1. Trang chủ
  2. » Khoa Học Tự Nhiên

Gold nanoparticles for physics, chemistry and biology (2nd ed)

676 210 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 676
Dung lượng 48,24 MB

Nội dung

b2530   International Strategic Relations and China’s National Security: World at the Crossroads b2530_FM.indd Q0036_9781786341242_tp.indd 28/4/17 5:11 PM b2530   International Strategic Relations and China’s National Security: World at the Crossroads b2530_FM.indd Q0036_9781786341242_tp.indd 28/4/17 5:11 PM Published by World Scientific Publishing Europe Ltd 57 Shelton Street, Covent Garden, London WC2H 9HE Head office: Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 Library of Congress Cataloging-in-Publication Data Names: Louis, Catherine (Chemist) | Pluchery, Olivier Title: Gold nanoparticles for physics, chemistry and biology / Catherine Louis (Université Pierre et Marie Curie, France), Olivier Pluchery (Université Pierre et Marie Curie, France) Description: 2nd edition | New Jersey : World Scientific, 2017 | Includes bibliographical references Identifiers: LCCN 2016034787 | ISBN 9781786341242 (hc : alk paper) Subjects: LCSH: Nanoparticles | Gold Classification: LCC TA418.9.N35 L68 2017 | DDC 669/.22 dc23 LC record available at https://lccn.loc.gov/2016034787 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Copyright © 2017 by World Scientific Publishing Europe Ltd All rights reserved This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the Publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher Desk Editors: Herbert Moses/Mary Simpson Typeset by Stallion Press Email: enquiries@stallionpress.com Printed in Singapore Herbert Moses - Gold Nanoparticles for Physics, Chemistry and Biology-2nd Edition.indd 08-05-17 3:03:40 PM April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-fm page v Contents About the Authors xxi Gold Nanoparticles in the Past: Before the Nanotechnology Era 1.1 The First Usage of Gold 1.1.1 Quest for Gold and Gold Production 1.1.2 The First Gold Jewels and Artefacts 1.1.3 Gold for Monetary Exchanges and the Gold Standard 1.1.4 Gold for Human Well-being: Food, Drinks and Medicine 1.1.5 Gilding Gold and Gold-like Lustre 1.2 The First Uses of Gold Nanoparticles 1.2.1 Introduction 1.2.2 The Lycurgus Cup 1.2.3 Medieval Period 1.2.4 Fifteenth and Sixteenth Centuries 1.2.5 Seventeenth Century 1.2.5.1 Purple of Cassius 1.2.5.2 Kunckel glass 1.2.5.3 Perrot glass 1.2.6 Gold Ruby Glass in the Eighteenth Century 1.2.7 Gold Ruby Glass and Cranberry Glass in the Nineteenth Century v 1 8 11 12 13 14 15 16 17 18 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-fm page vi Contents 1.2.8 Pink Enamel Porcelain: Rose Pompadour and Famille Rose 1.3 Scientific Approach of the Preparation of the Gold Ruby Colour 1.3.1 Elucidation of the Constitution of the Purple of Cassius in the Nineteenth Century 1.3.2 Chemical Approach to the Formation of the Purple of Cassius 1.3.3 Chemical Approach to the Preparation of Gold Ruby Glass 1.4 Conclusion Introduction to the Physical and Chemical Properties of Gold 2.1 Introduction 2.2 Physical Properties of Massive Gold 2.2.1 Crystal Structure 2.2.2 Density 2.2.3 Magnetic and Electrical Properties 2.2.4 Theoretical Calculations on Metallic Gold 2.2.5 Cohesive Properties 2.3 Relativistic Effects on the Properties of Gold 2.3.1 Why Relativity? 2.3.2 Optical Properties, Interband Transitions and Relativistic Effect 2.4 Chemical Properties of Gold in Relation to its Neighbours 2.5 More on Gold Chemistry 2.6 Surface Science and Cluster Studies 2.7 The Aurophilic Attraction 2.8 Dependence of Physical and Chemical Properties of Gold on Particle Size 2.9 Conclusion 19 20 20 21 22 25 29 29 30 30 31 32 32 33 33 33 36 37 39 39 40 41 44 Optical Properties of Gold Nanoparticles 3.1 Introduction 51 51 vi April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-fm page vii Contents 3.2 3.3 3.4 3.5 3.6 3.1.1 A Brief History of Plasmonics 3.1.2 What Is the Ambition of the Present Chapter? Distinction between Localised Surface Plasmon Resonance and Surface Plasmon Resonance 3.2.1 Optical Properties of Metals 3.2.2 The Dielectric Function of Gold 3.2.3 Plasmon Resonance at Surfaces (SPR) 3.2.4 Localised Surface Plasmon Resonance in Nanoparticles Theoretical Description of the Localised Plasmon Resonance 3.3.1 About Mie Theory 3.3.2 The Quasi-static Approximation for Describing the Localised Plasmon Resonance 3.3.3 Extinction and Scattering Cross-Sections 3.3.4 Experimental Illustrations 3.3.5 Local Field Enhancement and Nanoantennas 3.3.6 Beyond the Quasi-static and Dipolar Approximations Factors Shifting the Plasmon Resonance of Gold Nanoparticles 3.4.1 What is the Dependence of the LSPR with the Nanoparticle? 3.4.2 Influence of the Surrounding Medium 3.4.3 Plasmon Resonance of Ellipsoids and Other Shapes 3.4.4 The Case of Very Small (Less than nm) and Very Large Gold Nanoparticles (Greater than 60 nm) Optical Response of Assemblies of Nanoparticles 3.5.1 Supported Gold Nanoparticles 3.5.2 Nanoparticle Coupling 3.5.3 Effective Medium Approximation Methods Conclusion vii 52 53 54 55 56 57 59 60 60 60 63 65 66 68 69 70 71 72 77 78 79 79 81 83 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-fm page viii Contents Photothermal Properties of Gold Nanoparticles 4.1 Introduction: Light to Heat Conversion at the Nanoscale 4.1.1 Electron–Phonon Scattering in Bulk Metal 4.1.2 The Localised Plasmon Resonance as an Effective Energy Input Channel 4.1.3 A Series of Energy Exchanges 4.2 Basic Plasmonic Photothermal Properties 4.2.1 Power Input in Nanoparticles 4.2.2 Basic Approach: Pure Diffusion, Perfect Contact 4.2.3 Accounting for Interface Thermal Resistance 4.2.4 Steady-state Photo-heating 4.2.4.1 Nanoparticle scale 4.2.4.2 Macroscopic scale 4.2.5 A Few Emblematic Applications 4.3 Transient Thermal Behaviour with Pulsed-Light Irradiation 4.3.1 Instantaneous Light Pulse Approximation 4.3.2 Athermal Regime 4.3.3 Thermal Regime 4.3.3.1 Analysis of the energy exchanges 4.3.3.2 Tuning the thermal spatial range with pulse duration 4.3.3.3 Cumulative thermal effect 4.3.4 When the Fourier Law Fails: What Occurs at Small Space and Time Scales 4.4 Influence of Morphological Parameters 4.4.1 Nanoparticle Environment 4.4.2 Nanoparticle Size 4.4.3 Nanoparticle Shape 4.4.4 Nanoparticle Density 4.5 Thermo-optical Properties of Gold Nanoparticles 4.5.1 Bulk Gold 4.5.2 Gold Nanoparticles viii 87 88 88 89 89 91 92 94 95 96 97 98 99 102 102 104 107 108 113 113 115 117 118 118 120 121 121 122 123 b2530   International Strategic Relations and China’s National Security: World at the Crossroads This page intentionally left blank b2530_FM.indd 01-Sep-16 11:03:06 AM April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index amperometric detection, 553 anion adsorption, 234–236, 239, 242 anti-fogging, 319, 343 anti-fungal, 592 aqua regia, 6, 9–10, 13–14, 22–23, 38, 168 array of nanoparticles, 132, 137–141, 149, 269, 375, 382–383, 414, 487–490, 613 Ars Vitraria Experimentalis, 13, 15 artificial photosynthesis, 319, 342, 357 aspect ratio, 74–76, 93, 96, 120, 180, 182–183, 185, 217, 350, 503, 546, 608, 620 athermal regime, 91, 104–108, 111 atomic force microscopy (AFM), 231, 396, 412, 414 AuCl, 38, 230, 267, 466 AuCl− , 168, 176, 179, 181, 255, 266, 454, 594 Auger, 513, 523–526, 529 Auger electrons, 526 auranofin, 39 aurophilic attraction, 40, 45–46 Aurum potabile, automobile exhaust catalysts, 610 autoxidation, 294, 303 A absorption cross-section, 65, 71, 78, 93, 106, 117, 120, 501, 518–519 accumulated, 577, 581, 586, 597 adsorption, 178, 203–207, 218–221, 223, 231, 235–236, 238–240, 246, 252, 255–257, 265–267, 288–289, 306–307, 310, 326–327, 335, 342, 354–355, 396–397, 412, 419–420, 453, 469–470, 540, 579, 587, 592 agglomeration, 590 aggregation, 66, 170, 173, 179, 202, 214, 245, 249, 323, 349, 406, 411, 538–539, 543, 614 alchemy alchemical transmutation, 14–15 alchemists, 6, 11–12, 14–15, 17 alcohol alcohol decomposition, 297 alcohol oxidation, 286, 294–297, 336 aldehydes production (see also hydrogenation reaction), 294 algae/microalgae, 591, 594, 596 alkoxide (precursor, intermediate), 213, 261, 263, 296–297, 299 alkyne, see hydrogenation reaction alloy (see also bimetallic, intermetallic), 5, 7, 10, 31, 187, 189–190, 242, 246, 254–255, 257, 260, 263, 348, 365, 426–427 B bacteria, 341, 591–594, 620 Baiker method, 173 633 page 633 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index bath mode, 138–139 bimetallic (see also alloy, intermetallic) bimetallic catalyst, 241, 245, 253, 255, 257–258, 327 bimetallic colloid, 253, 263 bimetallic nanoparticle, 186–187, 193, 231–232, 242, 255–256, 263–264, 425, 428 bio-barcode, 551 bio-nano interaction, 577 biocompatibility, 540–541, 557, 559 biodistribution, 579, 581, 583, 585 biofunctionalisation, 181, 203, 206, 219–220 biogenic, 594 biokinetics, 581 biological damage, 509, 512, 519, 533 biomass, 299, 346 biomolecular functionalisation, 202 biosensor (see also sensors), 60, 69, 83, 171, 220, 268, 321–322, 484, 553–554 biotin, 487, 588 blood-brain barrier, 564, 582, 587 Bologna manuscript, 12 Böttger, Johann Friedrich, 17 Brust method, 173, 250 Brust–Schiffin method, 175–177 Bruggeman approximation (see also effective medium approximation), 82 burst nucleation, 171 cation (see also gold cation), 38–39, 239, 287, 450, 454 cation adsorption, 239 cation exchange, 239 cell survival, 526, 529–530, 532 cellular toxicity, 587 charge carrier, 319–320, 323–324, 327, 331, 340, 342, 346, 354, 357 charge transfer, 232, 328, 330, 345, 356, 419, 424, 468, 473, 497, 609 charge transfer plasmon, 152 chemical derivatisation, 202, 206 chemical reduction, 172–173, 176, 178, 190, 230, 242, 247, 253, 265 chemical vapour deposition (CVD), 240, 411 citrate, 168, 173–174, 176, 181, 202, 209, 214, 216, 244, 248, 254, 266, 588, 597–598 clonogenic assay, 513 cluster, 40–41, 167, 176–177, 207, 267, 286, 288, 301–302, 306, 322, 402, 406, 409, 411, 419, 439, 449, 452–453, 469–470, 473, 589, 602, 616 Au55 cluster, 177, 589 cluster deposition, 407–408, 411, 415, 419 anionic cluster, 443, 447, 451 cationic cluster, 441 ligand-protected cluster, 452 mass-selected cluster, 407, 418–419 monolayer protected cluster (MPC), 166, 454, 554 CO adsorption, 288, 423 CO oxidation, 187, 285, 468–469, 476, 610 d-band parameter, 286 bilayer, 183, 220, 286 bromide poisoning, 288 effect of water, 290 electronic effect, 286 geometric effect, 286 hydroxycarbonyl intermediate, 287 kinetic isotope effect, 290 C cancer, 101, 223, 381, 490–491, 495, 497, 503, 511, 522, 527, 533, 559, 614 capping (agent, layer, ligand, molecule), 173, 183–184, 202, 206, 217, 219, 223, 248, 256, 323, 537, 565 Cassius, Andrea, 9, 14, 19 Purple of Cassius, 9, 14, 17, 20–24, 611 catalysis/catalyst, see Chapters 6, 8, 9, 10, 12, 18 cathodoluminescence, 372–376, 379–380, 382, 384 634 page 634 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index page 635 Index low index facets, 169 cubic, see shape of monocrystalline particles cuboctahedron, see shape of monocrystalline particles particle perimeter, 287 quantum size effect, 286 CO2 hydrogenation, 309–310 co-precipitation, 261, 263 co-reduction, 189–190, 254, 256, 263 cohesive properties, 33 colloid, 19–21, 41–42, 66, 78, 170–171, 180, 183, 209, 230, 245, 247–248, 250, 262, 264, 323, 377, 415, 567, 575, 590, 611, 618 colorimetric assay, 613 colour, 8, 21, 23, 25, 42, 44, 53, 372, 385, 543, 611 commutation relation, 135 Compton process, 521 computerised tomography, 555 conducting polymer, 266, 553, 560 conduction band (CB), 36, 38, 77, 90, 104, 153, 320, 324–325, 357 confocal microscopy, 565–567 contact angle, 343, 359 contrast agent, 484, 491, 499, 506, 554 contrast enhancement, 563, 616 coordination (number, of atoms, chemistry, site), 44, 203, 205, 266, 286, 305, 399 low coordination number, 42, 44, 298 copolymers, 177 diblock copolymer, 210, 248, 252, 269, 413 core–shell, 69, 101, 112, 152, 187, 190, 212–215, 425 corona, 177, 250, 577 Coulomb, 33, 119–120, 134 Coulomb blockade, 609 Coulomb staircase, 609 cranberry glass, 18 crystallographic facets Au(100), 185, 398, 402, 427, 456 Au(110), 397–399 Au(111), 185, 204, 288, 305, 397, 399, 402, 416, 418, 427, 456, 469 high-index facets, 184, 191 D daphnid, 591, 595–596 dark-field microscopy, 487, 492 data storage, 321, 608–609 De Auro, 14 decahedron, see shape of monocrystalline particles decoherence, 148–149 delivery vehicle, 556 dendrimer, 179, 210, 247–248, 256, 265–266 PAMAM dendrimer, 210, 253, 256, 262, 265 density of states (DOS), 44, 96, 118, 142–143, 369, 373–374, 380, 441, 451, 462 deposition-precipitation, 235–238, 242, 267, 323, 413 deposition-reduction, 230–231, 233, 241, 245, 265, 268, 413 deprotonation, 299 density functional theory (DFT), 46, 289-290, 292, 297, 305, 310, 416, 418, 440, 444, 446, 457, 462 diagnosis/diagnostics, 7, 218, 224, 484, 490–491, 501, 511, 537–538, 542, 612 dichroism, 10, 21, 205, 440, 612 dielectric constant, 32, 34, 133–134 dielectric function, 55–57, 61, 71, 73, 81–82, 88, 122, 138, 150, 484, 502, 602 differential scanning calorimetry (DSC), 171 diffraction limit, 131, 137, 378 dimer Au-Au dimer, 37–38, 40, 45, 406, 409, 427, 456 particle dimer, 81, 144, 152–153, 188, 384–489, 617 635 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index electron energy loss spectroscopy (EELS), 232, 375, 396 electron microscopy, 379, 386, 402, 421, 563, 616 electron spill-out, 77, 119, 151 electron transfer, 286, 325, 328, 330, 336, 348, 355, 560 electron traps (ETs), 324–325, 332 electron tunnelling, 133, 151–152, 154 electron–electron scattering, 88 electron–phonon scattering, 88, 92, 106 electrostatic approximation, 62, 65, 71 electrostatic interaction, 206, 236 emission pattern, 374, 381–382 endocytosis, 556, 558, 562, 564, 577, 618–619 energy dispersive X-ray spectroscopy (EDX), 170, 232 energy transfer, 89, 92, 120, 328, 337–338, 354 enhanced permeability and retention (EPR), 330, 346, 557 entanglement, 145, 149, 154 environmental purification, 319, 321, 340, 357 environmental remediation, 621 enzyme, 541, 547, 551–554 mitochondrial enzymes, 580 epithelial growth factor receptor (EGFR), 492, 498 epitaxial, 185, 189, 191, 416 epoxidation, 286, 290, 293, 300 European Chemical Agency (ECHA), 578 extravasation, 618, 620 dimethyl-acetylacetonate gold(III), (CH3 )2Au(acac), 230, 240 dip coating, 269, 413–414 dipolar mode, 88, 379–381 directionality, 380–381, 383, 386 discrete dipole approximation (DDA), 64, 68, 171, 337 dispersion relation, 58, 134, 484 dissolution of gold, 6, 9–11, 38, 302 divide and protect concept, 458, 461, 467 DNA damage, 512, 520–530, 582, 589 DNA strand break, 514, 519, 529 dodecahedron, see shape of monocrystalline particles driven-dissipative approach, 149 Drude model, 56–57, 88 drug, 7, 101, 222, 516, 548, 550, 559–562 drug delivery, 7, 83, 101, 212, 224, 321, 353, 501, 505, 557, 618 drug transport, 557 dual site mechanism, 289 dye-sensitized solar cell (DSSC), 345 dynamic light scattering (DLS), 170 E ecotoxicity, 575, 595 ecotoxicological impact, 575 effective medium approximation (EMA), 78–79, 81–82 electric quadrupole, 381 electrical excitation, 365–372, 377, 381, 385 electrochemical method, 180, 185 electrodeposition, 180, 186, 269 electrode, 180, 268, 367, 385, 553 electroless deposition (ED), 259, 604 electromagnetic local density of states (EM-LDOS), 374 electronegativity, 30, 35, 37, 44 electron(s), 151, 324, 518–519, 525, 529, 532 electron affinity, 35, 37, 457 electron beam lithography (EBL), 414 electron carrier, 553 electron energy levels, 43 F Förster fields, 137 Famille Rose, 19–20 Fano interferences, 144 Faraday, Michael, 20, 31, 452 fidelity, 139–140 film, see gold film fingerprint, 567 finite difference time domain (FDTD), 68, 93, 171, 355 636 page 636 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index page 637 Index H fluorescence, 101, 143, 373, 494, 547, 565 fluorescence microscopy, 494 fluorescence quenching, 143, 547–548 Fourier law, 92, 95, 111, 114–115, 117 Fourier transform infrared (FT-IR) spectroscopy, 170, 469 Fowler–Nordheim tunnelling phenomenon, 153 Fröhlich criterion, 136, 138 Frens method, 176 functional ligand, 209 hazard, 576, 578, 590–591, 597 heat transfer, 91–92, 96, 102, 109–111, 120 Heisenberg equations, 138 heteroepitaxial growth, 191 heterolytic dissociation, 307 high atomic number, 511, 519, 521, 533 high-energy electron, 372, 375, 379, 383–384, 386 high-resolution transmission electron microscopy (HRTEM), 170, 402 hole, 119, 319, 324–325, 328, 330, 351, 414, 490 hot electron, 326, 328–330, 334, 347–348, 356, 367–368 hot spot, 67, 336, 380, 487 hot-injection, 172 human health, 575–576, 578 hybrid, 132, 142, 154 hybrid (particle, material), 101, 103, 211, 265, 353–355, 383–384, 548, 616 hybrid eigenmode, 144 hybrid mode, 143–144 hybridisation, 37, 41, 194, 348, 351, 355, 446, 469–470, 505 hydride transfer, 308 hydrogen oxidation, 292 hydrogen peroxide, 290–291, 299–300, 319, 330 hydrogenation reaction, 285–286, 295, 297–298, 304–306, 310, 393, 476 hydroperoxide, 301 hydrophilicity, 219, 250, 343, 359, 577 hydroxycarbonyl, 287–290 hydroxyl, 180, 210–212, 234, 287, 293, 297, 319, 324, 326–327, 346, 348, 412, 416, 512–514, 531–532 hydroperoxyl, 292, 297–298 hydroxyl radicals (• OH), 319 hyperthermia, 101–102, 557, 560–562, 568, 620 G G-value, 532 galvanic replacement, 188–189, 192–193, 258–259, 266 Geant4, 521, 525 gene gun, 566–567 gene therapy, 505, 558, 619 genotoxicity, 587, 589 glass, 7–12, 14–19, 22, 24–25, 52, 71, 171, 268, 270, 334, 382, 605, 610 Glauber, Rudolf Johann, 14–16, 19 gold cation, 235, 322, 339 gold chloride, 6, 10, 14, 23, 230 AuCl, 38, 230, 267, 466 AuCl− , 168, 176, 179, 181, 255, 266, 454, 594 tetrchloraoauric acid (HAuCl4 ), 41, 173, 175, 230, 233, 236–237, 241–242, 244, 246–248, 252, 254–261, 263–265, 267, 269–270 gold coined, 3, gold cyanide, 6, 38 gold film, 2, 7–8, 404, 412, 416, 424, 484–485, 604 gold leave, 6, 8, 10–11, 22 gold ruby (glass enamel), 9–25, 51 gold sol, 21–22, 230, 249 gold tetrammine nitrate, 239 gold(III) ethylenediamine, 239 gold–silver hollow structure, 193 637 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index in vivo, 220, 492, 495, 497-500, 504, 506, 542, 581 ionic strength, 590–591 ionisation, 31, 35, 37, 444, 517, 519–520, 523 inner-shell ionisation, 512–513, 524, 526 photoionisation, 523 irradiation, 87, 93–94, 98–99, 102–103, 110, 113, 115, 117, 179–181, 215, 243–245, 247, 249, 254, 256–257, 268, 320, 321, 323–324, 326–335, 338–339, 340–345, 347, 348–350, 352–359, 374, 414, 514, 525, 527, 529, 531, 561, 566, 592–593, 604 I γ-irradiation, 179–180 icosahedron, see shape of monocrystalline particles imaging, 7, 100–101, 131, 194, 210, 218, 224, 232, 353, 371, 378, 402, 483–484, 491–492, 494–500, 503, 510–511, 528, 533, 538, 554–556, 559, 565, 616 immune cell, 540, 556, 583 impregnation, 233–235, 240–243, 247, 250, 252, 256, 339 incident photon-to-current efficiency (IPCE), 344 inelastic electron tunnelling, 367–368, 370 inflammation, 541 inflammatory response, 585, 588 infrared reflection-absorption spectroscopy (IRAS), 396 inhalation, 576, 584–585 initiator, 300, 301–303 ink 602, 606, 622 inner-shell ionisation, 512–513, 524, 526 input–output theory, 138 insulator, 55, 321, 334, 349, 353, 403 interband transition, 31, 36, 56, 70, 88–90, 105, 122–123, 136, 150, 330, 329, 348, 355, 365 interface thermal conductance, 104 interface thermal resistance, 95–96, 98, 112, 116 interfacial perimeter, 287–288, 291, 293, 295, 299 intermetallic (see also alloy and bimetallic), 31, 187, 189–190 internalisation, 218, 223, 539–541, 556–557, 560–561, 564, 579–580, 584, 588 intraband transition, 38, 56–57, 88, 122 intracellular accumulation, 577 intracellular localisation, 567 intravenous injection, 576, 581–583 in vitro, 220, 495, 504, 538, 565, 581–582, 585, 587, 589 J jellium model, 153 K kinetic factors, 188 Kirkendall effect, 193 Kreibig, Uwe, 53 Kretschmann, E., 52 Kretschmann configuration, 58 Kunckel, Johann, 9, 13–18, 25 L L’Arte Vetraria, 13, 16, 22–23 Laboratorium Chymicum, 16 laser ablation, 405, 408 laser deposition, 406 lateral flow sensor, 550, 614 leaching, 234, 302 lethal dose, 594 Liedberg, B., 52 linear quadratic model, 514 light scattering, 20, 59–60, 118, 166, 170, 206, 325, 337, 345, 350, 354, 358 local density of electromagnetic modes, 379 local density of states, 142–143, 377 local effect model (LEM), 524, 529 local electromagnetic field (LEMF), 67, 93, 123, 332, 358, 546 638 page 638 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index page 639 Index localised surface plasmon resonance (LSPR) (see also plasmon and Chapter 3), 21, 131, 168, 327, 371, 385, 483–484, 490, 492, loss, 29, 54, 87, 97, 132, 134, 136, 142, 148, 154, 368, 370, 378, 396, 504, 531–532, 543, 565, 603, 612, 617 lustre, 7–8, 39 Lycurgus cup, 9–10, 21 lysine, 247–248, 251 Murano, 13 mutagenesis/mutagenic, 511–512, 529 N nanoalloy, see alloy nanoantenna, 66–67, 380, 490 nanoelectronics, 268, 384, 437 nanoplatform, 565 nanorod, see shape of nanoparticles nanosource of light, 377, 380–386 nanowire, see shape of nanoparticles near-field approximation, 137 near-infrared laser irradiation, 179 Neri, Antonio, 13, 15–16, 18, 22 neutron-activated, 584 non-biofouling, 220 non-destructive, 542 non-toxic, 476, 491, 542, 592–593 nonlinear optics, 496, 605 normal tissue complication probability, 515 nuclear membrane, 528, 619 nuclearity, 291 nucleation, 24, 171–172, 182, 191, 202, 213, 244, 396, 404, 406, 416, 419 M magnetic dipole, 146–147, 369, 381 magnetic resonance imaging (MRI), 353, 494, 555 many-body quantum states, 132, 145 mass energy absorption coefficients, 519–520 Maxwell Garnett model (see also effective medium approximation), 82 medical (treatment, uses), 39, 538–539, 556 medicine, 6–7, 218, 321, 483, 509, 537 metal-organic framework (MOF), 229, 241, 266–267 metallophilic attraction, 41 metallurgy in a beaker, 190 metamaterial, 131, 133, 144–146, 153, 489 micelle, 177, 215, 220, 248, 255, 269, 413–414 microwave, 171, 178, 181, 215–216, 501 microwave dielectric heating, 181 microwave irradiation, 179, 215, 243–244, 249, 604 microwave-assisted reduction, 257 Mie theory, 54, 60, 64, 68, 77, 93, 119, 171, 543 Mie, Gustav, 21, 53 mineralisation, 324, 334, 341, 343 mode volume, 142–143 morphology of nanoparticles, 25, 118, 166, 170, 182–183, 188, 192–193, 201, 320–321, 358, 399, 422 mosaic, 7–8, 10–11 multipolar modes, 68, 77, 119, 379–380 O octahedron, see shape of crystalline nanoparticles oleylamine, 184, 190, 209, 244, 246, 248 on-chip applications, 384–385 on-chip information transfer, 384 one-pot preparation, 261 optical antenna, see nanoantenna optical interconnect, 384 optical microscopy, 100, 170, 564, 616 optical properties, 21, 36, 53, 78, 87, 121, 146, 151, 182, 365, 440, 473, 537, 559, 568, 601–602, 604, 608 optical techniques, 483, 543 opto-acoustic-based imaging, 554 organogold, 7, 240 organometallic chemistry of gold, 39 Ostwald ripening, 172, 422 Otto, Andreas, 52 639 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index plasmon hybridisation, 383 mode function, 134, 136 plasmon hybridisation, 383 of a cube, 75 of a cuboctahedron, 75 of an ellipsoid, 72 of an icosahedron, 75 plasmon-assisted catalysis, 328, 332–333, 335 plasmon-assisted photocatalysis, 321, 323, 328, 331, 336, 341, 350, 356 plasmonic heating, 89, 96, 328, 500, 618–620 platonic nanocrystal, 178, 193 point of zero charge (PZC), 234–237, 250 point-dipole approximation, 137 poison/poisoning, 251, 295, 476 pollutant, 340, 342–343, 353, 579, 588, 591, 596, 621 polyethylene glycol (PEG), 219, 244–245, 504, 540, 583 polyol process, 168, 173–175, 177–178, 181, 185, 209 polyvinylalcohol (PVA), 179–180, 209, 248, 250–251, 254, 257, 607 polyvinylpyrrolidone (PVP), 178–181, 185, 209–210, 213, 217, 244, 248, 251, 254, 257, 263, 267 porcelain, 17, 19–20, 25 porous coordination polymer (PCP), 229, 241, 266 positron, 517–518 positron emission tomography (PET), 555 post-selection approach, 149 projected dipole method, 151 protein, 101, 205, 218, 222, 496, 539, 548, 553, 557, 561, 564, 577, 584 Purcell (effect, factor), 142 oxidative dehydrogenation, 295, 298 oxidative stress, 585, 588, 596 oxide film, 395, 403–404, 414, 424–425 oxygen activation, 289, 295, 298–299, 468 oxygen plasma, 251, 253, 269, 413 P paint, 19, 603, 611 pair production, 517, 521 Perrot, Bernard, 13, 16–17 phosphine gold complex, 240 photo-acoustic, 500, 555 photo-acoustic imaging, 491, 498–499, 565 photocatalysis/photocatalyst (see also Chapter 10), 244, 320–321, 323, 328, 333, 335, 340, 356 photochemical, 171, 178, 210, 322, 513 photo-deposition, 244, 246–248, 259, 323, 339 photocurrent, 323, 326, 329, 334, 344, 358 photoelectric effect, 444, 517, 519, 521 photoelectron, 447–448, 451, 512, 517, 524, 526, 528–530 photogenerated electron, 339 photoionisation, 512, 523 photon map, 378 photoreduction, 179, 243, 266 photothermal, 65, 91, 102, 126, 484, 499–501, 555, 559, 561 photothermal therapy, 484, 500–501, 504, 565 physical vapour deposition (PVD), 405–406 Pines, David, 52 pink (enamel, glass), 18–20, 22, 25 plasma frequency, 52, 56, 150 plasmon, 21, 29, 51–52, 54, 63, 66, 71, 75, 79, 88, 93, 131, 140, 231, 320, 326, 330, 343, 358, 385, 483, 543, 580, 601 plasmon energy transfer (PRET), 331, 358 plasmonic mode anti-bonding, 383–384 Q quality factor, 142–143 quantisation, 132–136, 151, 153, 286 640 page 640 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index page 641 Index relativistic effect, 29–30, 32–37, 44, 46, 438, 446, 455 relativistic bonding, 450, 452 resonant energy transfer (RET), 332 reverse micelle, 215, 251, 255 reverse micro-emulsion, 255 risk, 371, 575–576, 585, 590 Ritchie, R H., 52 Rose Pompadour, 19 ruby, see gold ruby quantitative structure activity relationship (QSAR), 577 quantum core plasmon, 151 quantum device, 154, 609 quantum dot, 144–146, 491, 616 quantum information processing, 145, 149, 154 quantum size effect, 150 quantum state transfer, 140–141 quantum states, 138–139, 145, 149 quantum technology, 148–149 quantum-corrected model, 152 quartz microbalance, 406, 614, 616 quasistatic approximation, 60 qubit, 139–140 quenching, 547–548 quenching reagent, 309 S sacrificial reductant, 286, 290 scanning electron microscopy (SEM), 170, 365 scanning tunnelling microscopy (STM), 396 scattering cross-section, 63, 68, 72, 81 light scattering, 20, 59, 118, 166, 170, 206, 325, 337, 345, 350, 354 second harmonic generation (SHG), 496 seed-mediated growth, 172, 182, 189–190, 192 selected electron diffraction (SAED), 170 selective oxidation, 291, 293–294, 296, 299–300, 330, 348–349, 393 self-assembled monolayer (SAM), 203, 269 3D-SAM, 204–205 self-assembly, 206–207, 231 semiconductor/semiconductive/ semiconducting, 29, 38, 145, 172, 194, 220, 241, 244, 268–270, 319–321, 324–327, 329–330, 332–334, 340, 342, 344–345, 348–349, 356–359, 403, 424, 439, 491, 616 sensor (see also biosensor), 132, 194, 210, 321, 413, 484–485, 487, 489–490, 537, 612–613 lateral flow sensor, 550, 614 refractometric sensor, 612–613 R Rabi oscillation, 144 radial dose distribution, 524, 527 radio-toxic effect, 584 radiobiology, 509–513 radiolysis, 180, 190, 249, 256–257 radiolytic reduction, 256 radiosensitiser, 513, 515–517, 642 radiotherapy, 7, 509–512, 515, 518–519, 521–522, 527, 533–535, 581, 618–619 Raman scattering (see also surface enhanced Raman spectroscopy), 187, 414, 497–498 REACH European Union regulation, 578 reactive oxygen species (ROS), 324 red glass (see also gold ruby), 8–9, 13, 25 redox (reduction) potential, 168, 188, 190–191, 244 reducing agent, 168, 173, 175, 177, 243, 254, 260, 411, 427, 454, 592 reduction-deposition, 230–231, 247, 249, 253–254, 257, 265–266, 268, 413 641 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index TiO2 (110), 268, 270, 403, 409–410, 412, 415–416, 418–419, 422–424 size focusing, 172 skin depth, 57 sol immobilisation, 247, 249, 323 sol particle immunoassay (SPIA), 543 sol–gel method, 261, 264 solar electricity, 340 solar energy conversion, 319, 321, 340, 344, 357 solar fuel, 340, 357 solar photocatalysis, 319 solid grinding, 240, 267 sonication (see also ultrasound), 245, 249, 268 sonochemical deposition-reduction, 245 sonochemical reduction, 181, 243 specific delivery, 556, 568 spill-out, 77, 119, 151 spontaneous emission, 107, 142 stabiliser, 173, 176, 180–181, 219, 244, 247, 251, 254, 301, 303 stabilising agent, 230, 250–251, 352, 575 stained glass, 11, 18 stationary regime, 89, 97, 121–122 stealth, 537–538, 556, 568 streptavidin, 487 strong coupling regime, 141, 143–144 structural total energy, 169 structure-sensitive reaction, 298 subwavelength, 144 sum frequency generation (SFG), 396 superatom, 460, 463–468, 472–473 superhydrophilicity, 343, 359 surface atom, 29, 42, 44, 124, 166–167, 169–170, 203, 397, 531 surface charge, 59, 151, 234, 379, 487, 577, 580, 584, 592–593 surface coating, 538, 577, 580, 588, 582, 597 surface energy, 42, 169, 189, 191, 400, 417, 604 surface enhanced Raman spectroscopy (SERS), 24, 41, 52, 122, 170, 206, 214, sensor chip, 546 SPR sensor, 484 LSPR sensor, 485, 490 Segreti per colori, 12 shape of monocrystalline particles cubic, 182, 185, 397, 411, 521 cuboctahedron, 42–43, 75, 169–170, 177, 185–186, 203–204 decahedron, 169, 181–182, 184, 191, 322, 380, 400–401, 411 dodecahedron, 184, 472 icosahedron, 69, 169, 185, 400–401, 411, 453, 464, 466, 472 octahedron, 25, 42, 169, 177, 184–186, 191, 203, 267, 322, 463 tetrahedron, 185, 380, 442, 448–449 trisoctahedron, 184 shape of nanoparticles branched structure, 82–183 concave cube, 184 concave polyhedron, 184 nanobox, 192–193 nanomatryushka, 152 nanoplate, 322 nanoprism, 379 nanorod, 75, 96, 120, 126, 151, 167, 172, 178–185, 191–192, 217, 254, 307, 322, 336, 358, 383, 451, 498, 502, 504, 546, 554, 558–560, 581, 583, 588, 602, 613, 617, 620 nanoshell, 81, 151, 494, 503–505, 617, 620 nanosphere, 65, 96, 151, 263, 322, 354, 492, 499, 601, 605 nanotower, 288 nanotriangle, 69, 183, 322, 439 nanotube, 192 nanowire, 138, 173, 184, 186, 191–192, 451 silica capping/coating, 202, 212–215, 217 single-crystal, 170, 184, 269, 415, 472 CeO2 (111), 404, 416–417, 422 642 page 642 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index page 643 Index 231–232, 268, 288, 302, 321, 324, 329, 375, 377, 395–396, 415, 419, 424, 428, 443–444, 449, 467, 487, 493–494, 497, 617, 627 surface functionalisation, 166, 202–203, 207–208, 218, 223, 437, 455, 476, 539, 541, 538, 559 surface modification, 538 surface plasmon polariton (SPP) (see also plasmon), 25, 37, 54–60, 77, 88, 90, 112, 119, 126, 365, 370, 484–487, 544, 546, 559 surface plasmon resonance (SPR), see surface plasmon polariton surface reactivity, 559, 579–580 surface reconstruction, 397 surface reduction–oxidation, 258–259 surface screening, 151 surface-to-volume ratio, 203 surfactant, 118, 166, 172, 179, 220, 248, 255, 264, 423 survival fraction, 514–515, 526, 528 synchrotron radiation, 423, 529, 531 synergy effect, 348, 425 time-dependent local density approximation (TDLDA), 150 toxicity, 240, 506, 537–538, 540–541, 558, 568, 575, 578–582, 585, 587–589, 591–594, 597–598 transmission electron microscopy (TEM), 170, 183, 402, 555, 616 transmutation, 12, 14–15, 17 tumour, 65, 102–103, 495, 499, 504–505, 510–511, 515–517, 528, 538, 548, 555–561, 565, 583, 585, 618 tumour control probability, 515 Turin papyrus, Turkevich method, 66, 173, 175 turnover frequency (TOF), 295, 298, 531 two-photon absorption, 498 two-temperature model, 108 U ultra-high vacuum (UHV), 41, 371, 396–397, 405, 413, 416–417, 427 ultrashort pulse/regime, 90, 94, 102, 104, 109–110, 113, 117, 119, 126 ultrasound (see also sonication), 180–181, 500–501 ultraviolet (UV) UV irradiation, 179, 243–245, 247, 254, 259, 270, 320–321, 324, 326–328, 331, 338, 340, 342–345, 347–350, 355, 604 UV-ozone treatment, 251 UV-visible spectroscopy, 170, 206, 231–232, 292, 324 underpotential deposition (UPD), 185, 190, 193 T tannic acid, 584, 595, 597 targeting, 218–220, 222, 501, 505, 516, 539, 556, 558, 562, 568, 618, 620 target organ, 576–577, 581, 584–585 template-directed synthesis, 186 tetrakis(hydroxymethyl)phosphonium chloride (THPC), 168, 173, 249, 250, 254, 266 textile, 592, 611 therapy/therapeutic, 6–7, 102, 219, 222, 501, 506, 527, 561, 565, 577, 583, 587, 598, 617, 619 thermal lens, 100, 124 third harmonic generation (THG), 496 thiol/thiolate, 176, 207, 209, 301, 440, 465, 472, 540–541, 579, 596, 603 time-dependent density functional theory (TDDFT), 150–152, 440 V Van Duyne, Richard P., 52 valence band (VB), 320, 324–325, 359 vector potential, 134–136 W wastewater treatment, 340 water purification, 340 water splitting, 319, 323, 334, 345, 353 643 April 29, 2017 9:57 Gold Nanoparticles for Physics, …9in x 6in b2699-index Index Y water-dispersible gold NP, 219–220 water-gas shift, 309–310 weak coupling (regime/approximation), 137, 141–143 Wulff construction, 400, 402 Yagi-Uda, 382–383 Z zebrafish, 597 Zsigmondy, Richard Adolf, 20–21 X X-ray photoelectron spectroscopy (XPS), 42, 170, 231–232, 310, 395–396, 420, 423 644 page 644 b2530   International Strategic Relations and China’s National Security: World at the Crossroads b2530_FM.indd ... the Netherlands and Spain; none of them contain gold 11 page 11 April 29, 2017 9:54 Gold Nanoparticles for Physics, …9in x 6in b2699-ch01 Gold Nanoparticles for Physics, Chemistry and Biology According... 2017 9:54 Gold Nanoparticles for Physics, …9in x 6in b2699-ch01 Gold Nanoparticles in the Past: Before the Nanotechnology Era 1.1.3 Gold for Monetary Exchanges and the Gold Standard Gold has also... Illuminated from outside and (b) illuminated from inside page April 29, 2017 9:54 Gold Nanoparticles for Physics, …9in x 6in b2699-ch01 Gold Nanoparticles for Physics, Chemistry and Biology depicts the

Ngày đăng: 02/02/2018, 11:05

TỪ KHÓA LIÊN QUAN