Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)Nghiên cứu ứng dụng lý thuyết điều khiển hiện đại xây dựng mô hình trong điều khiển dự báo phi tuyến (Luận văn thạc sĩ)
O B IH L Huy n Linh U NG D T U KHI N HI I TRONG U KHI N D LU N THU T 2015 B O IH Huy n Linh U KHI N HI NG D U I U KHI N D thu N u n & T : 62 52 02 16 LU THU T NG D N KHOA H C PGS TS L i Kh 2015 O B IH U NG D U KHI N HI I TRONG U KHI N D LU T N THU T 2015 B O IH U KHI N HI NG D U I U KHI N D thu N u n & T : 62 52 02 16 LU THU T NG D N KHOA H C 2015 i ii iii i ii iii vi ix x 1 n .5 1.1 1.1.1 1.1.2 1.1.3 10 1.2 15 1.3 20 1.4 phi t 21 1.5 25 1.6 26 27 2.1 .27 2.1.1 .27 2.1.2 .28 2.1.3 30 iv 2.1.4 .31 2.2 .32 2.3 33 2.3.1 .33 2.3.2 41 2.4 .44 2.5 n 46 2.5.1 47 2.5.2 54 2.6 57 2.7 59 61 3.1 61 3.2 .62 3.3 66 3.4 71 3.4.1 76 3.4.2 79 3.5 3.5.1 81 h Cb .82 v hai 3.5.2 h Cb hai 87 3.6 92 Cb 3.6.1 .92 Cb 3.6.2 h .94 3.7 96 3.7.1 Cb .96 3.7.2 Cb 3.8 h 100 105 107 109 110 vi tk X (tk ) tk+1, tk+2 x (t ) u(t ) , U(t ) f ( ) , F(X) f (X) f ( X ) , F( X ) * wi* , wij , M * * i , wi , wij wi , wij A, B, D c O Im i (X) , Cij i , ij e(t ) , E(t ) f (X) P, Q rmin (Q) , rmax (Q) 103 3.32 u m c dung d ch h n d ng, uv dung d ch Cb c a b a b IMPC s d u i 5s ng 31, u n h 3.32 Cb , 5s Qua quan k sai - : Sau (3.53) 3.6.2 104 h Cb 33 33 c u 3.34 u u p nh n d c dung d dung d ch Cb u m c dung d ch h p nh n d dung d ch Cb c a b u s d ng hai ng 0s u u u n i 105 3.35 u m c dung d ch h IMPC p nh n d u s d ng hai ng 3.34., u u n u i 5s 3.35 bi h Cb 3.8 dung d ch Cb c a b , 5s 106 , , 107 hai hai 108 , l 109 KH (2011), " - - 2171, tr 195 - 200 (2013), Takagi - - 2171, tr 161 - 167 (2013) - 2171, tr 55 - 62 nh (2013) - - 2171, tr 49 - 54 N.T (2013), - - 2171, tr 115 - 122 Le Thi Huyen Linh, Lai Khac Lai, Cao Tien Huynh (2014), "A disturbance identification method based on Neural network for a class predictive control system with delay", - ISSN 0868 - 3980, tr 20 - 24 Trung (2014) - , ISSN 1859 - 2171, tr 137 - 141 (2014), - n - - 57 - 2171, tr 149 - 154 110 ), , , , -138 C , - , 20(6), tr 73 - 79 , V h - 186 VI , h - 293 h (2014), , , V 10 h 95 - 100 , Khoa , 111 11 , k 12 Ai Wu, Peter K., Tam S (2002), class of unknown Nonlinear Systems Based on Fuzzy Hierarchy Error , IEEE Trans on Fuzzy Systems, Vol 10, No 6, pp 779 - 789 13 Angrick C (2007), Nonlinear model predictive control of time-delay systems, Student thesis, University of Stuttgart 14 Atkeson C G., Moore A W Artificial Intelligence Review, Vol 11, No 5, pp 75 - 113 15 Bemporad A., Morari M (2004), , In Proc of European Control Conference, Porto, Portugal, pp 939 - 944 16 Cahse A control of Nonlinear Systems using n Automatica, Vol 37, No 8, pp 1201 - 1211 17 Camacho, Bordons (2007), Model Predictive Control, Springer Venlag 18 Cannon M R., Slotine J J E (1995), Space - frequency localized basis function and Control neuro computing, Vol 9, pp 293 - 342 19 112 24 Christopher E., Sarah K (1998), Sliding Model Control Theory and Applications, Taylor & Francis, UK 25 Cutler C R., Ramaker B C (1980), Dynamic matrix control a computer control algorithm, in Automatic Control Conference, San Francisco 26 Daniel E Rivera (1999), Internal model control: A comprehensive view, Dept of Chemical, Bio and Materials Eng., Arizona State University, Tempe, USA 27 Eric Coulibaly, Sandip Maitis, Coleman Brosilow W Automacticka, Vol 31, No 10, pp 1471 - 1482 28 Farrell J A., Zhao Y (2006) In - Proc Amer Control Conf Minneapolis, MN, pp 3378 - 3384 29 Farrell J A., Polycarpou M M (2006), Adaptive Approximation Base Control Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches, Hoboken, Wiley 30 Frank Allgower, Rolf Findeisen, Christian Ebenbauer (2010), Nolinear Model Predictive Control, Stuttgart In ISA 31 Froisy J (1994), Transactions, Vol 33, pp 235 - 243 32 Gantmakker Ph R (1977), Matrix Theory, Nauka, Moscow 33 Journal of Control Theory and Applications, (2), pp 189-194 113 34 Haralambos Sarimveis, Georg , Fuzzy Sets and Systems 139, ofnonElsevier B.V All rights reserved, pp 59 - 80 35 Neural Comput, 2(2), with pp 210 -2 15 36 Heinrich Rake, Matthias Wellers (2000), , Nonlinear Model Predictive Control Progress in Systems and Control Theory, Vol 26, pp 357 - 366 37 systems with uncertain state- International Journal of Robust and Nonlinear Control, 14(17), pp 1421 - 1432 38 Huang S N., Tan K K., Lee T H ( controller for a class of nonlin Automatica, (37) pp 611 - 618 39 40 Jinkun Liu (2013), Radial Basis Function (RBF) Neural Network Control for Mechanical Systems, Springer Venlag 41 Junhong N., Derek L (1995), Fuzzy - Neural Control Principles Algorithm and Applications, Prentice Hall, Europe 42 Kantner M (1997), Nonlinear MPC lower bounds via robust simulation, American Control Conference, Vol 3, pp 1633 - 1644 44 polytopic unce Science, 42 (10), pp 1651 - 1660 International Journal of Systems 114 45 Neural Computing and Applications 46 Journal of Electronics 47 Liuping Wang (2008), Model Predictive Control System Design and Implementation Using MATLAB, Springer Venlag 48 Lyu S., Wu C., Zhang S (2013), , Mathematical Problems in Engineering, Vol 2013, Article ID 205169, 11 pages 49 Marcus Reble (2013), Model Predictive Control for Nonlinear Continuous-Time Systems with and without Time-Delays, University Stuttgart 50 Mayne D Q., Rawlings J B., Rao C.V., Seokaert P O M (2000), Automatica, Vol 36, pp 789 - 814 51 Maciej Lawrynczuk (2014), Algorithms A Neural Network Approach, Springer International Publishing Switzerland 52 Marcus Reble, Frank Allgower (2013), Stabilizing design parameters for model predictive control of constrained nonlinear time-delay systems, Institute for Systems Theory and Automatic Control (IST), University of Stuttgart, Germany 53 Martin T Hagan, Howard B Demuth, Orlando International Journal of Robust and Nonlinear Control, Int J Robust Nonlinear Control, pp 959 - 985 54 Man on Industrial Electronics, Vol 50, No 3, pp 620 - 628 IEEE Transactions 115 55 Ming T Tham (2002), Internal model control, Chemical and Process Eng., University of Newcaslte upon Tyne 56 Michael Athans, Peter L Falb (1966), Optimal Control, Mc Graw - Hill Book Company 57 Morari M , Lee J H (1991), In Proc Conf On Chemical Process Control, CPC - IV AIChE, New York, pp 419 - 444 58 Moshe Sniedovich (2011), Dynamic Programming Foundations and Principles, Second Edition, Taylor and Francis Group 59 Narendra K S., Parthasarathy Systems using Neural Trans On Neural Networks, No 1, pp - 27 60 Nakanishi J., Farrell J A., Shall S (2005), Composite adaptive control with locally weighted Statistical learning , Neural Networks, Vol 18, No.1, pp - 90 61 Nelles O (2001), Neural networks and fuzzy models, Springer, Berlin 62 - Weierstrass Theorem and Application to Neural IEEE Vol 1, No 4, pp 290 - 295 63 Ortega J M (1987), Matrix Theory, Plenum Press, New York 64 Park J., Sandberg L W (1 basis Neural Comput, 3(2), pp 246 - 257 65 Park J H., Huh S H., Kim S H, Seo S J (2005), Direct adaptive controller for non-affine nonlinear systems using self-structuring neural networks IEEE Trans Neural Netw., Vol 16, No 2, pp 414 - 422 66 Pieter Eykhoff (1974), System Identification, John Wiley and Sons Ltd 67 Piyush Shrivastava (2011), Modeling and Control of CSTR using Model based Neural Network Predictive Control, Takshshila Institute of Engineering & Technology, Jabalpur, Madhya Pradesh, India 116 68 Poznyak A S., Sanchez E N., Yu W (2001), Differential Neural networks for Robust Nonlinear Control Identification, State Estimation and Trajectory Tracking, World Scientific publisling co., Singapore 69 Psichogios D C., Ungar L H (1990), , Department of Chemical Engineering University of Pennsylvania, IEEE, pp 1082 - 1087 70 Qin S., Badgwell T (2003), Control Engineering Practice, Vol 11, pp 733 - 764 71 Qin S., Badgwell T (2000), , Nonlinear Predictive Control, Birkhauser, pp 369 - 393 72 Raff T., Angrick C., Findeisen R., Kim J S., Allgower F (2007), Model predictive control for nonlinear time-delay systems, Proc 7th IFAC Symposium on Nonlinear Systems, Pretoria, South Africa 73 International Journal of Innovative Computing, Information and Control, Vol 9, No 3, pp 1245 - 1257 74 Richalet J., Rault A., Testud J L (1976), Algorithm control of industrial process, in 4th IFAC symposium of identification and system parameter estimation, Tbilisi 75 Rolf Findeisen, Frank Allgower (2013), An Introduction to Nonlinear Model Predictive Control, Institute for Systems Theory in Engineering, University of Stuttgart, Germany 76 77 ve Control for , International Federation of Automatic Control Noordwijkerhout, NL August, pp 23 - 27 117 78 Wei Sun, Yaonan Wang (2004), A recurrent Fuzzy Neural Network based Adaptive Control and its Application on Robotic Tracking Control , Neural Information Processing - Letters and Review, Vol 5, No 1, pp 19 - 26 79 Wenjie Dong, Yuanyan, Yiming Chen, Jay A Farrel (2012), Tracking Control for Nonaffine Systems, A self organizing Approximation Approach, IEEE Trans on Neural Networks and Learning Systems,Vol 23, No 2, pp 223 - 235 80 Wen Yu, Xiaoou Li, Yin F., Wang Y (2004), , LNCS 3174, pp 212 - 217 81 Within C., Peter Meckl H (2004), -Free observer Backstepping Control Design for Nonlinear Systems in Strict Feedback Form Conference on Decision and Control, Proc Of 43rd IEEE, pp 14 - 17 82 83 Yu W.; Li X differential Neural Trans Neural Networks, No 12, pp 412 - 417 ... N u n & T : 62 52 02 16 LU THU T NG D N KHOA H C PGS TS L i Kh 2015 O B IH U NG D U KHI N HI I TRONG U KHI N D LU T N THU T 2015 B O IH U KHI N HI NG D U I U KHI N D thu N u n & T : 62 52 02... .5 1.1 1.1.1 1.1.2 1.1.3 10 1.2 15 1.3 20 1.4 phi t 21 1.5 25 1.6 26 27 2.1 .27 2.1.1 .27 2.1.2 .28 2.1.3