads 350 omooxacalix[3]arene, schematic molecular models of 58 organic chromophores 285 organic donor/acceptor nanojunction arrays 253, 258 organic/inorganic hybrid, supramolecular organization 186 organic moieties, for supramolecular SWNT functionalization 328 organic molecules – properties 301 – self-assembled monolayer 249 organic photovoltaic devices (OPVs) 128 organic solar cells (OSCs) 11 orientationally disordered C60 monolayer, STM image 239 Ostwald ripening process 306 oxacalix[3]arenes 55, 56 – dimer 62 oxacalix[3]naphthalene 59 oxidized graphite (GO) 17 p passivated emitter, rear locally diffused (PERL) 129 pentakis[p- (perfluorooctyl)phenyl] fullerene 305 pentathienylmelamine 183 permeable polymer membrane – ethyl cellulose (EC) 312 – organosilica (OS) 312 permethoxylated hexa-perihexabenzocoronene (HBC) 176, 177 – cocrystallization 176 perylene diimide-based surfactants 277 perylene-3,4,9,10-tetracarboxylic dianhydrides (PTCDA) 285 3,4,9,10-perylenetetracarboxylic diimide 312 perylene tetracarboxylic diimide (PTCDI) 250 3,4,9,10- perylenetetracarboxylic diimide bisbenzenesulfonic acid, disodium salt of 19 phase transfer catalyst 282 – tetraoctylammonium bromide (TOAB) 317 phenol-based receptors 60 phenyl-C61- butyric acid methyl ester (PCBM) 46, 169, 247 – analogues, properties 46 – chemical structure of 31 – formation 255 – fullerene derivative 241 – – 2D array 244 – high mobility 258 – molecules – – adsorption of 31 – – nucleation of 31 – nanoscale segregation 257 o-phenylenevinylene 146 phosphonate-functionalized polyphenylacetylene gathers 180 photoactive molecular triad 352 photoelectrochemical cells 128 photoexcitation 34, 44, 66, 116, 117, 151, 273, 274, 315, 323 photoinduced charge transfer 36 photoinduced electron transfer (PET) 13, 66 photoinduced energy 79 photolithographically passivated emitter solar cells (PESC) 129 photon energy 130 photosynthetic reaction center (PRC) 129 photovoltaic devices 127, 354 phthalocyanine-[60]fullerene dyads, in liquid crystals 208 PicoGreen dye exclusion 330 pluronic copolymers 18 polar functional groups 62 poly derivatives (PAmPV) 281 poly(allylamine hydrochloride) (PAH)modified ITO electrode 354 poly-amidoamine (PAMAM) 330 polyaniline emeraldine base (PANI-EB) polymer 181 poly(benzyl ether) dendrons 214, 217, 221 poly[2,5-bis(3-sulfonatopropoxy)-1,4ethynylphenylene alt- 1,4-ethynylphenylene] sodium salt (PPES) 282 poly[2,6- naphthylene]ethynylene sodium salt (PNES) 282 polycatenar liquid crystals 221 polycationic C60 derivatives, used as gene delivery systems 314 polycyclic aromatic compounds 276 polycyclic aromatic molecules, derivatization 270 poly(diallyldimethylammonium) (PDDA) 353 polydipersity 263 polyethyleneimine (PEI) 321, 326, 332 poly(ethylene oxide) 165 polyfluorene (PFO) composites 282 polyfullerenes 2, j399 j Index 400 poly(3-hexylthiophene) (P3HT) 48, 281, 359 – donor/acceptor heterojunction solar cells 169 – SWNT solar cells 282 poly(m-aminobenzene sulfonic acid) (PABS) 11 polymer sulfonated polyaniline (PANI) 18, 282 poly(methyl methacrylate) (PMMA) 18, 177, 178 poly(methylvinylketone) (poly(MVK)) backbone 333 poly-L-ornithine (PLO) 332 polypedal [60]fullerenes 223–226 polyphenylacetylene (PPA) 281 poly(p-phenyleneethynylene) (PPE) 282 poly(1,4-phenylenevinylene) (PPV) 359 poly(phenylquinoline)-block-polystyrene copolymer 164 polyrotaxane assembly, supramolecular polymer formation 186 poly(sodium 4-styrenesulfonate) (PSS) 353 poly(stylene-co-4-vinylpyridine) (PSVPy) 182 polystyrene, in situ polymerization 287 poly(tetrafluoroethylene) (PTFE) 306 porphyrin alkanethiol, supramolecular organization 358 porphyrin–crown ether conjugate (PBC) 95, 96 – CH2Cl2 solution of 96 – chemical structure of 95 porphyrin derivatives, used with TiO2 nanostructured electrode 47 porphyrin–fullerene conjugates 36, 98 porphyrin–fullerene-modified ZnO nanorod devices 362 porphyrin-functionalized dendrimer, multimolecular assembly 191 porphyrin-peptide oligomers, intermolecular complexes 357 porphyrins 116 – chemical structure 254 – and derived structures 277–280 – fluorescence of 13 – gelator, sheet-like morphology 168 – radical cation 36 – structures of 38 – supramolecular wires 35 postsynaptic currents (PSCs) 331 p-phenylene-ethynylene 146, 147 – bridged complexes 147 pseudorotaxane 108, 110, 114, 115, 281, 352 – assembled by hydrogen bonding 114 – pseudorotaxane-like complex 32 PTCDI–melamine network C60 heptamers, STM image 252 pyrenecyclodextrin-decorated nanotubes 275 pyrenecyclodextrin-decorated SWNT 367 – hybrids, schematic presentation 324 pyrenecyclodextrin-decorated SWNT/FET devices 324 pyrene derivatives 270–276 1-pyrenemethylamine hydrochloride 273 pyridine (Py) – binding behavior of 82 – binding properties of 82, 83 pyridine-ammonium cation-derivatized fullerene 37 N-pyridylfulleropyrrolidine 151 r real-time polymerase chain reaction (RT-PCR) technique 314 regular donor/acceptor self-assembly formation 169 reversible SWNT sensor, integration 327 riboflavin (RF) 314 right-handed helical nanotube isomers 279 robust pyrene-based derivatives, preparation 276 rotaxanes 41, 107 – assembled by hydrogen bonding 114 – bistable 109 – donor–acceptor systems assembled by hydrogen bonds 115 – dyad 118 – fullerene-driven molecular shuttle 121 – fullerenes 110 – fulleropyrrolidine N-oxides, stabilization of 122 – metal coordination – – dyads assembled by 112 – – fullerene-stoppered rotaxanes assembled by 111 – porphyrin–C60 dyads 117 – reverse shuttling 120 – solvent switchable molecular shuttle 119 – synthesis – – with fullerene on macrocycle 117 – – of fullerene-stoppered rotaxane with benzylic amide macrocycle 118 – – from pseudorotaxane 114 – – strategies 107, 108 – triad 116, 118 – tuning photoinduced electron transfer through shuttling 123 ruthenium carbonyl tetraphenylporphyrin (RuTPP) 119 Index s scanning electron microscopy (SEM) analysis 303, 330, 332 scanning tunneling microscopy (STM) 31, 237, 239 second-generation dendrons 214 second-generation molecules 212 self-assembled monolayers (SAMs) 349, 350–352 – methodology 302 self-assembly processes 312 self-complementary hydrogen-bonded supramolecular polymer 183 self-organizing supermolecular systems 203 semiconducting SWNTs, UV–Vis–NIR absorption spectra 270 short interfering RNA (siRNA) 329 short-range hexagonal lattice 225 shuttlecock-like [60]fullerene molecules, linear array 186 side-connected malonates 204 silicon-based metal-oxide semiconductor (MOS) field-effect transistor (FET) 366 silicon featured water-repellent superhydrophobicity 304 single-cell electrophysiology techniques 332 single-stranded DNA (ssDNA) molecules 267 single-walled carbon nanotubes 263, 318, 363 – chirality 278 – dispersion, perylene-based surfactant used 277 – donor stacked composites 364 – electronic properties 264 – functionalization 278, 326, 364 – high-quality suspension 267 – HR-TEM images 286 – imidazolium-modified SWNTs (SWNT-Im) 318 – with negatively charged pyrene and positively charged porphyrins 272 – noncovalent functionalization 322 – pyrene association with double-stranded DNA 273 – pyrene supramolecular assemblies 274 – reductive retrofunctionalization of 16 – schematic representation 268 – solubilization of 11 – stable suspension 271 – N-succinimidyl-1-pyrenebutanoate, irreversible adsorption 322 – supramolecular structures formation example 278 – surfactant organization 266 – suspension 264–270 – uses 287 site-selective nucleation 243 small-angle neutron scattering (SANS) 266 small-angle X-ray diffraction analysis 224, 227 SnO2 electrodes, photovoltaic properties 362 sodium cholate (SC) encapsulated CoMoCat SWNTs 268, 269 sodium dodecylbenzenesulfonate (NaDBS) surfactant 264 sodium dodecylsulfate (SDS) 18, 264 solar cells 350–366 – carbon nanotubes (CNTs) 363–366 – efficiency of 48 – fullerene-based solar cells 350–363 solar energy conversion 127, 129 – coulomb interactions 134–137 – hydrogen bonding 143–150 – metal–ligand coordination 150–154 – photon-to-chemical energy conversion 127 – photon-to-electric energy conversion 127 – photon-to-thermal-to-electric energy conversion 127 – p–p stacking 137–143 – supramolecular architectures for 130–154 solid–liquid reaction 57 solution-phase Eu8 emission intensity 325 solution-processed bulk heterojunction solar, fullerene derivatives for 359, 360 solvent–guest interactions 284 soybean peroxidase (SBP) 320 SpecfitÒ global analysis software 387 spherical molecules, optical properties 237 stability constants, determined by 87 stable macrocyclic noncovalent array, preparation of 92 p-p stacking 137–143 p stacking interactions 111, 113, 270–280 – application 278 – bistable rotaxane assembled by 113 – cyclic aromatic compounds 276, 277 – fullerene–catenane, synthesis of 113 – porphyrins and derived structures 277–280 – pyrene derivatives 270–276 star-shaped oligothiophene derivative (SSOD) 250 – chemical structure 251 – self-organized nanocavity array 309 static light scattering (SLS) 305 Stern–Volmer constants (KSV) 60 superlattice, STM image 247 j401 j Index 402 supramolecular carbon nanotube hybrids 264–288 – carbon nanotube and surfactants 264–270 – filling nanotubes 283–288 – polymers and wrapping 280–283 – p stacking interactions 270–280 – single-wall carbon nanotubes suspension 264–270 supramolecular complex – composed of rigid dendritic porphyrin and fullerene 206 – structure of 88 supramolecular C60–porphyrin conjugates 95 supramolecular dendrimer, with fullerene molecules at periphery 190 supramolecular donor/acceptor assemblies 271 supramolecular [60]fullerene dendrimer 188–198 – dendrimers, with inner fullerene 193–198 – dendrimers, with peripheral fullerene 188–193 – hydrogen bonding-driven selfassembly 194 supramolecular fullerene–ferrocene dyad 41 supramolecular host–guest approach 203 supramolecular lamellar organization 231 supramolecular macromolecules, structure 174 supramolecular metalloporphyrin–fullerene dyads 98 supramolecular nanocomposites synthesis 306 supramolecular organization 209, 210, 212 supramolecular polymer 185 – C60 units attached through UP moieties 30 – driven by head-to-tail donor–acceptor interactions 188 – formation via complementary interactions 187 – by polyrotaxane assembly 186 supramolecular porphyrin dimer–fullerene tetrad 39 supramolecular systems, self-assembly of 79 surface plasmon resonance 330 surfactants – hydrophilic part 160 – random face-on adsorption 267 – self-assemblies, in aqueous solutions 161 – structure 320 SWCNTs See single-walled carbon nanotubes SWNT–DNA hybrids 269 SWNT/FET devices 322, 324 – schematic representation 323 – transistor characteristics 324 SWNT/pyrenecyclodextrin hybrids 275 SWNTs See single-walled carbon nanotubes syndiotactic poly(methyl methacylate) 177 t terthieno-benzenetricarboxylic acid (TTBTA)-C60 host–guest architectures 309 tetradecyltrimethylammonium hydroxide (TTAOH) 162 tetradecyltrimethylammonium laurate (TTAL) 163 tetrahydropyranyl (THP) 227 tetraoctylammonium bromide (TOAB) 317 – substoichiometric ratio 318 tetra(piperazino)fullerene epoxide (TPFE) 314 tetrathiafulvalene (TTF) 13, 19, 42, 111 tetrphthalate diester 66 thiol-containing fullerene derivatives 351 titanyl phthalocyanine (TiOPc) 244, 245 titration experiments 376, 377 – binding isotherm 388 – simulated binding isotherms 377 transistors 366–368 – carbon nanotubes 366–368 – fullerenes 366 transition metal complexes 196 transition metal ions, coordination bonds of 62 transmission electron microscopy (TEM) 13, 306 triarylamine-based dendron 61 trimesic acid (TMA) molecules 250 – host network 308 – supramolecular 2D architecture 307 triptycene, crystallographic analyses of 64 triptycene-derived oxacalixarene 68 triquinacene-based receptors 65 u ultrahigh vacuum (UHV) 310 – conditions 31 ultraviolet–visible–near-infrared (UV–vis–NIR) absorbance spectroscopy 265, 326, 327, 383, 384, 386 uracil-functionalized poly-pphenylenevinylenecarbazole 183 2-ureido-4-pyrimidinone (UP) 29 UV–vis titrations 380 Index v van der Waals interactions 64, 65, 71, 176, 237, 267, 302, 307, 353 vapor deposition 129 variation plot See Jobs plot versatile fullerene-based n-channel FETs 366 vesicles, solubilization in 162–164 visible light emitting 6T@SWNT peapod 287 w water-soluble – cationic fullerenes 315 – CNTs 14 – dicationic fullerene derivative 354 – double-CD 185 – end-capped polymers – fullerene anions 305 – fullerene complexes 57 – network aggregates with 186 – Newkome dendrons 277 – polyrotaxane – SWCNT derivatives 14 – vesicles 305 Watson–Crick H-bonded D–A dyads 38, 39 x xerogels 185 X-ray diffraction analysis (XRD) 205, 210, 214, 303 X-ray photoelectron spectroscopy (XPS) 321 X-ray signals 220 z zinc naphthalocyanine (ZnNc) derivatives 273 zinc porphyrins (ZnP) 37, 273 – self-assembly 362 Zn(II)-porphyrin absorption bands 81 Zn(II) porphyrin-appended cholesterol gelator 167, 168 – gelation ability 168 ZnP chromophores 34 j403 ... organizing fullerenes on solid surfaces with STM, supramolecular chemistry of fullerenes and carbon nanotubes at interfaces: toward the application of supramolecular ensembles with fullerenes and CNTs,... from both fields The use of concepts and principles of supramolecular chemistry to fullerenes and carbon nanotubes has reached an outstanding position in its own right and we certainly believe... aim of this introductory chapter is to bring to the attention of the readers the achievements made in the chemistry of carbon nanostructures and, mostly, in the chemistry of fullerenes, carbon nanotubes