1. Trang chủ
  2. » Giáo án - Bài giảng

Đề thi HSG tỉnh Quảng Bình năm 2008

2 1,4K 3
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 2
Dung lượng 56,5 KB

Nội dung

sở gd-đt quảng bình kỳ thi chọn học sinh giỏi lớp 11 Năm học : 2007 - 2008 Đề chính thức Môn : toán (thpt không chuyên) Thời gian làm bài : 150 phút (không kể thời gian giao đề) Bài 1 (2, 0 điểm) : Giải phơng trình 3cos sin 2 3 cos 2 3 sinx x x x = + Bài 2 (2, 0 điểm) : Tìm tất cả các tam giác ABC sao cho biểu thức 2008 P = cosAcosB cosC đạt giá trị lớn nhất. Bài 3 (2, 0 điểm) : Từ các chữ số 1, 2, 3, 4, 5, 6, 7 ta thiết lập các số tự nhiên gồm hai chữ số khác nhau rồi viết mỗi số vào những phiếu giống nhau (mỗi phiếu chỉ ghi một số), bỏ tất cả các phiếu vào trong một hộp. Lấy ngẫu nhiên hai phiếu từ hộp đó. Tính xác suất để trong hai phiếu lấy ra có ít nhất một phiếu mà số ghi trên phiếu đó chia hết cho 4. Bài 4 (2, 0 điểm) : Cho dãy số n (u ) xác định bởi công thức 1 n+1 n 2007 n u = 2008 1 2008 u = 2007u + ; n 1, n N. 2008 u ữ Tìm n limu ? Bài 5 (2, 0 điểm) : Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) cắt các cạnh bên SA, SB, SC, SD lần lợt tại bốn điểm phân biệt K, L, M, N. a) Chứng minh: SA SC SB SD + = + SK SM SL SN . b) Chứng minh: Tứ giác KLMN là hình bình hành khi và chỉ khi mặt phẳng (P) song song hoặc trùng với mặt phẳng (ABCD). hết sở gd-đt quảng bình kỳ thi chọn học sinh giỏi lớp 11 Năm học : 2007 - 2008 Đề chính thức Môn : toán ( thpt chuyên) Thời gian làm bài : 150 phút (không kể thời gian giao đề) Bài 1 (2, 0 điểm) : Giải phơng trình 3 sin2xsin4x + 2(3sinx - 4sin x + 1) = 0 Bài 2 (2, 0 điểm) : Tìm tất cả các tam giác ABC sao cho biểu thức 2008 A B C P = sin sin sin 2 2 2 đạt giá trị lớn nhất. Bài 3 (2, 0 điểm) : Cho 10 tấm thẻ đợc đánh số theo thứ tự 1, 2, 3, ,10 (mỗi thẻ đánh một số). Có bao nhiêu cách chọn ra một số các tấm thẻ (ít nhất là một) sao cho tất cả các số viết trên những tấm thẻ này đều lớn hơn hoặc bằng số tấm thẻ đợc chọn? Bài 4 (2, 0 điểm) : Cho dãy số n (u ) xác định bởi công thức 1 2 2 n+1 n n u = 2008 u = u - 4013u + 2007 ; n 1, n N. a) Chứng minh: n u n + 2007; n 1, n N . b) Dãy số (x n ) đợc xác định nh sau: n 1 2 n 1 1 1 x = + + . + ; n 1, n N. u - 2006 u - 2006 u - 2006 Tìm n lim x ? Bài 5 (2, 0 điểm) : Cho tứ diện ABCD có độ dài các cạnh AB, CD lớn hơn 1 và độ dài các cạnh còn lại nhỏ hơn hoặc bằng 1. Gọi H là hình chiếu của A trên mặt phẳng (BCD); F, K lần lợt là hình chiếu của A, B trên đờng thẳng CD. a) Chứng minh: 2 CD AF 1 - 4 . b) Tính độ dài các cạnh của tứ diện ABCD khi tích P = AH.BK.CD đạt giá trị lớn nhất. hết . sở gd-đt quảng bình kỳ thi chọn học sinh giỏi lớp 11 Năm học : 2007 - 2008 Đề chính thức Môn : toán (thpt không chuyên). hình bình hành khi và chỉ khi mặt phẳng (P) song song hoặc trùng với mặt phẳng (ABCD). hết sở gd-đt quảng bình kỳ thi chọn học sinh giỏi lớp 11 Năm học

Ngày đăng: 01/08/2013, 05:41

TỪ KHÓA LIÊN QUAN

w