Green Chemistry for Environmental Remediation Scrivener Publishing Winter Street, Suite Salem, MA 01970 Scrivener Publishing Collections Editors James E R Couper Richard Erdlac Norman Lieberman W Kent Muhlbauer S A Sherif Ken Dragoon Rafiq Islam Peter Martin Andrew Y C Nee James G Speight Publishers at Scrivener Martin Scrivener (martin@scrivenerpublishing.com) Phillip Carmical (pcarmical@scrivenerpublishing.com) Green Chemistry for Environmental Remediation Edited by Rashmi Sanghi and Vandana Singh Scrivener ©WILEY Copyright © 2012 by Scrivener Publishing LLC All rights reserved Co-published by John Wiley & Sons, Inc Hoboken, New Jersey, and Scrivener Publishing LLC, Salem, Massachusetts Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Dan vers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., Ill River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose No warranty may be created or extended by sales representatives or written sales materials The advice and strategies contained herein may not be suitable for your situation You should consult with a professional where appropriate Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages For general information on our other products and services or for technical support, please contact our Customer Care Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002 Wiley also publishes its books in a variety of electronic formats Some content that appears in print may not be available in electronic formats For more information about Wiley products, visit our web site at www.wiley.com For more information about Scrivener products please visit www.scrivenerpublishing.com Cover design by Russell Richardson Library of Congress Cataloging-in-Publication Data: ISBN 978-0-470-94308-3 Printed in the United States of America 10 Contents Foreword by Robert Peoples PART Green Chemistry and Societal Sustainability xix 1 Environment and the Role of Green Chemistry Rashmi Sanghi, Vandana Singh and Sanjay K Sharma 1.1 The Environmental Concern 1.2 The Role of Chemistry 1.3 Sustainable Development 1.4 Era of Green Chemistry 1.4.1 Twelve Principles of Green Chemistry [1] 10 1.4.2 Objectives of Green Chemistry 11 1.4.3 Views of Green Chemistry Experts 12 1.4.4 Concepts Related to Green Chemistry: Cause of Confusion 17 1.4.5 International Initiatives for Green Chemistry Awareness 18 1.5 Concluding Remarks 29 Acknowledgement 30 References 30 Suggested Reading: Some Books on Green Chemistry 32 Useful Resources for Green Chemistry and their Links 33 The Greening of the Chemical Industry: Past, Present and Challenges Ahead Fernando J Diaz Lopez and Carlos Montalvo 2.1 Introduction 2.2 From Greening Technologies to Greening the Economy 35 36 38 v CONTENTS 2.3 A Brief Note on Business Strategy and Corporate Greening 2.4 The Past: An Account of the Historical Relationship Between the Chemical Industry and the Environment 2.5 The Present: From Pollution Control to Corporate Environmental Sustainability 2.6 The Future: Environmentally Sustainable Manufacturing and Eco-innovation 2.7 Conclusion: Greening or Sustainability in Chemical Manufacturing? References Designing Sustainable Chemical Synthesis: The Influence of Chemistry on Process Design Laura A Anderson and Michael A Gonzalez 3.1 Introduction 3.2 Green Chemistry 3.3 Green Engineering 3.4 Sustainability Metrics 3.5 Designing a Sustainable Process 3.6 Merck Case Study 3.7 Conclusion References Green Chemical Processing in the Teaching Laboratory: Microwave Extraction of Natural Products S Périno-Issartier, F Visinoni, F Chemat 4.1 Introduction 4.2 Microwave versus Conventional Heating 4.3 Experimental 4.3.1 Hydrodistillation (HD) Procedure 4.3.2 Microwave Hydrodiffusion and Gravity Procedure 4.3.3 Analysis of Essential Oil 4.4 Advantages 4.4.1 Green Production Rapidity 4.4.2 Green Production Efficiency 4.4.3 Green Production Courses 4.4.4 Green Production Messages 4.4.5 Safety Considerations 44 46 51 64 69 71 79 79 83 85 88 89 100 103 104 107 107 110 111 111 112 113 114 114 115 115 116 116 CONTENTS 4.5 Conclusion Acknowledgements References Ensuring Sustainability through Microscale Chemistry Norita Mohamed, Mashita Abdullah and Zurida Ismail 5.1 Introduction to Microscale Chemistry 5.2 Development of Microscale Chemistry Experiments for Upper Secondary Schools 5.2.1 Microscale Chemistry Experiments 5.2.2 Cost-benefit Analysis 5.3 Teachers' Evaluation 5.3.1 Workshops 5.3.2 Focused Group Discussions 5.4 Students' Feedback 5.4.1 Analyses of Open Comments from Students 5.4.2 Interviews 5.5 Conclusion References Capability Development and Technology Transfer Essential for Economic Transformation Surya Pandey and Amit Pandey 6.1 Introduction 6.2 The Importance of R&D 6.2.1 Research and Development Expenditure 6.3 Knowledge Creation and Technology Transfer 6.3.1 Development of an RDT Voucher System 6.3.2 External Engagement 6.3.3 Organizational RDT Planning 6.3.4 Structural Changes 6.4 Technology Transfer Future 6.5 Applications to Green Chemistry 6.6 Conclusions Acknowledgements References vii 117 118 118 119 120 122 122 128 130 130 130 131 131 132 134 135 137 138 138 141 145 146 146 147 148 148 149 150 150 151 viii CONTENTS PART Green Lab Technologies 153 Ultrasound Cavitation as a Green Processing Technique in the Design and Manufacture of Pharmaceutical Nanoemulsions in Drug Delivery System 155 Siah Ying Tang, Khang Wei Tan and Manickam Sivakumar 7.1 Introduction 156 7.2 Types of Emulsion and Principles of Nanoemulsion Formation 157 7.3 Formulation Aspects of Nanoemulsion 159 7.4 The Ultrasonic Domain 160 7.5 What is Ultrasound Cavitation? 163 7.6 Ultrasound Generation 166 7.7 Principle and Operation of Ultrasound Emulsification 167 7.8 Types of Ultrasound Emulsification: Batch and Dynamic Systems 170 7.9 Advantages of Ultrasound Emulsification 171 7.10 General Reviews of Ultrasound Emulsification 173 7.11 Nanoemulsion in Pharmaceutical Application 180 7.12 Characterization of Nanoemulsion Drug Delivery System 184 7.12.1 Particle Surface Morphology and Size Distribution 184 7.12.2 Solubility Enhancement 187 7.12.3 Drug Encapsulation and Loading Efficiency 188 7.12.4 Drug Release 189 7.12.5 Ultrasonic-mediated Drug Release 190 7.12.6 Site Specific Drug Targeting 193 7.12.7 Stability 194 7.13 Practical and Potential Applications of Nanoemulsion in Different Administration Routes 194 7.13.1 Parenteral Drug Delivery 195 7.13.2 Oral Drug Delivery 196 7.13.3 Topical Drug Delivery 199 7.14 Conclusion 200 Acknowledgement 201 References 201 CONTENTS Microwave-Enhanced Methods for Biodiesel Production and Other Environmental Applications Veera Gnaneswar Gude, Prafulla D Patil, Shuguang Deng, Nirmalakhandan 8.1 Introduction 8.2 Microwave Energy 8.2.1 Microwave Energy as a Heat Source 8.2.2 Microwave-Enhanced Biodiesel Synthesis 8.3 Biodiesel Production Using Different Feedstock 8.3.1 Biodiesel Production from Edible and Non-edible Oils 8.3.2 Biodiesel Production from Algae 8.4 Energy Consumption 8.4.1 Kinetics Study 8.4.2 Comparison Between Supercritical and Microwave Assisted Algal Biodiesel Production 8.5 Analysis of Algal Biomass and Biodiesel 8.5.1 TEM Analysis of Algal Biomass 8.5.2 GC-MS Analysis of Algal Biodiesel from Wet Algae 8.5.3 TLC Analysis of Algal Biodiesel from Dry Algae 8.6 Current Status of the Microwave Technology for Large Scale Biodiesel Production 8.7 Other Microwave-enhanced Applications 8.7.1 Microwave Applications in Organic Synthesis 8.7.2 Microwave Applications for Green Environment 8.8 Summary References Emergence of Base Catalysts for Synthesis of Biodiesel B Singh, S.N Upadhyay, Dinesh Mohan, Y.C Shartna 9.1 Introduction 9.2 Mechanism of Heterogeneous Catalysis ix 209 210 212 212 215 218 218 221 229 231 233 235 235 236 237 238 240 240 242 244 246 251 252 252 CONTENTS 9.3 Calcium Oxide and Magnesium Oxide 9.4 Hydrotalcite Doped Compounds 9.5 Alumina Loaded Compounds 9.6 Zeolite 9.7 Conclusions Acknowledgement References Hydrothermal Technologies for the Production of Fuels and Chemicals from Biomass D.W Racketnann, L Moghaddam, T.J Rainey, CF Fellows, P.A Hobson and W.O.S Doherty 10.1 Introduction 10.2 Thermochemical Processes for Biomass 10.2.1 Gasification 10.2.2 Pyrolysis 10.2.3 Direct Liquefaction 10.3 Green Chemistry and Hydrothermal Liquefaction 10.3.1 Upgrading Biocrude Oils 10.4 Hydro-Deoxygenation Upgrading 10.5 Zeolite Upgrading 10.5.1 Zeolite Upgrading of Pyrolysis Bio-oils 10.5.2 Zeolite Upgrading of Liquefaction Biocrude 10.5.3 Bio-oil Emulsification 10.5.4 Steam Reforming Bio-oil 10.5.5 HTU® technology 10.5.6 Thermal Depolymerization Process (TDP) Technology 10.6 Conclusions References Ionic Liquids in Green Chemistry Prediction of Ionic Liquids Toxicity Using Different Models Raquel F M Frade 11.1 Introduction 11.1.1 Ionic Liquids 11.1.2 Ionic Liquids: Applications 253 260 269 278 284 286 286 291 292 295 298 300 304 315 317 318 320 321 323 323 324 327 332 336 338 343 343 343 345 764 INDEX Beyond benign, 23,34 Bioactive ingredients, 194 Bioavailability, 156-157,180,185, 187,188,193-194,197,199 Biobutanol, 461-462 Biocatalysts, 479,482, 488,490-502 Biochar, 562 Biodegradation, 480, 487, 490-491,496 Biodiesel, 209,251-286,429, 435-438,453-459 Biodiesel feedstock, canola oil, 255,262, 274 cottonseed oil, 272 jatropha oil, 255-256, 263,275, 280 palm oil, 257,272,281 poultry fats, 266, 271 rapeseed oil, 271, 273 soybean oil, 254, 257, 261-263, 270,274-276,278-281,285 sunflower oil, 268,270,280,285 triacetin, 253 triolein, 279 used frying oil, 268,273 waste cooking oil, 271 Bioenergy, 427-450 Bioethanol, 459-461 Biofuel, 427,429, 435-442 Biofuels, functional groups, 293, 317 oxygen content, 301, 304, 307, 317, 318,319, 337 research trend, 293 Biogas, 430,442-443, 462-163 Biohydrogen, 463 Biomass, 429, 440-442,, 561-562, 565-567,572-573, 575-576, 578, 582, 590 composition, 507-508 structure, 507-511 Biomass hydrolysis, concentrated acid, 512-513 dilute acid, 513-515 solid acid, 515-518 Biomass pretreatment, alkaline, 521-523 ammonia fibre explosion, 533-534 biological, 540-543 carbon dioxide explosion, 534-535 comparison of pretreatment processes, 528-520,543-546 dilute acid, 519-521 extrusion, 538-539 inorganic salt, 528 ionic liquid, 527-528 irradiation, 540 liquid hot water, 535-537 mechanical comminution, 537-538 organic acid, 526-527 organosolv, 524-526 oxidative, 523-524 steam explosion, 531-533 ultrasonic, 539-540 Bioremediation, bioaugmentation, natural attenuation, bioleaching, 663 biopulping, slurry phase biodégradation, 663 biosorption, composting, anaerobic digestion, 663 Blood capillary, 196 Blood-brain-barrier, 193 Borosilicate glass, lignin depolymerisation with, 575 Boundary, 168 Brain disposition, 197 Brundtland Commission, Business strategy, 37,44, 46, 70 Cadmium, cadmium hyperaccumulators, 671, 677 INDEX cadmium pollution, cadmium toxicity, cadmium occurrence, 669 cadmium releases, 670 cadmium removal, 676 cadmium tolerance, 681 cadmium-contaminated soils, 671,674 Calcium carbonate, calcination, 255 decomposition, 255 Calcium diglyceroxide, 258 Calcium oxide, leaching, 256-257,259 surface poisoning, 257-258 camelina biodiesel, 221 camelina biodiesel properties, 227 Camelina Sativa Oil, 219,221 Capabilities, 46,52, 64, 70 Capability development, 137-138, 143,145-151 Carbon disulfide, lignin processing with, 579 Catalyst, activation energy, 254 anthraquinone, lignin oxidation with, 584 base strength, 257,259,268,275 basicity, 264,276 Ce(IV), lignin oxidation with, 583 Co(II), lignin oxidation with, 584-585 Co(III), lignin oxidation with, 584 Co/Mo, lignin depolymerisation with, 575-576, 579 Cr(III), lignin depolymerisation with, 579, 584 Cu(I), lignin oxidation with, 584 Cu(II), lignin oxidation with, 584 deactivation, 267 eggshell, 257 765 Fe(0), lignin hydrogenolysis with, 578 Fe(III), lignin depolymerisation with, 575,584 kinetics, 252 lipase (Saccharomyces cerevisiae), 266 metal oxides, lignin depolymerisation with, 579, 583-584,586 Mn(II), lignin oxidation with, 585 montmorillonite, lignin hydrolysis with, 583 Ni(II), lignin depolymerisation with, 575 Ni(III), lignin oxidation with, 584 Ni/Mo, lignin depolymerisation with, 579 Pd(0), lignin hydrogenolysis with, 579 polyoxometalate, lignin hydrolysis with, 583 pore volume, 254 Pt(0), lignin hydrodeoxygenation with, 588 reuse, 258,268 Rh(0), lignin hydrodeoxygenation with, 588 Ru(0), lignin hydrodeoxygenation with, 587-588 Ru(0), lignin hydrogenolysis with, 578 specific basicity, 265 surface area, 253-254,256 total basicity, 256-257 V(IV), lignin oxidation with, 584 V(V), lignin hydrogenolysis with, 578 V(V), lignin oxidation with, 584 766 INDEX zeolite, lignin depolymerisation with, 575-576 Catalyst characterization, Atomic absorption spectroscopy (AAS), 266 Brauner, Emmet and Teller (BET) surface area, 256,277 Fourier transform infrared (FTIR) spectroscopy, 257, 267 scanning electron microscope (SEM), 253,255, 266 thermo gravimetric and differential thermal analysis (TGA-DTA), 267 x-ray diffraction (XRD), 257,264, 267,277 x-ray photoelectron spectroscopy (XPS), 254,257 Catalyst preparation method, co-precipitation, 264,268 impregnation, 275 in-situ coating, 254 wet impregnation, 257 Catalysts, 305,311,313, 318, 319 Cationic nanoemulsion, 181 Cavitation, 155-156,158-159, 163-168,171-175,183-184, 200-201 Stable and transient, 164 Cavitation bubbles, 164,168,173 Cavitation nuclei, 168,174 Cellulase, 485 Cellulose, 302, 308, 311, 561-563, 565, 566,572-573,581-582 Ceric ammonium nitrate, lignin oxidation with, 583 Char, 296,300, 304 Characterization techniques, 156 Chelating agents, 684, 685 Chemical accidents, 48,49 Chemical and biological processes, 164 Chemical engineering, 52 Chemical industry, 35,36,37,39, 41,43, 44,45,46, 47, 50 Chemopreventive agent, 196 Chemotherapy, 191 Chiral, 484,494-496 Chloromethylstyrene, lignin grafting with, 569 Chromium (III), lignin depolymerisation with, 579, 584 Ciba Travel Awards, 19 C remediation, 718-720 Coalescence, 157,159,180,195,198 Cobalt (0), lignin depolymerisation with, 575-576, 579 Cobalt (II), lignin oxidation with, 584-585 Cobalt (III), lignin oxidation with, 584 Co-emulsifier, 163 comparison of heating methods, 217 Composites, metal, 390 metal sulphide, 391 Confirmation Tests for Cations in Aqueous Salt Solutions, 125 conventional heating, 215,217 Copolymerization, graft, 390 multiblock, 408 of 1-allylthiourea, 388 of butyl methacrylate with styrene, 388 of dimethylamino ethyl methacrylate, 388 of HEMA, 388 of isoprene, 388 ofMMA,388 of pentafluorostyrene, 388 of phenylmaleimide, 388 of styrene, 388 INDEX triblock, 402,407,408 Copper (I), lignin oxidation with, 584 Copper (II), lignin oxidation with, 584 Cost-benefit Analysis, 128 chemicals used, 129 time spent, 129 waste produced, 129 Costs of Waste, 11 Creaming, 178,195 Cresol, 574,579-580,591 Critical micelle concentration, 187 Critical Weber number, 159 Curriculum Specification, 122 767 passive, 193 Dry algae, 235,236 Duty cycle, 197,199 Ecodesign, 55,59 Eco-effective, 42 Eco-efficient, 42 Ecofriendly, 485,496 Eco-friendly, 9,10 Eco-innovation, 35, 38,44, 46,53, 54,57, 58, 61, 62, 64, 65, 70 Eco-services, 69 Edible and non-edible oils, 218 E-factor, 363 Effective power density, 176 Electrical double layer, 172 Electrolysis of Aqueous DDT, 28 Degreasing, 496, 497,499 Solutions, 122 Dehairing, 496-499 Electron spin resonance (ESR) Demulsifying technique, 169 spectroscopy, 585 Desulphurization, 488 Electrostatic barrier, 183 Dihydroanthracene, 9,10, Emboli, 166,196 Emulsifier, 158 lignin hydrogenolysis with, 577 Dihydrobenzofuran, 579 hydrophilic head, 158 Dimethoxy-l,4-benzoquinone, 2,6, hydrophobic tail, 158 Emulsion properties, 156, 585 175,183 Dimethoxyphenol, 2,6, 571 Dipolar polarization, 216 color, appearance, 156,183 Dissolution, 156-157 texture, rheology, 156,183 Dissolution velocity, 156 Emulsion stability, 183 Dissolved gas, 180 Encapsulation, 155,167,184, Drag Reduction, 749, 750, 751, 752, 188-189 753 Energy consumption, 229 Drug delivery, 155-157,160,180, Energy density, 174,176-177,184 188-189,194-195,197, Energy Effi ciency, 10,13 199-200 Energy efficiency, 239 Drug permeation, 199 Energy-intensive techniques, 180 Drug release, 189-190,192,194-196 Entrapment efficiency, 181 Entropy, 160 controlled, 190 Environmental, immediate, 189 modified, 189 concern, Drug solubility, 156 degradation, 3, 5,8,27 Drug targeting, 157,193 remediation, 4, 6,8,9,10,12,14, 16,18,20,22,24,26,30,34 active, 193 768 INDEX Environmental Impact Factor, 85 Environmental remediation, 243 Environmental-friendly technologies, 663 Environmentally friendly, 6,9,13, 15,23 Enzymatic conversion, 719 Enzyme immobilization, 718-720 Epoxide hydrolases, 495-496 Epoxy resin, 568 Essential oil, 108 Ethanol, 429,438-440, lignin processing with, 566-567, 578, 581-582, 584, 587,590 Evaluation Questionnaire, 130 Excipients, 159,161-163 Expansion capacity, 70 Expression studies, 611, 620 Extraction, 107 Extraction and transesterification, 228,229 Extractive transesterification, 229, 234 Feedstock, 218, 222 Feedstock preparation, 299, 305, 327, 333 Ferromagnetic materials, 167 Cobalt, iron or aluminium, iron, 167 First pass metabolism, 193 Fischer-Tropsch process, 572, 590 Flocculation, 157, 740 How-cell, 170 Focused Group Discussions, 130 Formic acid, lignin processing with, 566, 577-578,588, 590 Formulation, 155-156,159,183-190, 194-197,199,201 Formulation strategy, 155-156, 159 Free fatty acid, 252,257,268 Free fatty acid (FFA), 219 Freeze drying, 186 Frequency, 160,165-167,173,175, 187, 201 Fuel, fossil, 562, 565, 576-577, 589 gas, 570, 572,590 liquid, 561,565, 567, 570,574, 576,578,587-589 solid, 576-577 Gas chromatography- mass spectroscopy, 236 Gasification, supercritical water gasification, 300 tar, 299 Gastrointestinal tract, 180,195, 197-198 Gelation, 704 Genetic engineering, 562 Genetic modifications, 689 Gentamicin, 190-191 Gglycerol, 253,259 Glycoprotein, 193 Green biotechnology, 631-633,645 Green chemistry, 149-150,479, 480-482,484, 486,488^90, 492, 494,496,498,500,502 Green Chemistry Network Centre, 29 Green Processing, 155 Green technique, 109 Green technology, 138,151,664, 670, 678,693 Greening of business, 42,45,49 Guaiacol, 571, 573-574, 577-578, 581-582 Guaiacylglycerol-ß-guaiacyl ether, 583 Guar Gum, 730 Gum, artemisia, 390 INDEX cassia marginata, 389 cassia siamea, 389 guar, 389,409 k-carrageenan, 389 xanthan, 390 xyloglucan, 390 Heating and cooling rates, 164 Hemicellulose, 302, 308 Hemolysis, 195 Heterogeneous catalyst, Alumina, 269,275-282,284 CaO, 253-263,284 Hydrotalcite, 260, 264-274, 284 mechanism, 252 MgO, 253-263, 284 Zeolite, 278,283-286 Heterogeneous catalysts, 361 High-pressure homogenization, 172 HLB value, 161-163 Homogeneous catalysts, 361 Hot spots, 164 HTU technology, composition of product, 329 feedstock preparation, 327 Hydrocarbon, 486, 489-492, 499 Hydrodeoxygenation, 318 Hydrodistillation, 111 Hydrogels, 411 Hydrogen peroxide, lignin oxidation with, 583 Hydrostatic pressure, 174,180 Hydroxyphenol-(hydroxytolyl) -methane, 580 Hyperaccumulation, 677 Arabidopsis halleri, 677 Arabis paniculata, Bidens pilosa, Beta vulgaris var.cicla L., Taraxacum mongolicum, 680 Solanum nigrum L., 679 769 Viola baoshanensis, Biscutella laevigata, 678 Hyperaccumulators, 671 Brassica juncea, 671 Pteris vittata L., 672 Solanum nigrum, Lobelia chinensis, Cyperus rotundas, 673 Trichoderma koningii, 672 In vivo, 194 INCA, 23, 24,25 Industrial biotechnology, 38,65, 67,68 Industrial Ecology, 18,32 Inhibitor, 197 Interfacial area, 156,173 Interfacial tension, 158,160,174, 178 Inulin, 200 Ionic liquid, alkylimidazolium salts, 566, 582-583,585 lignin processing with, 566-567, 582-583,585,588, 591 Ionic liquid applications, 344 Ionic liquid toxicity in dependence of several variables, 346 type of cation, 347 type of environment, 346 type of nnion, 348 Ionic liquids, 343 Iridium oxide, 586 Iron (III), lignin depolymerisation with, 575, 584 lron(0), lignin hydrogenolysis with, 578 Irradiation time, 165,168-169,175, 180 Isoeugenol, 573-574, 582 Isopropanol, 770 INDEX lignin hydrogenolysis with, 577-578,588 Isotropie, 157 Kenneth G Hancock Memorial Award, 20 Kerosene, 174-175,177-179,184 Kinetics, 231 Laccase, 485,487-488,492-494, 502 Large scale biodiesel production, 238 Life-Cycle Assessment (LCA), holistic tool, 81 with green engineering principles, 86 Lignin, 302, 308, 309, applications, 567-570,589-591 depolymerisation, 570-586, 588-589 electrochemical oxidation of, 586 enzymatic depolymerisation of, 588-589 Eucalyptus, 571 hydrogenolysis of, 577-580 hydrolysis of, 580-583 isolation, 565-567 Klason, 573 kraft, 565-567,575, 579,583-584, 586-587,589 organosolv, 566,575, 579-581, 583-584, 587 oxidation of, 583-586 pyrolysis of, 570, 572-577, 580, 586, 590 soda, 565, 567, 576 structure, 562-565 Lignolytic, 492, 502 Lignosulfonate, 566-567,576, 583 LiP, 483,486,489,492,497,499-500 Lipase, 489, 497,499, 500, 483 Lipidic nanoemulsion, 194,196 Lipophilic drugs, 156,159 Liquefaction, bio-oil properties, 296, 337 catalysts, 316 commercial status, 325, 327-336 pressure effects, 313 reactions, 306 residence time, 313 solvent to biomass ratio, 315 solvents, 307, 309,310 temperature effects, 313 yield, 307,309, 314 Liquid hydrocarbon fuels, 463-473 Liquid-liquid, 168-170,180 Loading efficiency, 188-189 Macroemulsion, 156,195 Malaysian Chemistry Curriculum, 122 Maleic anhydride, lignin grafting with, 569 Manganese (II), lignin oxidation with, 585 Mean droplet diameter, 157 Mechanical vibrations, 164,166 Medium chain triglycéride, 161, 182 Metabolites, 190,197 Metagenomic libraries, 616, 618-619 Metagenomics, 611, 615-616, 618-620 Metal, metal accumulator plant species, 671 metal excluders, 671 metal includers, 671 Metathesis, Methacryloyl chloride, lignin grafting with, 569 Methanol, lignin processing with, 566,573, 578-579,581, 583, 587,591 Methyl vanillate, lignin, from, 583 Microalgae, 221 INDEX Microbial communities, 612-615, 618-619, 621, 623 Microbial Fuel Cells, 443-444 Microchemistry Kit, 122 Microemulsion, 184, 200 Microencapsulation, 167 Microfluidizer, 184 Microscale Chemistry, 120 Microscale Experiments, 121 Microwave, 109, analytical processes, 382 chemical synthesis, 381, 382,383 chemistry, 381 electromagnetic, 379, 380, 383,410 frequencies, 380 monomode reactor, 384, 395, 403 multimode reactor, 383 Microwave applications, 242 Microwave energy, characteristics, 212 heat transfer mechanism, 213 microwave-assisted extraction, 227 microwave-asssited biodiesel synthesis, 215 microwave-asssited transesterification, 216, 220,221 Microwave Hydrodiffusion and Gravity, 109 MnP, 492 Modification of guar gum, 736 Monophasic, 187 Montmorillonite, lignin acid hydrolysis with, 583 Nanocatalyst, 359 applications, 363 gold, 367 palladium, 363 platinum, 364 synthesis, 361 771 Nanoemulsions, 155-180,182,184, 186-188,194-201 Oil-in-water (o/w), 156-157,165, 168,172,197 Water-in-oil (w/o), 157,168,172 Nanoparticles, cross-linked poly(methylmethacrylate), 392 magnetic Fe304/poly (styrene-co-acrylamide), 392 poly(methylmethacrylate), 392 poly(N-isopropylacrylamide), 392 Ti02/polystyrene, 392 Nanotechnology, 155,157 Natural resources, 4, 6,8,14,18 Nickel (II), lignin depolymerisation with, 575 Nickel (III), lignin oxidation with, 584 Nitric acid, lignin oxidation with, 583,591 Nitrobenzene, lignin oxidation with, 583-584, 591 Nobel Prize, Nonionic emulsifier, 159 good solvent capacity, 159 less toxic and irritant, 159 Organic pollutants, 662, 663, 667 Organic synthesis, 240 Organosilica sol-gels, Ostwald Ripening, 183,194 Overall order, 232 Oxidation and Reduction, 127 Oxygen, lignin processing with, 570, 572, 574, 583-586 Ozone, lignin processing with, 570,583, 585-586 772 INDEX Paclitaxel, 182,192-194,197 Palladium(O), ligning hydrogenolysis with, 579 Paper and pulp, industry, 562, 565, 567,585,589 Parenteral route, 195 Partition coefficient, 190 Pesticide, 481,493-494 Petroleum industry, 486-491 Pharmaceutical emulsion, 156-157 Pharmaceutical industries, 494-495 Pharmaceuticals, 155,160 Phase diagram, 187-188 Phase inversion temperature, 183 Phenol, 487-488, 490,492-493 Phenol-Formaldehyde Resin, 568-569, 572,574 Phenols, alkylated, 582, 588 lignin depolymerisation, from, 586-587 lignin processing with, 580, 582, 589 Phenotypic and genotypic characters, 689 Phosphotungstic acid, 186 Phylogenetic, 612,614, 617, 619621, 623 Physical stability, 157 Phytodegradation, 667 Phytoextraction, 665 Phytofiltration, 666 Phytoremediation, 661, 663, 664, 665, 667 Phytostabilization, 665 Phytovolatilization, 667 Piezoelectric materials, 166 Quartz, lead zirconate-titanate, barium niobates, 166 Plant and bacterial interaction, 668 Plant hyperaccumulation, 666 Plant seed oils, 181 Plant-based soil remediation systems, 664 Platinum(O), lignin hydrodeoxygenation with, 588 Pollution control, 38,44,45,47, 51, 52,53 Pollution Prevention, 7,8,9,11,13, 14,17,19,20, 30,31, 32, 33, 43, 44, 52, 53 Poly(butylene terephthalate), lignin blending with, 569 Poly(ethylene oxide), lignin blending with, 569 Poly(ethylene terephthalate), lignin blending with, 569 Poly(methyl methacrylate), lignin blending with, 569 lignin grafting with, 569 Poly(trimethylene succinate), lignin blending with, 569 Poly(vinyl alcohol), lignin blending with, 569 Poly(vinyl chloride) (PVC), lignin blending with, 569 Poly(e-caprolactone), lignin blending with, 569 Polyaromatic hydrocarbons, 492 Polydispersity index, 180-183 Polyethylene, lignin blending with, 569 pyrolysis of, 576, 590 Polyhydroxybutyrate, lignin blending with, 568 Polylactide, lignin blending with, 568 Polymer, 173,189,198,, blends, 413, 414 caprolactams, 379, 403,407 caprolactones, 379,403,405,409, 436 composites, 390,391, 409, 410,412 INDEX curing, 384, 385, 410, 411 epoxy, 379,410,411 lignin blending with, 568-570 modifications, 409 poly(acrylonitrile), 385,390 poly(methyl methacrylate), 385, 413 poly(tetrafl uoroethylene), 385 poly(vinyl acetate), 385 poly(vinyl chloride), 385 polyamides, 379,395, 396,401, 395 polyesters, 379, 398,403-406,409 polyethers, 379, 398 polyethylene, 385 polyimides, 397 polystyrene, 391,392, 394 processing, 380,384, 391,409, 410,412,413 Polymerization, amidation, 386,394, 396,402,404 ATRP, 392,393,394, 413 controlled radical, 385,392, 394 cross-coupling, 394 cross-linking, 385,389, 410, 411, 414 emulsion, 391,392 enzyme catalyzed, 405 homo, 385,386,387,402 imidation, 394, 397 metal-catalyzed, 394,403 NMP, 392,393, 395, 396,401 radical, 385,387 RAFT, 393 ring-opening, 402 step-growth, 394 vinylic, 385,389 Polyoxometalate, lignin hydrolysis with, 583 Polypropylene, lignin blending with, 569 pyrolysis of, 576, 590 Polystyrene, lignin blending with, 569 773 lignin grafting with, 569 Potassium hydroxide, lignin processing with, 574 Power density, 175-176 Power dissipation, 230 Presidential Green Chemistry Challenge Awards, 19,20, 21 Pressure threshold, 158 Principles of Green Chemistry, applied to process design, 81 by Warner and Anastas, 84 by Winterton, 84-85 definition of, 83 Principles of Green Engineering, applied to process design, 81 approaches to sustainable innovation, 87 by Anastas and Zimmerman, 86 by Sandestin conference, 86-87 definition of, 85 Probe sonicator, 181,183,197,199 Process design conception, 82-83, 86-87, 89,103-104 Process redesign loops, 81-82 Properties, 227 Pyrolysis, char, 296,297, 300 flash pyrolysis, 300 lignin, of, 570,572-577,580, 586, 590 properties of oil, 296,337 reaction parameters, 303 yield, 303 Radiata pine, 574 Rarefaction and compression cycles, 164 Rate constants, 232 Rates of Reactions, 126 Rayleigh-Taylor instability, 169 Reaction order, 232 Real-time analysis, 99-100 Receptor, 193,197 774 INDEX Reconstitution ability, 181 Renewable energy, Renewable Feed Stocks, 10 Retention factor, 237 Rheology, 755, 756 Rhodium (0), lignin hydrodeoxygenation with, 588 Risperidone, 193 Rotor—stator, 177-178,184 Ruthenium(O), lignin hydrodeoxygenation with, 587-588 lignin hydrogenolysis with, 578 Safer Solvents, 10,13,14 Saquinavir, 182,197,199 Scale-up, 170 Scanning electron microscopy, 185-186 Schistosomiasis, 182,187 Sedimentation, 195 Silent Spring, 27 Silicates, 704 Sludge and waste treatment, 243 Small-scale chemistry, 120 SMEs, 138-140,145-149,151 Sodium acrylate, lignin grafting with, 569 Sodium bromide, lignin oxidation with, 584 Sodium chloride, lignin oxidation with, 586 Sodium dodecyl sulphate, 184 Sodium hydroxide, lignin processing with, 565, 574, 579, 581-582 Sodium xylene sulfonate, lignin processing with, 566-567 Solubility, 187,197 Solvent diffusion method, 181 Solvent-free organic synthesis, 241 Solvents, 305, 307, 309,312 Sonication, 175,187,192,197 Sonochemical reactions, 164 Sonochemistry and sonoluminescence, 166 Sonocleaning, 160 Sound waves, 164 Stabilizer, 179-184 Stopped-flow, 170-171 Strategy, 155-156,159,187,195, 201 Structural features important for Ionic liquid toxicity, 350 Students' Feedback, 131 Submicron-emulsion, 157,169 Sulfite, lignin processing with, 566 Sulfuric acid, lignin processing with, 565,573 Summary, 244 Supercritical fluids, 307 Supercritical heating, 215,217,228 Supercritical methanol, 228 Surface area, 184,194-195, 197,199 Surface morphology, 184 Surface tension, 165 Sustainability, 1,5, 8,16,18,30, 32, 33, advantages, 81 definition of, 80 Sustainability metrics, computational tool GREEnSCOPE, 88-89 necessity of, 88 Sustainable Development, 6, 7, 9, 12, 31, 33 Sustainable manufacturing, 37,38, 44, 64, 70 Sustained release, 189-190 Synthesis, ceramic, 386 chiral polydnetrOacrylamides, of N-alkylacrylamides, 387 INDEX of N-substituted maleimides, 386 of phenylethyl (meth) acrylamide, 386 organometallic, 382 poly cyclic eters, 403 poly dialkyl fumarates, 387 poly(amide)s, 395 poly(amide-ester)s, 400 poly(amide-imides)s, 400 poly(amino-quinone)s, 400 poly(anhydride)s, 400 poly(ester)s, 398 poly(ester-imide)s, 400 poly(ether)s, 398 poly(ether-ester)s, 400 poly(ether-imide)s, 400 poly(imide)s, 397 poly(urea)s, 399 poly(urethane)s, 399 polyethylhexyl acrylate, 387 Synthesis of sitagliptin, biocatalyst advantages, 102 first generation synthesis, 101 second generation synthesis, 101-102 third generation synthesis, 103 Syringol, 573-574, 581 Systemic injection, 192-193 Tannery, 496^197, 500,502 Tapered microtip probe, 181 TDP technology, feedstock preparation, 333 process conditions, 333 Teachers' Evaluation, 130 Teaching laboratory, 107 Technology transfer, 137-138,143, 145-151 Terpinene, a-, lignin hydrogenolysis with, 576 Tetralin, lignin hydrogenolysis with, 576-578 775 Tetramethylammonium hydroxide, lignin hydrolysis with, 582 Thermochemical processing, conversion methods, 295 Gasification, 298-300 Liquefaction, 304-318 Pyrolysis, 300-304 reaction times, 295 Thermodynamic justification, 218 Thin layer chromatography, 237 Tissue systems, 160 Tocopherol, 200 Transdermal drug delivery, 200 Transesterification, 211 Transgenic plants, 688 Transient formation, 180 Translocation, 66, 667,677, 679, 690 Translucent, 187-188,195 Transmission electron microscopy, 185 Transparent, 157,187,195 Triglycérides, 211,215,232, 233 Triple Bottom Line, 11,18 Ultrasonic transducer, 170-171 Ultrasonication, 180-2,186-187, 192-194,201 Ultrasonic-high-pressure homogenization, 194 Ultrasound, 155-57,160,163-180, 183-184,187,190-193, 200-201 Ultrasound cavitation, 155-156, 163,183-184,200 acoustic, formation, growth, and implosive collapse, 155,163, 165 Ultrasound devices, 166 Magnetostrictive transducer, 166 Sonotrode, 164,166-167,175 Whistle and siren, 166 Ultrasound emulsification systems, 170 776 INDEX Batch, 167,170,175 Dynamic, 170-171 Ultrasound-mediated drug delivery, 191 Understanding of chemistry concepts, 119,131-133 UNIDO-ICS, 24 Unit operations, 52 Upgrading of biocrude, catalysts, 318, 320-323 coke formation, 321, 322, 324 emulsification, 323 liquefaction oils, 323 oxygen content, 317 pyrolysis oils, 321 steam reforming, 324 temperature, 318 Uranyl ions, 200 Value added products from sludge, Vanadium (IV), lignin oxidation with, 584 Vanadium (V) oxide, lignin hydrogenolysis with, 578 lignin oxidation with, 584 Vanillic acid, 586 Vanillin, lignin, from, 581, 583-584, 586 Vapor cavities, 164 Vapor pressure, 174 Veratrylglycerol-ß-guaiacyl ether, 583 Vibration, 164,166 Vinyl acetate, lignin grafting with, 569 Viscosity, 159,165,168,179-180 Volume ratio, 156-157,199 Voucher, 137-138,146-151 Waste Minimization, 18, 30 Wastewater treatment plant, Water-soluble, 155-156 Wavelengths, 160 Weber number, 158 Wood, 565,574-575, 579, 587 Workshops, 130 Xenobiotic, 492^93 Xerogels, 705 Xylanase, 485 Year Five Syllabus, 122 Year Four Syllabus, 122 Zeolite, effect of HZSM-5, 321-323 effect on liquefaction biocrude, 323 effect on pyrolysis oils, 321 Zeolites, lignin depolymerisation with, 575-576 Also of Interest Check out these published and forthcoming related titles from Scrivener Publishing Green Chemistry and Environmental Remediation Edited by Rashmi Sanghi and Vandana Singh December 2011 ISBN 978-0-470-94308-3 Reverse Osmosis: Industrial Applications and Processes By Jane Kucera Published 2010 ISBN 978-0-470-61843-1 Electrochemical Water Processing By Ralph Zito Published 2011 ISBN 978-1-118-09871-4 Handbook of Bioplastics and Biocomposites Engineering Applications Edited by Srikanth Pilla Published 2011 ISBN 978-0-470-62607-8 Biopolymers: Biomédical and Environmental Applications Edited by Susheel Kalia and Luc Avérous Published 2011 ISBN 978-0-470-63923-8 Renewable Polymers: Synthesis, Processing, and Technology Edited by Vikas Mittal Published 2011 ISBN 978-0-470-93877-5 Plastics Sustainability Towards a Peaceful Coexistence between Bio-based and Fossil fuel-based Plastics Michael Tolinski Published 2011 ISBN 978-0-470-93878-2 Rashmi Sanghi and Vandana Singh (eds.) Green Chemistry for Environmental Remediation, (3-34) © Scrivener Publishing LLC Miniemulsion Polymerization Technology Edited by Vikas Miital Published 2010 ISBN 978-0-470-62596-5 Polymers from Renewable Resources Ram Nagarajan Forthcoming Spring 2012 ISBN 9780470626092 Bioremediation and Sustainability: Research and Applications Edited by Romeela Mohee and Ackmez Mudhoo Forthcoming Spring 2012 ISBN 978-1-1180-6284-5 Pretreatment for Enhanced Anaerobic Technology Edited by Ackmez Mudhoo Forthcoming Spring 2012 ISBN 978-1-1180-6285-2 ... Role of Chemistry 1.3 Sustainable Development 1.4 Era of Green Chemistry 1.4.1 Twelve Principles of Green Chemistry [1] 10 1.4.2 Objectives of Green Chemistry 11 1.4.3 Views of Green Chemistry. .. Green Chemistry Institute PARTI GREEN CHEMISTRY AND SOCIETAL SUSTAINABILITY Used with the permission of Chris Madden Rashmi Sanghi and Vandana Singh (eds.) Green Chemistry for Environmental Remediation, ... commercialization The adoption 10 GREEN CHEMISTRY FOR ENVIRONMENTAL REMEDIATION of green chemistry by industry using basic science and engineering improves environmental and economic performance and motivates