1. Trang chủ
  2. » Khoa Học Tự Nhiên

Carbon nanotubes from bench chemistry to promising biomedical applications

350 111 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Copyright © 2011 by Pan Stanford Publishing Pte Ltd Copyright © 2011 by Pan Stanford Publishing Pte Ltd Published by Pan Stanford Publishing Pte Ltd Penthouse Level, Suntec Tower Temasek Boulevard Singapore 038988 Email: editorial@panstanford.com Web: www.panstanford.com British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library CARBON NANOTUBES: FROM BENCH CHEMISTRY TO PROMISING BIOMEDICAL APPLICATIONS Copyright © 2011 by Pan Stanford Publishing Pte Ltd All rights reserved This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher ISBN 978-981-4241-68-7 (Hardcover) ISBN 978-981-4241-66-3 (eBook) Printed in Singapore Copyright © 2011 by Pan Stanford Publishing Pte Ltd Contents Contributors xi Preface xv Stabilisation of Carbon Nanotube Suspensions Dimitrios G Fatouros, Marta Roldob and Susanna M van der Merwe 1.1 Introduction 1.2 Functionalised CNTs for Drug Delivery 1.3 Surface-Active Agents in Stabilising CNT Suspensions 1.4 Stabilisation of Aqueous Suspensions of Carbon Nanotubes by Self-Assembling Block Copolymers 1.5 Stabilisation of Aqueous Suspensions of Carbon Nanotubes by Chitosan and its Derivatives Biomedical Applications I: Delivery of Drugs 12 23 Giampiero Spalluto, Stephanie Federico, Barbara Cacciari, Alberto Bianco, Siew Lee Cheong and Maurizio Prato 2.1 2.2 2.3 2.4 2.5 2.6 Introduction Non-Covalent Functionalisation on the External Walls “Defect” Functionalisation at the Tips and Sidewalls Covalent Functionalisation on the External Sidewalls Encapsulation Inside CNTs Conclusions and Perspectives Biomedical Applications II: Inϐluence of Carbon Nanotubes in Cancer Therapy 23 27 29 30 33 34 47 Chiara Fabbro, Francesca Maria Toma and Tatiana Da Ros 3.1 Importance of Nanotechnology in Cancer Therapy 3.2 Carbon Nanotubes: A Brief Overview 3.3 Carbon Nanotubes as Drug Vectors in Cancer Treatment 3.4 Delivery of Oligonucleotides Mediated by Carbon Nanotubes 3.5 Carbon Nanotubes in Radiotherapy 3.6 Carbon Nanotubes in Thermal Ablation 3.7 Biosensors Based on Carbon Nanotubes 3.8 Conclusions Copyright © 2011 by Pan Stanford Publishing Pte Ltd 47 51 52 59 64 66 70 79 vi Contents Biomedical Applications III: Delivery of Immunostimulants and Vaccines 87 Li Jian, Gopalakrishnan Venkatesan and Giorgia Pastorin 4.1 4.2 Introduction to the Immune System Immunogenic Response of Peptide Antigens Conjugated to Functionalised CNTs 4.2.1 Fragment Condensation of Fully Protected Peptides 4.2.2 Selective Chemical Ligation 4.3 Interaction of Functionalised CNTs with CPG Motifs and Their Immunostimulatory Activity 4.4 Immunogenicity of Carbon Nanotubes 4.5 Conclusions Biomedical Applications IV: Carbon Nanotube–Nucleic Acid Complexes for Biosensors, Gene Delivery and Selective Cancer Therapy 87 88 89 91 94 96 100 105 Venkata Sudheer Makam, Jason Teng Cang-Rong, Sia Lee Yoong and Giorgia Pastorin 5.1 Introduction 5.2 Interaction of CNTs with Nucleic Acids 5.3 Sensors and Nanocomposites 5.4 CNT–Nucleic Acid Complexes for Gene Delivery and Selective Cancer Treatment Biomedical Applications V: Inϐluence of Carbon Nanotubes in Neuronal Living Networks 105 106 125 132 151 Cécilia Ménard-Moyon 6.1 Introduction 6.2 Effects of Carbon Nanotubes on Neuronal Cells’ Adhesion, Growth, Morphology and Differentiation 6.3 Electrical Stimulation of Neuronal Cells Grown on Carbon Nanotube-Based Substrates 6.4 Investigation of the Mechanisms of the Electrical Interactions Between CNTs and Neurons 6.5 Conclusions and Perspectives Biomedical Applications VI: Carbon Nanotubes as Biosensing and Bio-interfacial Materials Yupeng Ren Copyright © 2011 by Pan Stanford Publishing Pte Ltd 151 153 161 173 176 185 Contents 7.1 7.2 Introduction Biosensor 7.2.1 Structure and Electric Properties of CNTs 7.2.2 CNTs as Electric Sensors 7.2.2.1 CNT-based electric devices 7.2.2.2 CNT-based sensors 7.2.2.2.1 Mass/force sensor 7.2.2.2.2 Chemical sensors 7.2.2.2.3 Structure sensor 7.2.2.2.4 Electric probes 7.2.2.2.5 Microscope sensors 7.2.2.2.6 Liquid ϔlow sensor: transfer momentum to current 7.2.3 Fluorescence Emission, Quenching and Detection 7.2.3.1 Fluorescence emitter 7.2.3.2 Raman spectrum 7.2.3.3 Electric luminescence 7.2.3.4 Fluorescence quenching 7.2.3.5 Photoconductivity 7.3 Bio-interface 7.3.1 The Fundamental Properties for Bio-interface Application 7.3.2 Applications 7.3.2.1 Applications for bone tissue engineering 7.3.2.2 Applications for neural tissue engineering 7.3.2.3 Application for other cells and tissues engineering 7.4 Conclusions Toxicity of Carbon Nanotubes 185 186 186 188 188 190 190 191 195 196 197 198 198 199 204 204 204 207 207 207 209 209 212 212 213 223 Tapas Ranjan Nayak and Giorgia Pastorin 8.1 Introduction 8.2 Parameters Responsible for the Toxicity of CNTs 8.2.1 Surface of CNTs 8.2.2 CNTs’ Concentration 8.2.3 CNTs’ Dispersibility 8.2.4 Length and Diameter 8.2.5 Purity Copyright © 2011 by Pan Stanford Publishing Pte Ltd 223 224 224 227 233 233 235 vii viii Contents 8.3 8.4 Environmental Exposure Conclusion Overview on the Major Research Activities on Carbon Nanotubes being done in America, Europe and Asia 236 242 247 Cécilia Ménard-Moyon and Giorgia Pastorin 9.1 9.2 Introduction America 9.2.1 USA 9.2.1.1 9.2.1.2 9.2.1.3 9.2.2 USA 9.2.2.1 Electronic properties of CNTs CNT-FETs CNT nanophotonics Functionalisation of CNTs for biomedical applications 9.2.2.2 CNTs for bioimaging and biosensing 9.2.2.3 Electronics and optical properties of CNTs 9.2.3 USA 9.2.3.1 CNT sorting 9.2.4 USA 9.2.4.1 Synthesis of CNTs 9.2.4.2 Functionalisation of CNTs 9.2.4.3 Optical properties of nanomaterials 9.2.5 USA 9.2.5.1 CNT-based sensors 9.2.5.2 Single-particle tracking 9.2.6 Mexico 9.2.6.1 Doping of CNTs 9.2.6.2 Electrical properties of CNTs 9.2.6.3 Junctions between CNTs or between metals and CNTs 9.2.6.4 Incorporation of CNTs with different species 9.3 Europe 9.3.1 Drug Delivery and Other Biomedical Applications 9.3.2 Neuronal Applications 9.3.3 Photovoltaic Applications 9.3.4 Functionalisation of CNTs Copyright © 2011 by Pan Stanford Publishing Pte Ltd 247 248 249 249 249 253 255 256 264 267 269 269 273 273 276 279 282 282 287 287 288 290 292 294 296 296 300 302 303 Contents 9.4 Asia 9.4.1 Japan 9.4.1.1 Encapsulation and reactions inside CNTs 9.4.1.2 Synthesis of CNTs 9.4.2 Japan 9.4.2.1 Investigations on molecules@CNT conjugates Index Copyright © 2011 by Pan Stanford Publishing Pte Ltd 304 304 304 310 312 313 335 ix Contributors Giorgia Pastorin received her MSc in pharmaceutical chemistry and technology in 2000 and her PhD in 2004 from the University of Trieste (Italy), working on adenosine receptors’ antagonists She spent two years as a post-doc at CNRS in Strasbourg (France), where she acquired some skills in drug delivery She joined the National University of Singapore in June 2006 as Assistant Professor in the Department of Pharmacy–Faculty of Science Dr Pastorin’s research interests focus on both medicinal chemistry, through the synthesis of heterocyclic molecules as potent and selective antagonists towards different adenosine receptors’ subtypes, and drug delivery, through the development of functionalised nanomaterials for a variety of potential therapeutic applications She is the editor of this book and co-author in many chapters Marisa van der Merwe received a BPharm in 1998 and an MSc in pharmaceutics in 2000 from Potchefstroom University (South Africa) She additionally registered as a pharmacist in 2000 in South Africa She was awarded a Nelson Mandela Scholarship by the University of Leiden (The Netherlands) to most of her research for her PhD in pharmaceutics, which she obtained in 2003 from the University of Potchefstroom Her research during both her MSc and PhD focused on the mucosal delivery of peptide drugs using N-trimethyl chitosan chloride as absorption enhancer She spent a further 18 months as a post-doc at the North West University (South Africa) researching mucosal vaccine delivery for a pharmaceutical company She joined the University of Portsmouth (England) in September 2004 and is a Senior Lecturer in Pharmaceutics in the School of Pharmacy and Biomedical Sciences Her research interests include mucosal peptide, protein and vaccine delivery, as well as nanomaterials for drug delivery with a variety of potential therapeutic applications She is the main author of Chapter on the functionalisation of carbon nanotubes Copyright © 2011 by Pan Stanford Publishing Pte Ltd xii Contributors Giampiero Spalluto received his degree in chemistry and pharmaceutical technology in 1987 from the University of Ferrara He obtained a PhD in organic chemistry from the University of Parma in 1992 Between 1995 and 1998 he was Assistant Professor of Medicinal Chemistry at the University of Ferrara Since November1998, he has held the position of Associate Professor of Medicinal Chemistry at the University of Trieste and is a member of the Italian Chemical Society since 1989 (Medicinal Chemistry and Organic Chemistry divisions) Dr Spalluto’s scientiϐic interests have focused on the enantioselective synthesis of natural compounds and the structure activity relationships of ligands for adenosine receptor subtypes and antitumor agents He has authored more than 150 articles published in international peer-reviewed journals He is the main author of Chapter on carbon nanotubes for drug delivery Tatiana Da Ros received her MSc in pharmaceutical chemistry and technology in 1995 and her PhD in medicinal chemistry in 1999 She worked as post-doc at the Pharmaceutical Sciences’ Department in Trieste and spent many periods abroad visiting Prof Wudl’s group at UCLA (USA) in 1999, Prof Taylor’s lab at Sussex University (UK) in 2000, the Biophysique lab at Museum National d’Histoire Naturelle (France) in 1999, 2000, 2001 and 2002, and Dr Murphy’s group at the MRC in Cambridge (UK) in 2004 In 2002 she joined the Faculty of Pharmacy in Trieste as Assistant Professor Dr Da Ros’s research is mainly focused on the study of fullerene and carbon nanotube derivatives’ biological applications She is the co-author of about 70 articles on peered international journals and of different book chapters She is co-organiser of the annual symposium dedicated to the bioapplications of fullerenes, carbon nanotubes and nanostructures, in the Electrochemical Society Spring Meeting and co-editor of Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes (Springer, 2008) She is the main author of Chapter on carbon nanotubes for cancer therapy Copyright © 2011 by Pan Stanford Publishing Pte Ltd References 138 Sung, J., Barone, P W., Kong, H., and Strano, M S (2009) Sequential delivery of dexamethasone and VEGF to control local tissue response for carbon nanotube ϐluorescence based micro-capillary implantable sensors, Biomaterials, 30(4), 622–631 139 Lee, C Y., and Strano, M S (2008) Amine basicity (pKb) controls the analyte binding energy on single walled carbon nanotube electronic sensor arrays, J Am Chem Soc., 130(5), 1766–1773 140 Lee, C Y., Scharma, R., Radadia, A D., Masel, R I., and Strano, M S (2008) Onchip micro gas chromatograph enabled by a noncovalently functionalized single-walled carbon nanotube sensor array, Angew Chem Int Ed 47(27), 5018–5021 141 de Marcos, S., and Wolϐbeis, O S (1996) Optical sensing of pH based on polypyrrole ϐilms, Anal Chim Acta., 334, 149–153 142 Collins, G E., and Buckley, L J (1996) Conductive polymer-coated fabrics for chemical sensing, Synth Met., 78, 93–101 143 Choi, J H., Nguyen, F T., Barone, P W., Heller, D A., Moll, A E., Patel, D., Boppart, S A., and Strano, M S (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes, Nano Lett., 7(4), 861–867 144 Strano, M S., and Jin, H (2008) Where is it heading? Single-particle tracking of single-walled carbon nanotubes, ACS Nano, 2(9), 1749–1752 145 Tsyboulski, D A., Bachilo, S M., Kolomeisky, A B., and Weisman, R B (2008) Translational and rotational dynamics of individual single-walled carbon nanotubes in aqueous suspension, ACS Nano, 2(9), 1770–1776 146 Jin, H., Heller, D A., Sharma, R., and Strano, M S (2009) Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles ACS Nano, 3(1), 149–158 147 Jin, H., Heller, D A., and Strano, M S (2008) Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells, Nano Lett., 8(6), 1577–1585 148 Terrones, M., Romo-Herrera, J M., Cruz-Silva, E., Lopez-Urias, F., MunozSandoval, E., Velazquez-Salazar, J J., Terrones, H., Bando, Y., and Golberg, D (2007) Pure and doped boron nitride nanotubes, Mater Today, 10(5), 30–38 149 Cruz-Silva, E., Cullen, D A., Gu, L., Romo-Herrera, J M., Munoz-Sandoval, E., Lopez-Urias, F., Sumpter, B G., Meunier, V., Charlier, J.-C., Smith, D J., Terrones, H., and Terrones, M (2008) Heterodoped nanotubes: theory, synthesis, and characterization of phosphorus-nitrogen doped multiwalled carbon nanotubes, ACS Nano, 2(3), 441–448 150 Sumpter, B G., Meunier, V., Romo-Herrera, J M., Cruz-Silva, E., Cullen, D A., Terrones, H., Smith, D., J., and Terrones, M (2007) Nitrogen-mediated carbon nanotube growth: diameter reduction, metallicity, bundle dispersability, and bamboo-like structure formation, ACS Nano, 1(4), 369–375 Copyright © 2011 by Pan Stanford Publishing Pte Ltd 327 328 Major Research AcƟviƟes on Carbon Nanotubes 151 Maciel, I O., Campos-Delgado, J., Cruz-Silva, E., Pimenta, M A., Sumpter, B G., Meunier, V., Lopez-Urias, F., Munoz-Sandoval, E., Terrones, H., Terrones, M., and Jorio, A (2009) Synthesis, electronic structure, and Raman scattering of phosphorus-doped single-wall carbon nanotubes, Nano Lett., 9(6), 2267–2272 152 Cruz-Silva, E., Lopez-Urias, F., Munoz-Sandoval, E., Sumpter, B G., Terrones, H., Charlier, J.-C., Meunier, V., and Terrones, M (2009) Electronic transport and mechanical properties of phosphorus- and phosphorus-nitrogen-doped carbon nanotubes, ACS Nano, 3(7), 1913–1921 153 Rodriguez-Manzo, J A., Lopez-Urias, F., Terrones, M., and Terrones, H (2007) Anomalous paramagnetism in doped carbon nanostructures, Small, 3(1), 120–125 154 Elias, A L., Carrero-Sanchez, J C., Terrones, H., Endo, M., Laclette, J P., and Terrones, M (2007) Viability studies of pure carbon- and nitrogen-doped nanotubes with Entamoeba histolytica: from amoebicidal to biocompatible structures, Small, 3(10), 1723–1729 155 Maciel, I O., Anderson, N., Pimenta, M A., Hartschuh, A., Qian, H., Terrones, M., Terrones, H., Campos-Delgado, J., Rao, A M., Novotny, L., and Jorio, A (2008) Electron and phonon renormalization near charged defects in carbon nanotubes, Nat Mater., 7(11), 878–883 156 Romo-Herrera, J M., Terrones, M., Terrones, H., and Meunier, V (2008) Guiding electrical current in nanotube circuits using structural defects: a step forward in nanoelectronics, ACS Nano, 2(12), 2585–2591 157 Souza Filho, A G., Meunier, V., Terrones, M., Sumpter, B G., Barros, E B., Villalpando-Paez, F., Mendes Filho, J., Kim, Y A., Muramatsu, H., Hayashi, T., Endo, M., and Dresselhaus, M S (2007) Selective tuning of the electronic properties of coaxial nanocables through exohedral doping, Nano Lett., 7(8), 2383–2388 158 Villalpando-Paez, F., Son, H., Nezich, D., Hsieh, Y P., Kong, J., Kim, Y A., Shimamoto, D., Muramatsu, H., Hayashi, T., Endo, M., Terrones, M., and Dresselhaus, M S (2008) Raman spectroscopy study of isolated double-walled carbon nanotubes with different metallic and semiconducting conϐigurations, Nano Lett., 8(11), 3879–3886 159 Hayashi, T., Shimamoto, D., Kim, Y A., Muramatsu, H., Okino, F., Touhara, H., Shimada, T., Miyauchi, Y., Maruyama, S., Terrones, M., Dresselhaus, M S., and Endo, M (2008) Selective optical property modiϐication of double-walled carbon nanotubes by ϐluorination, ACS Nano, 2(3), 485–488 160 Jung, Y C., Shimamoto, D., Muramatsu, H., Kim, Y A., Hayashi, T., Terrones, M., and Endo, M (2008) Robust, conducting, and transparent polymer composites using surface-modiϐied and individualized double-walled carbon nanotubes, Adv Mater., 20(23), 4509–4512 161 Rodriguez-Manzo, J A., Banhart, F., Terrones, M., Terrones, H., Grobert, N., Ajayan, P M., Sumpter, B G., Meunier, V., Wang, M., Bando, Y., and Golberg, D (2009) Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts, Proc Natl Acad Sci USA, 106(12), 4591–4595 Copyright © 2011 by Pan Stanford Publishing Pte Ltd References 162 Grimm, D., Venezuela, P., Banhart, F., Grobert, N., Terrones, H., Ajayan, P M., Terrones, M., and Latge, A (2007) Synthesis of SWCNT rings made by two Y junctions and possible applications in electron interferometry, Small, 3(11), 1900–1905 163 Lepro, X., Vega-Cantu, Y., Rodriguez-Macias, F J., Bando, Y., Golberg, D., and Terrones, M (2007) Production and characterization of coaxial nanotube junctions and networks of CNx/CNT, Nano Lett., 7(8), 2220–2226 164 Romo-Herrera, J M., Terrones, M., Terrones, H., Dag, S., and Meunier, V (2007) Covalent 2D and 3D networks from 1D nanostructures: designing new materials, Nano Lett., 7(3), 570–576 165 Munoz-Sandoval, E., Agarwal, V., Escorcia-Garcia, J., Ramirez-Gonzalez, D., Martinez-Mondragon, M M., Cruz-Silva, E., Meneses-Rodriguez, D., RodriguezManzo, J A., Terrones, H., and Terrones, M (2007) Architectures from aligned nanotubes using controlled micropatterning of silicon substrates and electrochemical methods, Small, 3(7), 1157–1163 166 Meunier, V., Muramatsu, H., Hayashi, T., Kim, Y A., Shimamoto, D., Terrones, H., Dresselhaus, M S., Terrones, M., Endo, M., and Sumpter, B G (2009) Properties of one-dimensional molybdenum nanowires in a conϐined environment, Nano Lett., 9(4), 1487–1492 167 Muramatsu, H., Hayashi, T., Kim, Y A., Shimamoto, D., Endo, M., Terrones, M., and Dresselhaus, M S (2008) Synthesis and isolation of molybdenum atomic wires, Nano Lett., 8(1), 237–240 168 Cano-Marquez, A G., Rodriguez-Macias, F J., Campos-Delgado, J., EspinosaGonzalez, C G., Tristan-Lopez, F., Ramirez-Gonzalez, D., Cullen, D A., Smith, D J., Terrones, M., and Vega-Cantu, Y I (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes, Nano Lett., 9(4), 1527–1533 169 Rodrigues, O E D., Saraiva, G D., Nascimento, R O., Barros, E B., Mendes Filho, J., Kim, Y A., Muramatsu, H., Endo, M., Terrones, M., Dresselhaus, M S., and Souza Filho, A G (2008) Synthesis and characterization of selenium-carbon nanocables, Nano Lett., 8(11), 3651–3655 170 Romo-Herrera, J M., Sumpter, B G., Cullen, D A., Terrones, H., Cruz-Silva, E., Smith, D J., Meunier, V., and Terrones, M (2008) An atomistic branching mechanism for carbon nanotubes: sulfur as the triggering agent, Angew Chem., Int Ed Engl 47(16), 2948–2953 171 Rodriguez-Manzo, J., Terrones, M., Terrones, H., Kroto, H W., Sun, L., and Banhart, F (2007) In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles, Nat Nanotechnol., 2(5), 307–311 172 Herrero, M A., Toma, F M., Al-Jamal, K T., Kostarelos, K., Bianco, A., Da Ros, T., Bano, F., Casalis, L., Scoles, G., and Prato, M (2009) Synthesis and characterization of a carbon nanotube-dendron series for efϐicient siRNA delivery, J Am Chem Soc., 131(28), 9843–9848 173 Podesta, J E., Al-Jamal, K T., Herrero, M A., Tian, B., Ali-Boucetta, H., Hegde, V., Bianco, A., Prato, M., and Kostarelos, K (2009) Antitumor activity and Copyright © 2011 by Pan Stanford Publishing Pte Ltd 329 330 Major Research AcƟviƟes on Carbon Nanotubes prolonged survival by carbon nanotube-mediated therapeutic siRNA silencing in a human lung xenograft model, Small, 5, 1176–1185 174 Ali-Boucetta, H., Al-Jamal, K T., McCarthy, D., Prato, M., Bianco, A., and Kostarelos, K (2008) Multiwalled carbon nanotube-doxorubicin supramolecular complexes for cancer therapeutics, Chem Commun., 4, 459–461 175 Lacerda, L., Herrero, M A., Venner, K., Bianco, A., Prato, M., and Kostarelos, K (2008) Carbon-nanotube shape and individualization critical for renal excretion, Small, 4(8), 1130–1132 176 Singh, R., Pantarotto, D., Lacerda, L., Pastorin, G., Klumpp, C., Prato, M., Bianco, A., and Kostarelos, K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers, Proc Natl Acad Sci USA, 103, 3357-3362 177 Lacerda, L., Soundararajan, A., Singh, R., Pastorin, G., Al-Jamal, K T., Turton, J., Frederik, P., Herrero, M A., Li, S., Bao, A., Emϐietzoglou, D., Mather, S., Phillips, W T., Prato, M., Bianco, A., Goins, B., and Kostarelos, K (2008) Dynamic imaging of functionalized multi-walled carbon nanotube systemic circulation and urinary excretion, Adv Mater., 20(2), 225–230 178 Deen, W M (2004) What determines glomerular capillary permeability? J Clin Invest., 114, 1412-1414 179 Lacerda, L., Ali-Boucetta, H., Herrero, M A., Pastorin, G., Bianco, A., Prato, M., and Kostarelos, K (2008) Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes, Nanomedicine, 3(2), 149–161 180 Kostarelos, K., Lacerda, L., Pastorin, G., Wu, W., Wieckowski, S., Luangsivilay, J., Godefroy, S., Pantarotto, D., Briand, J.-P., Muller, S., Prato, M., and Bianco, A (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type, Nat Nanotechnol., 2(2), 108–113 181 Lacerda, L., Pastorin, G., Gathercole, D., Buddle, J., Prato, M., Bianco, A., and Kostarelos, K (2007) Intracellular trafϐicking of carbon nanotubes by confocal laser scanning microscopy, Adv Mater., 19(11), 1480–1484 182 Kotov, N A., Winter, J O., Clements, I P., Jan, E., Timko, B P., Campidelli, S., Pathak, S., Mazzatenta, A., Lieber, C M., Prato, M., Bellamkonda, R V., Silva, G A., Kam, N W S., Patolsky, F., and Ballerini, L (2009) Nanomaterials for neural interfaces, Adv Mater., 21(40), 3970–4004 183 Mattson, M P., Haddon, R C., and Rao, A M (2000) Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth, J Mol Neurosci., 14, 175–182 184 Lovat, V., Pantarotto, D., Lagostena, L., Cacciari, B., Grandolfo, M., Righi, M., Spalluto, G., Prato, M., and Ballerini, L (2005) Carbon nanotube substrates boost neuronal electrical signaling, Nano Lett., 5, 1107–1110 185 Gaillard, C., Cellot, G., Li, S., Toma, F M., Dumortier, H., Spalluto, G., Cacciari, B., Prato, M., Ballerini, L., and Bianco, A (2009) Carbon nanotubes carrying celladhesion peptides not interfere with neuronal functionality, Adv Mater., 21, 2903–2908 Copyright © 2011 by Pan Stanford Publishing Pte Ltd References 186 Dhoot, N O., Tobias, C A., Fischer, I., and Wheatley, M A (2004) Peptidemodiϐied alginate surfaces as a growth permissive substrate for neurite outgrowth, J Biomed Mater., Res Part A, 71, 191–200 187 Mazzatenta, A., Giugliano, M., Campidelli, S., Gambazzi, L., Businaro, L., Markram, H., Prato, M., and Ballerini, L (2007) Interfacing neurons with carbon nanotubes: electrical signal transfer and synaptic stimulation in cultured brain circuits, J Neurosci., 27(26), 6931–6936 188 Ehli, C., Oelsner, C., Guldi, D M., Mateo-Alonso, A., Prato, M., Schmidt, C., Backes, C., Hauke, F., and Hirsch, A (2009) Manipulating single-wall carbon nanotubes by chemical doping and charge transfer with perylene dyes, Nat Chem., 1(3), 243–249 189 Angeles Herranz, M., Ehli, C., Campidelli, S., Gutierrez, M., Hug, G L., Ohkubo, K., Fukuzumi, S., Prato, M., Martin, N., and Guldi, D M (2008) Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes, J Am Chem Soc., 130(1), 66–73 190 Ballesteros, B., Campidelli, S., de la Torre, G., Ehli, C., Guldi, D M., Prato, M., and Torres, T (2007) Synthesis, characterization and photophysical properties of a SWNT-phthalocyanine hybrid, Chem Commun., 28, 2950–2952 191 Rahman, G M A., Troeger, A., Sgobba, V., Guldi, D M., Jux, N., Tchoul, M N., Ford, W T., Mateo-Alonso, A., and Prato, M (2008) Improving photocurrent generation: supramolecularly and covalently functionalized single-wall carbon nanotubes-polymer/porphyrin donor-acceptor nanohybrids, Chem.—Eur J., 14(29), 8837–8846 192 Campidelli, S., Ballesteros, B., Filoramo, A., Diaz, D D., de la Torre, G., Torres, T., Rahman, G M A., Ehli, C., Kiessling, D., Werner, F., Sgobba, V., Guldi, D M., Ciofϐi, C., Prato, M and Bourgoin, J.-P (2008) Facile decoration of functionalized single-wall carbon nanotubes with phthalocyanines via “click chemistry”, J Am Chem Soc., 130(34), 11503–11509 193 Guryanov, I., Toma, F M., Montellano Lopez, A., Carraro, M., Da Ros, T., Angelini, G., D’Aurizio, E., Fontana, A., Maggini, M., Prato, M., and Bonchio, M (2009) Microwave-assisted functionalization of carbon nanostructures in ionic liquids Chem.—Eur J., 15(46), 12837–12845 194 Quintana, M., and Prato, M (2009) Supramolecular aggregation of functionalized carbon nanotubes Chem Commun., 40, 6005–6007 195 Singh, P., Kumar, J., Toma, F M., Raya, J., Prato, M., Fabre, B., Verma, S., and Bianco, A (2009) Synthesis and characterization of nucleobase-carbon nanotube hybrids J Am Chem Soc., 131(37), 13555–13562 196 Joung, S.-K., Okazaki, T., Kishi, N., Okada, S., Bandow, S., and Iijima, S (2009) Effect of fullerene encapsulation on radial vibrational breathing-mode frequencies of single-wall carbon nanotubes, Phys Rev Lett., 103(2), 027403/1–027403/4 197 R B Weisman and Bachilo, S M., (2003) Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot, Nano Lett., 3, 1235-1238 Copyright © 2011 by Pan Stanford Publishing Pte Ltd 331 332 Major Research AcƟviƟes on Carbon Nanotubes 198 Liu, Z., Joung, S.-K., Okazaki, T., Suenaga, K.,Hagiwara, Y., Ohsuna, T., Kuroda, K., and Iijima, S (2009) Self-assembled double ladder structure formed inside carbon nanotubes by encapsulation of H8Si8O12, ACS Nano, 3(5), 1160–1166 199 Sato, Y., Suenaga, K., Bandow, S., and Iijima, S (2008) Site-dependent migration behavior of individual cesium ions inside and outside C60 fullerene nanopeapods, Small, 4(8), 1080–1083 200 Guan, L., Suenaga, K., Shi, Z., Gu, Z., and Iijima, S (2005) Direct imaging of the alkali metal site in K-doped fullerene peapods, Phys Rev Lett., 94, 045502 201 Smith, B W., Monthioux, M., and Luzzi, D E (1998) Encapsulated C60 in carbon nanotubes, Nature, 396, 323–324 202 Guan, L., Suenaga, K., Okazaki, T., Shi, Z., Gu, Z., and Iijima, S (2007) Coalescence of C60 molecules assisted by doped iodine inside carbon nanotubes, J Am Chem Soc., 129(29), 8954–8955 203 Sato, Y., Suenaga, K., Okubo, S., Okazaki, T., and Iijima, S (2007) Structures of D5d-C80 and Ih-Er3N@C80 fullerenes and their rotation inside carbon nanotubes demonstrated by aberration-corrected electron microscopy, Nano Lett., 7(12), 3704–3708 204 Liu, Z., Yanagi, K., Suenaga, K., Kataura, H., and Iijima, S (2007) Imaging the dynamic behaviour of individual retinal chromophores conϐined inside carbon nanotubes, Nat Nanotechnol., 2(7), 422–425 205 Guan, L., Suenaga, K., Okubo, S., Okazaki, T., and Iijima, S (2008) Metallic wires of lanthanum atoms inside carbon nanotubes, J Am Chem Soc., 130(7), 2162–2163 206 Guan, L., Suenaga, K., Shi, Z., Gu, Z., and Iijima, S (2007) Polymorphic structures of iodine and their phase transition in conϐined nanospace, Nano Lett., 7(6), 1532–1535 207 Shukla B., Saito T., Yumura M., and Iijima S (2009) An efϐicient carbon precursor for gas phase growth of SWCNTs, Chem Commun., 23, 3422–3424 208 Guan, L., Suenaga, K., and Iijima, S (2008) Smallest carbon nanotube assigned with atomic resolution accuracy, Nano Lett., 8(2), 459–462 209 Yamada, T., Maigne, A., Yudasaka, M., Mizuno, K., Futaba, D N., Yumura, M., Iijima, S., and Hata, K (2008) Revealing the secret of water-assisted carbon nanotube synthesis by microscopic observation of the interaction of water on the catalysts, Nano Lett., 8(12), 4288–4292 210 Jin, C., Suenaga, K., and Iijima, S (2008) How does a carbon nanotube grow? An in situ investigation on the cap evolution ACS Nano, 2(6), 1275–1279 211 Okazaki, T., Okubo, S., Nakanishi, T., Joung, S.-K., Saito, T., Otani, M., Okada, S., Bandow, S., and Iijima, S (2008) Optical band gap modiϐication of single-walled carbon nanotubes by encapsulated fullerenes, J Am Chem Soc., 130(12), 4122–4128 212 Otani, M., Okada, S., and Oshiyama, A (2003) Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes, Phys Rev B, 68, 125424 Copyright © 2011 by Pan Stanford Publishing Pte Ltd References 213 Okada, S., Saito, S., and Oshiyama, A (2001) Energetics and electronic structures of encapsulated C60 in a carbon nanotube, Phys Rev Lett., 86, 3835–3838 214 Okada, S (2007) Radial-breathing mode frequencies for nanotubes encapsulating fullerenes, Chem Phys Lett., 438, 59–62 215 Smith, B W., and Luzzi, D E (2001) Electron irradiation effects in single wall carbon nanotubes, J Appl Phys., 90, 3509–3515 216 Suenaga, K., Sato, Y., Liu, Z., Kataura, H., Okazaki, T., Kimoto, K., Sawada, H., Sasaki, T., Omoto, K., Tomita, T., Kaneyama, T., and Kondo, Y (2009) Visualizing and identifying single atoms using electron energy-loss spectroscopy with low accelerating voltage, Nat Chem., 1(5), 415–418 217 Mikami, F., Matsuda, K., Kataura, H., and Maniwa, Y (2009) Dielectric properties of water inside single-walled carbon nanotubes, ACS Nano, 3(5), 1279–1287 218 Maniwa, Y., Matsuda, K., Kyakuno, H., Ogasawara, S., Hibi, T., Kadowaki, H., Suzuki, S., Achiba, Y., and Kataura, H (2007) Water-ϐilled single-wall carbon nanotubes as molecular nanovalves, Nat Mater., 6(2), 135–141 219 Rols, S., Cambedouzou, J., Chorro, M., Schober, H., Agafonov, V., Launois, P., Davydov, V., Rakhmanina, A V., Kataura, H., and Sauvajol, J.-L (2008) How conϐinement affects the dynamics of C60 in carbon nanopeapods, Phys Rev Lett., 101(6), 065507/1–065507/4 220 Shiozawa, H., Pichler, T., Kramberger, C., Rummeli, M., Batchelor, D., Liu, Z., Suenaga, K., Kataura, H., and Silva, S R P (2009) Screening the missing electron: nanochemistry in action, Phys Rev Lett., 102(4), 046804/1–046804/4 221 Pfeiffer, R., Holzweber, M., Peterlik, H., Kuzmany, H., Liu, Z., Suenaga, K., and Kataura, H (2007) Dynamics of carbon nanotube growth from fullerenes, Nano Lett., 7(8), 2428–2434 222 Shiozawa, H., Pichler, T., Grueneis, A., Pfeiffer, R., Kuzmany, H., Liu, Z., Suenaga, K., and Kataura, H (2008) A catalytic reaction inside a single-walled carbon nanotube Adv Mater., 20(8), 1443–1449 223 Yanagi, K., Iakoubovskii, K., Matsui, H., Matsuzaki, H., Okamoto, H., Miyata, Y., Maniwa, Y., Kazaoui, S., Minami, N., and Kataura, H (2007) Photosensitive function of encapsulated dye in carbon nanotubes J Am Chem Soc., 129(16), 4992–4997 224 McIntosh, G C., Tománek, D., and Park, Y W (2003) Energetics and electronic structure of a polyacetylene chain contained in a carbon nanotube Phys Rev B, 67, 125419–125424 225 Tanaka, T., Jin, H., Miyata, Y., Fujii, S., Suga, H., Naitoh, Y., Minari, T., Miyadera, T., Tsukagoshi, K., and Kataura, H (2009) Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes, Nano Lett., 9(4), 1497–1500 226 Sato, Y., Yanagi, K., Miyata, Y., Suenaga, K., Kataura, H., and Iijima, S (2008) Chiral-angle distribution for separated single-walled carbon nanotubes Nano Lett., 8(10), 3151–3154 Copyright © 2011 by Pan Stanford Publishing Pte Ltd 333 Index 4-HNE (4-hydroxynonenal) 153–54 5-FU (5-Fluorouracil) 78 1,3-dipolar cycloaddition 25, 27, 30–31, 51, 64, 89, 91, 142, 169, 171, 228, 296, 298–299, 301, 303 Abraxane 49 AC (alternating current) 69 ACD (anthrylcyclodextrin) 114 action potentials 151, 164, 168, 170, 174–75 acute lymphocytic leukemia (ALL) 128 ADA-PY (adamantane-modiϐied pyrene) 116 adhesion, cell-to-substratum 180 ADP (after-potential depolarisation) 175 adsorption 4–5, 37, 71, 73, 76, 111, 119, 127, 130, 135, 144, 146, 160, 193, 284–85 physical 26, 28, 119 AFM (atomic force microscopy) 8, 15–16, 51, 71, 80, 110, 112, 116, 119, 121, 269, 272, 278 agents chemotherapeutic 41, 45, 81 chemotherapeutic alkylating 283, 285 surface-active aggregates 6, 9, 100, 135, 231, 233, 302 air 75, 125, 131, 191–92, 274, 277, 314 alignment 73, 131–32, 208, 254 alkaline phosphatase (ALP) 77, 211 AmB (Amphotericin B) 27, 31–33, 44, 299 AmB-CNT conjugates 32 AmB-FITC-functionalised carbon nanotubes 32 amphiphilic molecules 135, 256 Amphotericin B see AmB annealing 27, 274, 315–16 anti-GFAP (antiglial ϐibrillary acidic protein) 167 anti-MAP2 (antimicrotubule-associated protein 2) 167 anti-O4 (anti-oligodendrocyte marker O4) 167 antibodies 44, 67, 70–73, 75–76, 87–88, 92–93, 101, 194, 202, 233, 265 anticancer drugs 51, 53, 69, 78–79 antigen-presenting cells (APCs) 88, 95 antigens 67, 70, 85–89, 93, 98, 100–102, 216 antisense-myc-conjugated single-walled carbon nanotubes 82 Copyright © 2011 by Pan Stanford Publishing Pte Ltd APCs (antigen-presenting cells) 88, 95 aqueous dispersions 17–18, 20, 158 aqueous suspensions 8, 11–12, 303, 327 array carbon nanotube nanoelectrode 144, 216 single-walled carbon nanotube sensor 327 atomic force microscopy see AFM avidin 206 axons 151–52, 162, 169, 174, 301 azomethine ylides, cycloaddition of 27, 30, 64, 89, 91, 142, 169, 171, 270, 296, 301, 303 β-carotene 27 BCR (B-cell receptor) 87 bio-interface 207, 209, 211 biocompatibility 4, 7, 9, 16, 21, 24, 79, 84, 100, 102, 152, 157, 165, 171, 177, 256–57 biomarkers 50, 70, 73–74, 127 biomaterials 8, 16, 19, 36, 180–181, 207–9, 214, 220–221, 327 biosensors 8, 16, 21, 50–51, 70–71, 105, 186, 215, 279 block copolymers 9–11 self-assembling 8–9, 11–12 blood compartment 293, 298 bloodstream 66, 74, 76, 262, 267 BNCT (boron neutron capture therapy) 27, 39, 65–66, 83 bone 210–211, 213, 220 bone formation 209–10 bone tissue 209–10, 220 boron 27, 65–66, 268, 288 boron neutron capture therapy see BNCT bovine serum albumin see BSA brain-derived neurotrophic factor (BDNF) 158–59 BSA (bovine serum albumin) 7, 26, 30, 72, 75, 92, 203, 206, 280 cancer 31, 35, 37–38, 47, 57, 69–70, 73, 76, 79–80, 85, 139 cancer cells 41, 47, 54–56, 58, 66–67, 79, 81, 84, 86, 136–38, 263, 283 336 Index breast 68, 78, 84, 225 human bladder 58, 69 human lung 58–59 nanotube-enhanced thermal destruction of 38, 85 cancer therapy 26–27, 35, 37, 47, 49, 51, 53, 65–66, 69, 80, 106, 136, 139, 297 cancer treatment 47, 52–53, 55–57, 61, 69, 79, 136 capacitance 193, 249–50 capacitor 76, 193, 213 carbon 1, 17–18, 20–21, 37–38, 40–42, 83, 85–86, 144, 181–82, 214–16, 228–31, 244–45, 295–96, 317–21, 328, 330–332 carbon atoms 1, 7, 188, 291, 295, 304, 313, 329 carbon materials, sp2 290 carbon nanohorns 37, 58, 81–82, 243 carbon nanomaterials 58, 245–46, 248 carbon nanotube growth 324, 333 carbon nanotube interaction 148 carbon nanotube radiotracers, administered 38, 83, 246, 330 carbon nanotube substrates 182, 330 carbon-nanotube transporters 82, 150, 319, 321 carbon nanotubes applications of functionalised 16, 218, 320 assembled single-walled 181 biocompatibility of 17, 242, 244 bound 147 capped 41 cationic 102, 243 charged single-walled 82 conductive layer-by-layer ϐilms of singlewalled 181, 221 copolymer-coated multi-walled 52 dispersed single wall 325 doped multiwalled 327 double-wall 40 double-walled 17 electronic properties of 152, 215 encapsulated 323 enriched double-wall 323 exocytosis of single-walled 80, 327 ϐilled 85 ϐluorescent 320 Copyright © 2011 by Pan Stanford Publishing Pte Ltd functionalisation of single-walled 39, 149 humanized 181 individual multi-wall 187 individual single-walled 322, 324–25 infrared ϐluorescence microscopy of singlewalled 18, 38, 217, 326 magnetic 85 modiϐied 20 patterned 180, 221 polymer-wrapped single-walled 39 puriϐication of DNA-wrapped 144, 323 radiolabeled 83 ultra-short single-walled 44 carbon nanotubes ϐilms 220 carboplatin 27, 33–34, 58 carboranes 65 carboxylated CNTs 13–14 carboxylic groups 10, 14, 30–31, 75 catalysts 163, 235–36, 238, 274–75, 286, 288, 311–12, 332 cell adhesion 49, 76, 163, 165, 168, 170– 171, 209, 213, 301 cell surface receptors 203, 263, 265 cell viability 34, 67, 79, 125, 157–58, 167, 171, 213, 224–28, 231–32, 234–35, 297 cells 2–3, 60–63, 65–70, 78–80, 87–88, 122–25, 134, 136–41, 149–51, 163–68, 171, 201–4, 209–13, 227–36, 263–65, 299–300 glial 160–164, 171, 180 hippocampal 156, 302 hybrid 166, 212 imaging of 217, 265, 322 live 155, 202, 204, 217, 322 mammalian 2, 31, 44, 257 neuroblastoma 70 neuron 212 phagocytic 18, 38, 217, 326 primary 61, 82, 150, 160, 319, 321 red blood 93, 225 suspended 235 cellular uptake 24, 33–34, 123, 137, 224, 255–56, 296–97, 300 chain molecules, long 199 charge ratios 133–34, 225 chemical/biological analysis 186, 190 chemical ligation, selective 91 chemical vapour deposition (CVD) 69, 71, 76, 98, 159, 256, 274, 310–311 Index chiral angle 200 chitosan 12–16, 19–21, 78 carboxymethylated 14–15, 20 chitosan/multiwalled carbon nanotubes/ 86 chloride, thionyl 60, 120, 285–86 CMC (critical micellar concentration) 5, CMT (critical micellar temperature) CNT-based electrodes 164–65, 171, 177 CNT-based FETs 188, 250–251, 253–54 CNT-based MEAs 162, 171 CNT-based surfaces 160, 164 CNT-based transistors 188, 192, 194–95, 204, 207 CNT-coated electrodes 165 CNT coating 165, 210 CNT-DNA complexes 108, 129, 132, 136, 138 CNT electrodes 163–64 CNT etching 275 CNT ϐluorescence 202, 204, 206 CNT sheets 159 CNT substrates 159–60, 165, 169, 173, 175–76 CNT tips 131, 196–98, 303 CNT yarns 159 CNTs 1–17, 24–35, 51–56, 63–66, 71–73, 88–101, 129–32, 134–41, 152–65, 173–77, 185–210, 212–13, 223–28, 233–42, 247–54, 287–303 aligned 208, 254 application of 4, 69, 100, 207, 209, 254, 282 biomedical applications of 255, 262 dispersed 199, 201–2 double-walled 271, 306 empty 34, 58 hydrophobic 6, optical properties of 253, 273 oxidised 13, 113, 160, 234 surface charge of 155, 170 suspension of 69 uncharged 112, 226 unfunctionalised 125, 240 coating, thickness of 14–15 complement activation 97, 99, 102, 225–26, 243 complexes 40, 54, 81, 96, 100, 112, 117, 124, 132, 134, 256, 258, 286–87, 297, 330 single-walled carbon nanotube/iron oxide nanoparticle 327 Copyright © 2011 by Pan Stanford Publishing Pte Ltd composition, chemical 224, 313 conductance of CNTs 187 conductivity 72, 188, 191–92, 196, 207, 215–16, 250, 315–16 contrast agents 48, 50, 267 covalent functionalisation of CNTs 72, 91, 141 critical micellar concentration (CMC) 5, critical micellar temperature (CMT) CVD see chemical vapour deposition cytotoxicity 24, 51–53, 58, 68–69, 136, 143, 207, 224–25, 230–233, 235–36, 243, 245, 297 DDS (drug delivery systems) 2–3, 23–27, 34, 290 decay 252, 277 defect sites 5, 193, 290–291 dendrimers 23–24, 35, 62, 82, 260 dendrites 151–52, 162, 174–75, 301 dendron-MWCNTs 142 density functional theory (DFT) 289, 291 derivatives 12–13, 15, 19, 54, 64–65, 119 detection, multimodal 284 dextran 260–261, 321 DFT (density functional theory) 289, 291 DGU (density gradient ultracentrifugation) 269, 271–72, 317 diazonium salts 277 diethylene triamine pentaacetic acid see DTPA differentiation 153, 158–60, 165–67, 181, 212 dispersion 13, 20–21, 42, 65, 106, 224, 226, 233, 244, 276, 279, 303, 326 DMF (dimethylformamide) 31–32, 89–91, 120, 135, 155, 172, 193, 229, 233, 279, 299, 302 DMMP (dimethyl methylphosphonate) 125–26, 286 DMSO (dimethyl sulphoxide) 66, 233, 261 DNA 26, 40–42, 74, 79, 95, 105–9, 111–13, 116–17, 119–24, 129, 131–38, 144–45, 147–48, 189, 196, 283–84 DNA-CNTs 108, 110 DNA duplex 196–97 DNA-encased MWCNTs 137–38 DNA nanotubes 136, 149 DNA-SWCNTs 118–19 337 338 Index DNA-wrapped carbon nanotubes 110, 144, 323 DNA-wrapped SWCNTs 118, 123 DNT 125–26 doped carbon nanotubes 289 doping of CNTs 288–91 DOX 26, 29, 257 DOXO 26, 29, 52–53, 59, 256–57, 297, 320 drug delivery 4, 9–11, 17–19, 24–25, 27, 33, 35–37, 41, 56, 58–59, 69, 80–81, 136, 244, 248, 296–97 drug delivery systems see DDS drugs 4, 12, 23, 25–26, 29, 31–35, 38, 49, 52–56, 58, 79, 81, 239, 242, 256–57, 297 DTPA (diethylene triamine pentaacetic acid) 64, 240–241, 297 EELS (electron energy loss spectroscopy) 288, 310, 313 efϐiciency 3, 5, 61–62, 252, 311 efϐiciency of transfection 134 EGF (epidermal growth factor) 57 electric ϐield 188, 193, 208, 253, 270, 319 electrical activity 153, 173, 175, 177 electrical conductivity, high 153, 165, 167–68, 177 electrodes 40, 74–77, 86, 117, 127, 161, 163–65, 171, 177, 193, 249, 286 carbon-nanotube-modiϐied 86, 143 drain 72–73, 75, 188 modiϐied 71, 77–79, 86, 117, 145 reference 74–76 electron energy loss spectroscopy see EELS electron paramagnetic resonance (EPR) 9, 43, 48 electrons 67, 187–88, 196, 204, 249, 251, 253, 277, 290 emission 200, 250, 283–85, 299 encapsulation 10–11, 24–25, 27, 33, 44, 304–5, 310, 312–14, 316, 332 endocytosis 55, 61, 80, 123, 176, 263–64, 300, 327 environment, aqueous 6, 9, 112 epidermal growth factor see EGF EPR (electron paramagnetic resonance) 9, 43, 48 Copyright © 2011 by Pan Stanford Publishing Pte Ltd ethylene oxide 9–10 fabrication 119, 122, 131, 165, 183, 221, 247, 250, 256, 268, 282, 294–95, 310, 319 FETs (ϐield effect transistor) 71–72, 76, 125, 188, 248–50, 268 ϐibroblast cells 213, 245 ϐibroblasts 83, 171, 219, 225, 229, 231, 300 ϐield effect transistor see FETs ϐilms biocomposite 116–17 free-standing 165–66 FITC 4, 31–32, 171, 299, 302 ϐluorescence 9, 107, 136, 145, 199, 201, 204–6, 217, 252, 280, 320, 327 ϐluorescence emission 198–99, 202, 257 FMDV (foot-and-mouth disease virus) 91 folate receptor see FR folic acid (FA) 26, 61, 136, 263 FR (folate receptor) 54, 56, 61, 66, 127, 136, 263 fractions, carboxylated 29–30 free drugs 3, 32 fullerenes 1, 23–24, 34, 37, 40, 145, 231, 236, 239, 245–46, 296, 303–7, 309, 311, 313, 332–33 gate voltage 72, 188–90, 192, 195, 207, 250 gene delivery 19, 51, 62, 82, 105–6, 132–35, 137, 139, 141, 256 gene therapy 26, 106, 132, 136, 139–40 glassy carbon electrode 77–78, 86, 117, 143 glucosamine 229 glycero-3-phosphocholine glycol, ethylene 52, 256–58 granulomas 99, 236–37 growth cones 151, 153–58, 177 guanidine 78, 278–79, 325 guanine 77, 79, 106, 117, 119, 146, 284 HeLa cells 61–62, 66, 137–38, 212, 225 normal 54, 66 Index highly oriented pyrolytic graphite (HOPG) 119, 121 hippocampal neurons 169–70, 173–74, 301 HIV (human immunodeϐiciency virus) 140, 263 HOPG (highly oriented pyrolytic graphite) 119, 121 HR-TEM 306, 310, 316 HR-TEM images 308, 311 HSA (human serum albumin) 265 human immunodeϐiciency virus (HIV) 140, 263 human serum albumin (HSA) 265 hydrocarbons 310 hydrophobic nanotubes 257 icenanotubes 314 IEC (ion exchange chromatography) 108–9, 268, 270–271 IL (ionic liquids) 88, 303, 331 immune response 88–89, 92–94, 96–98, 103, 225, 285 immune system 49, 87, 95, 97–98, 124, 225 immunosensors 16, 21, 70–72, 85 interactions 2–3, 6–7, 10, 28, 59–60, 74–75, 95–96, 107, 112–13, 121–22, 126–31, 173–75, 229–30, 257, 283–84, 303–4 electrical 153, 173–75 hydrogen-bonding 108, 119 hydrophobic 4, 53, 71, 76, 97, 115–16, 124 stacking 28–29, 257, 297 iodine 307–8, 310, 332 ion exchange chromatography see IEC ionic liquids see IL ions 59, 119, 151, 306–7 iron, carbonyl 237 irradiation 66, 68, 137, 207, 277, 292 electron 292, 295 keratinocytes 229, 232, 244, 300 laminin 160, 167, 171, 180, 301 light 68, 198, 200–201, 207–8, 213, 250, 268, 309 Copyright © 2011 by Pan Stanford Publishing Pte Ltd liposomes 23–24, 106, 140, 297, 321 luminescence, electric 204 lysophospholipids macrophages 8, 49, 55, 88, 228, 231–33, 237–38, 245, 283, 286 alveolar 235–36 magnetic resonance imaging see MRI malaria 92, 94, 101–2 materials, genetic 64, 106 MD (molecular dynamics) 112, 295, 314 metallic CNTs 109, 185, 187, 198 metallic nanotubes 291 metallic SWCNTs 268, 270, 277, 316 metallic tubes 67, 109, 254, 268, 270, 277 micelles 6, 8–9, 18 microcavity 253–54 microelectrodes, single-walled carbon nanotube surface 182 mixed neuroglial cultures 160–161 molecular dynamics (MD) 112, 295, 314 MRI (magnetic resonance imaging) 36, 50, 286 muscle cells, smooth 48, 213, 229, 244 MWNTs, puriϐied 169–70 N-doped nanotubes 289 nano-transistors 185, 189, 196 nanocomposites 106, 125, 127, 129, 131, 209 nanoelectronics 248, 293, 322, 328 nanoneedles 2–3, 34 nanopeapods 305–7, 312, 314, 332 nanostructures 8, 208, 236, 282, 288, 293, 300–301, 329 nanotube emission 284–85 nanotube networks 121, 293 nanotube spearing 134 nanotubes aligned 212 cationic 132 coated 259 electric-arc 237 large-diameter 289 modiϐied 224 339 340 Index narrow-diameter 289 nickel-embedded 134 non-functionalised 154 oligonucleotide-bound 283 oxidised 10 plain 267 puriϐied 237 raw (RNTs) 237 semiconductive 189 uncharged 93 unsorted 272 unwrapped 294 nanotubes exocytosis 287 nervous system 151–52, 160, 171, 180 NEs (neuronal electrodes) 301 networks, ordered 293–94 neural stem cells see NSCs neurite branching 154–55, 157, 176–77 neurite extension 153, 166, 169–70, 173, 176, 212 neurite outgrowth 153–61, 163, 166–68, 170–171, 177–78, 301 neurites 151–55, 157–60, 162, 166–67, 176–78, 212, 301, 331 neuron adhesion 162 neuronal activity 168, 172–73, 175, 177 neuronal anchorage mechanism 164, 181 neuronal cell clusters 163 neuronal cells 151, 153, 161–62, 164–66, 168, 170–172, 177, 301 cultured 163, 173 excitable 167 hippocampal 155, 157 neuronal electrodes (NEs) 301 neuronal markers 159, 167–68 neuronal membranes 175–76 neuronal networks 153, 162–63, 168, 173, 175 neuronal tissues 161 neurons 134, 151–55, 157–77, 179–80, 182, 212, 301 growth of 166, 169, 212 neurospheres 167 neurotrophins 158–59, 179 NIR ϐluorescence 111, 202–3, 286 NMR (nuclear magnetic resonance) 14, 278–79 non-covalent functionalisation 2, 27, 29, 51, 71, 125, 257, 259–60, 285, 297 Copyright © 2011 by Pan Stanford Publishing Pte Ltd non-speciϐic binding (NSB) 71–72, 75, 124, 195, 260, 265 NSB see non-speciϐic binding NSCs (neural stem cells) 167–68 nuclear magnetic resonance (NMR) 14, 278–79 nucleic acids 6, 36, 54, 59, 82, 105–7, 109, 111, 113, 115, 117, 119, 121, 123–25, 131, 147–48 nucleobases 77, 107, 119–20, 146 optical imaging 49–51 OVA (ovalbumin) 92, 99 oxidation 14, 25–27, 58, 75, 117, 160, 226, 255, 301 oxidative stress 233, 235, 244 oxidised MWCNTs 61, 227 oxidised SWCNTs 10, 53, 59–60, 122–23, 128 oxygen 119, 191–92, 205, 325 PABS (poly-aminobenzene sulphonic acid) 155, 157 PAIEI (phonon-assisted indirect exciton ionization) 252 parasites 92–93 PBS (phosphate buffered saline) 6, 58–59, 241 PEG (polyethylene glycol) 9, 26, 29, 53, 61, 67, 140–141, 155, 157, 201, 226, 256, 258, 267, 320 PEG chains 53, 59, 61, 64, 66, 257, 262 PEG-MWCNTs 226 PEI (polyethyenimine) 61, 153–57, 167, 177, 245, 279 PEO (polyethylene oxide) 9–10, 195 peptide-MWCNTs 302 peptide-nanotube conjugates 171–72 peptide nucleic acid see PNA PG (1,2-lysophosphatidylcholine) phonon-assisted indirect exciton ionization (PAIEI) 252 phonons 187, 250–252, 272, 304, 319 optical 251–52 phosphate buffered saline see PBS Index phospholipids 6, 17, 26, 66, 140–141, 262 phosphorus 288–89, 328 phosphorus-doped single-wall carbon nanotubes 328 photoluminescence 110, 205, 253, 255, 269, 325 plasmid DNA 51, 133–34, 149, 225 PLL (poly-đ-lysine) 162, 177 PLO (poly-đ-ornithine) 153, 160, 167, 177 PLO-coated glass substrates 159 PNA (peptide nucleic acid) 73–74, 85, 113–14, 145 poly-đ-lysine (PLL) 162, 177 poly-đ-ornithine see PLO poly(γ-glutamic acid) (γPGA) 257 polysaccharides 12–14, 16, 19, 300 POPC (1-palmitoyl-2-oleoyl-sn-glycero-3phosphocholine) post-synaptic currents (PSCs) 170, 174, 301 power, thermoelectric 191 pristine CNTs 4, 11, 159, 164, 193, 209, 226, 255, 301 pristine MWCNTs 13, 142, 227–28 pristine MWNTs 153–54, 157, 159, 170 pristine tubes 276, 315–16 prostate-speciϐic antigen see PSA protein target 126–27 PSA (prostate-speciϐic antigen) 50, 74–76, 85–86, 195 PSCs (post-synaptic currents) 170, 174, 301 PVP (polyvinylpyrrolidone) 29 QCM (quartz crystal microbalance) 71, 78, 86, 266 QDs (Quantum dots) 50, 82, 117–19, 202, 269, 279 quartz crystal microbalance see QCM radial breathing mode see RBM radiotherapy 64–65, 79 Raman scattering of phosphorus-doped single-wall carbon nanotubes 328 Raman spectroscopy 81, 144, 147, 262, 274, 279, 304, 307, 319–21, 328 rat hippocampal cells 173–74 Copyright © 2011 by Pan Stanford Publishing Pte Ltd RBM (radial breathing mode) 16, 110, 124, 144, 204, 291, 304 RBM phonon frequencies 305 resistance, electrical 191–92 response times 192–93 responses, immunogenic 88–89 RGD (arginine-glycine-aspartic acid peptide) 53, 262, 266–67 RNA 7, 82, 105, 123–25, 138, 141, 143, 147, 150, 225 SAM (self-assembled monolayer) 73, 127 SC see sodium cholate scanning electron microscopy see SEM scanning tunneling microscopy (STM) 146, 269 SDS (sodium dodecyl sulphate) 6, 29, 43, 170, 199, 209, 271, 276, 316 self-assembled monolayer (SAM) 73, 127 SEM (scanning electron microscopy) 133, 154, 157, 160, 162, 164, 166, 173, 213, 278 sensors, chemical 191–92, 213, 215, 288 signal ampliϐication 78–79, 126, 128 signals, electric 191, 194, 199, 209, 212–13 silicon substrates 124, 329 singlet oxygen generation see SOG siRNA (small interfering RNA) 26, 54, 61, 82, 138–41, 143, 150, 263–64, 296–97 siRNA delivery 63, 82, 139–40, 143, 150, 263, 296, 319, 321 sites 3, 186, 291, 312 small-molecule-linked ssDNA 127 SMCC (succinimidyl 4-(N-maleim idomethyl)cyclohexane-1-carboxylate) 120 sodium cholate (SC) 201, 260, 271, 293, 298 sodium dodecyl sulphate see SDS SOG (singlet oxygen generation) 63, 83, 131 sonication 11, 13–15, 29, 32, 120, 203, 233–34 SPR (surface plasmon resonance) 92, 95 ssDNA 107, 111–13, 125–29, 136, 194 stability, chemical 34, 165, 256 STM (scanning tunneling microscopy) 146, 269 surface plasmon resonance (SPR) 92, 95 341 342 Index surfactant molecules 5–7, 271 ultra-short SWCNTs 65, 268–69 TEG (tri-ethylene glycol) 90, 119–20, 226, 299 TEM (transmission electron microscopy) 2, 36, 95, 175, 235, 278, 292, 295, 306–7, 309, 313 TFA (triϐluoroacetic acid) 32, 89–91, 135 Th1 cells 88, 94 therapeutic agents 2–3, 23, 26, 78 thermogravimetric analysis (TGA) 11, 15, 278 TMC (trimethyl chitosan chloride) 14 TNF (tumour necrosis factor) 73, 88, 95 transistors 73, 86, 188–90, 193, 195, 214, 318 transmission electron microscopy see TEM tri-ethylene glycol see TEG TRPC3 (transient receptor potential channel 3) 139, 150 tubes armchair 186 zigzag 186 tumour cells 2, 47, 59, 66, 79 tumour necrosis factor see TNF tumours 47, 50, 52–53, 55, 60, 62, 64, 69, 94, 257, 266–67, 297 vaccines 12, 88–89, 93, 100–102 van der Waals forces 279 vapour deposition, chemical 69, 76, 159, 256, 274 vascular endothelial growth factor (VEGF) 285, 327 VEGF (vascular endothelial growth factor) 285, 327 viability 58, 123, 155, 157, 162–63, 166–67, 172, 212, 226, 229, 290, 302, 328 voltammetry, cyclic 77, 169 Copyright © 2011 by Pan Stanford Publishing Pte Ltd water-soluble carbon nanotubes 43, 81, 320 water-soluble SWNTs 157, 176 wrapping 5, 145, 159, 185–87, 283, 303 physical π-stacking 256 XPS (X-ray photoelectron spectroscopy) 278 Zwitterionic interactions 10 ... Data A catalogue record for this book is available from the British Library CARBON NANOTUBES: FROM BENCH CHEMISTRY TO PROMISING BIOMEDICAL APPLICATIONS Copyright © 2011 by Pan Stanford Publishing... high ratio of length to diameter (aspect ratio) and are ultra-light-weight Carbon Nanotubes: From Bench Chemistry to Promising Biomedical ApplicaƟons Edited by Giorgia Pastorin Copyright © 2011... Cancer Therapy 3.2 Carbon Nanotubes: A Brief Overview 3.3 Carbon Nanotubes as Drug Vectors in Cancer Treatment 3.4 Delivery of Oligonucleotides Mediated by Carbon Nanotubes 3.5 Carbon Nanotubes in

Ngày đăng: 13/03/2018, 14:49

Xem thêm:

TỪ KHÓA LIÊN QUAN