1. Trang chủ
  2. » Khoa Học Tự Nhiên

Advances in physical organic chemistry vol 40

333 939 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 333
Dung lượng 5,39 MB

Nội dung

Editor’s preface Victor Gold wrote in the Preface to Volume of Advances in Physical Organic Chemistry that ‘‘The divisions of science, as we know them today, are man-made according to the dictates of practical expediency and the inherent limitations of the human intellect As a direct result of this organization more effort has gone into the exploration of those natural phenomena that are clearly classifiable according to these divisions, with a comparative neglect of fields which, largely through historical accident not rank as recognized ‘branches’ of science.’’ Thus, Advances in Physical Organic Chemistry was born in an effort to establish a recognized branch of science that applies ‘‘quantitative and mathematical methods to organic chemistry.’’ Nothing has occurred since Volume of this series to diminish the value of a branch of Organic Chemistry which emphasizes the Physical over the Synthetic A strong and vibrant community of Physical Organic Chemists continues to be desirable both to those whose work might fall within its boundaries and to members of the community of Synthetic Organic Chemists who sometimes find themselves faced with problems they are not entirely qualified to tackle The six chapters in Volume 40 of Advances in Physical Organic Chemistry describe work, which applies quantitative and mathematical methods to organic chemistry These chapters are grouped into two general themes that reflect the merging of organic chemistry with biological and materials science Despite the efforts of synthetic chemists, biology remains the mother of most organic reactions The simplicity and clarity of these reactions is apparent when examining catabolic and metabolic pathways This examination shows that the individual steps in these pathways are variations of themes found in many other pathways, and that these themes seem innumerable For example, a large number of compounds are metabolized by pathways that involve epoxidation of a double bond, followed by reaction with glutathione or water to give products that are readily excreted Much of our knowledge of the mechanisms of hydrolysis and rearrangements of epoxides is due to the work of Dale Whalen Professor Whelan’s contribution to this volume is a comprehensive review of the subject that emphasizes the mechanism of reactions of high-energy carbocations that sometimes form as intermediates of nucleophile addition to the strained three-member epoxide ring Biological reactions are catalyzed by enzymes or ribozymes with efficiencies much greater than obtained from man-made small molecule catalysts Many different interactions have been characterized that cause the modest rate accelerations for small molecule catalysts By comparison, enzymes are mammoth catalysts and their size is clearly needed for the construction of an active site that enhances these individual stabilizing interactions and that favors additivity of several interactions The chemical intuition that produces such generalizations has not led to a commonly accepted explanation for the rate acceleration achieved by any enzyme Computational chemistry is an important tool which provides insight into important ix x EDITOR’S PREFACE questions in chemistry that cannot be easily addressed by experiments Arieh Warshel is a leading practitioner of computer modeling of enzyme catalysis He and co-workers, Sonja Braun-Sand and Mats Olson, present an overview of the computational methods that they have developed to obtain activation barriers for organic reactions at enzyme-active sites, and the insight their calculations have provided into the mechanism of action of several enzymes Organic molecules are often joined together in Biology through phosphate esters, and pyrophosphate esters serve as an energy reservoir that can be drawn upon to meet a variety of the needs of the cell These phosphate and pyrophosphate esters are synthesized and degraded in enzyme-catalyzed phosphoryl transfer reactions The present status of our understanding of the mechanism for enzymatic catalysis of these reactions is cogently reviewed by Alvan Hengge This editor views studies on organic chemistry in the solid state as one of the last frontiers in our field The frontier may appear forbidding and mysterious to those of us who have spent our careers studying organic reactions within the comfortable confines of the condensed phase However, an ever-increasing number of chemists are taming this frontier, driven by the understanding that an ignorance of the chemistry of the solid state is a major impediment to the rational design of solid organic materials We are fortunate to have contributions from three authors whose work stands at the forefront of the areas they review The design and synthesis of organic compounds in which the electronic ground state possesses a very large total quantum spin number S are essential toward progress in the design of organic polymer magnets Andrzej Rajca’s chapter addresses the multiple challenges involved in the design, synthesis and characterization of very high-spin polyradicals The substantial progress toward meeting these challenges is reviewed The high degree of order of crystalline organic compounds is easily characterized by X-ray crystallographic analysis It is more difficult to define how crystal structure might be engineered to produce useful organic materials Assemblies of organic molecules that form finite structures that exhibit properties that are independent of crystal packing represent important synthetic targets for crystal engineers Progress toward the synthesis and structural analysis of such molecular assemblies is reviewed in a chapter by Tamara Hamilton and Leonard MacGillivray In recent years there have been many studies of organic reactions in cavities that exist in crystalline materials such as zeolites or in large macrocycles such as cyclodextrins The relationship between the structure of these cavities, their microscopic environments, and the rates and products of organic reactions may be characterized in much the same way as solvent effects on organic reactivity Murray Rosenberg and Udo Brinker summarize here what has been learned about the mechanism for formation and reaction of carbenes within cyclodextrins and zeolites Subject Index 1,3-Cyclobutadiene, 1D assemblies, 118–119, 129–130 charge-transfer properties, 130 donor–acceptor overlap, 130 four-component molecular assembly, 119 1-Phenylcyclohexene oxides acid-catalyzed hydrolysis, 264–266 carbocation conformation, 265, 266 cis/trans diol ratio, 264 2-Adamantanylidene, 15–17 generation, 15s 2D assemblies, 119–123, 130–136 figure-of-eight structure, 120 heteromeric cyclic assemblies, 119 hydrogen-bonded ribbon, 120 proton transfer, 121 2-Methylcyclohexanylidene, 17–21 generation, 18s 3D assemblies, 123, 136–143 anionic capsule, 137 Archimedean solids, 136 crystalline molecular capsule, 141 hydrogen-bond bridges, 137 molecular tetrahedron, 142 octahedral symmetry, 142 Platonic solids, 136 polyhedral shell, 123 trigonal prism, 136 3-Nortricyclanylidene, 22–28 generation, 24s Acetals, 272 Acid catalysis, general, 271–277 acetals, 272 arene oxides, 274–277 benzylic epoxides, 274–277 epoxide reactions, 271–277 epoxy ethers, 272 ethylene oxide, 271–272 primary epoxides, 271–272 secondary epoxides, 271–272 tertiary epoxides, 272 vinyl epoxides, 273–274 Acid phosphatase E coli, 74 nitrogen–phosphorus linkages, 74 rat enzyme, 74 Acid-catalyzed hydrolyses 1-phenylcyclohexene oxides, 264–266 aliphatic epoxides, 251–254 alkyl- and vinyl-substituted epoxides, 254–258 cyclic vinyl epoxides, 257–258 epoxides, primary and secondary, 251–252 indene oxides, 266–267 relative reactivities, 254–255 simple tertiary epoxides, 252–253 simple vinyl epoxides, 255–256 styrene oxides, 258–262 Activation free energy, 207, 209, 220, 225 Aliphatic epoxides acid-catalyzed hydrolysis, 251–253 hydroxide ion-catalyzed hydrolysis, 254 pH-independent hydrolysis, 254 simple primary and secondary epoxides, 251–252 simple tertiary epoxides, 252–253 Zucker–Hammett acidity function, 252 Alkaline phosphatase (AP), 70–74 E coli AP, 71, 73 thio effects, 73 transition state stabilization, 71, 72f, 73 Anionic capsule, 126, 137 Annelated macrocyclic polyradicals cross-linked polymers, 186, 188 ferromagnetic–ferrimagnetic coupling, 187 SQUID magnetic studies, 187 Antiferromagnetic coupling units (aCUs), 159, 161 AP see Alkaline phosphatase 327 328 Arene oxides aromatic hydrocarbons, 277 kinetic deuterium isotope effect, 275, 278 NIH shift, 277, 279 Aziadamantane, 15, 16t, 37 Bacillus macerans, Banana bonds, 26, 27 Bell–Evans–Polanyi principle, 27 Benzo[a]pyrene 7,8-diol 9,10-epoxide, 281–283, 288–290 Benzylic epoxides 1,2-hydrogen migration, 280–281 and arene oxides, 274–277 benzo[a]pyrene 7,8-diol 9,10-epoxide, 288–290 kinetic deuterium isotope effect, 280, 281 pH-rate profiles, 286–291 precocene I oxide, 286–288 Brønsted–Evans–Polanyi rule see Bell–Evans–Polanyi principle Cage compounds see Clathrates Carbanion method, 161, 162, 164f, 171 Carbenes generation carbenes, choice, 14 carbene reactions, 11 carbene spin state, control, 9–10 case studies, 14 cyclodextrins, guest@host, 1–3 guests, 3–4 hosts, 4–7 intermolecular reactions, inhibition, 10–11 intramolecular reactions, control, 10 phase transfer catalysis, 11–13 shape selectivity, 7–8 steering reaction outcomes, 8–9 zeolites, Carbenes, banana bonds, 26, 27 bond angle distortion, confinement, 23 lifetime, 30 protonation, spin state, control, 9–10 SUBJECT INDEX Carbonic anhydrase, proton transport, 212–217 Brownian dynamics, 218 dehydration step, 212 Grotthuss mechanism, 217 Langevin dynamics, 217 Marcus’ type relationship, 212, 213 Carceplex chemistry, Catalytic proposals, concepts enzyme active sites, nonpolar, 222–225 low-barrier hydrogen bond, VB concepts, 229–233 near attack conformation, 225–228 reorganization energy, 233–236 vibrationally enhanced tunneling (VET), 236–238 Chemical reactivity, 123, 128, 143 Chemical reactivity, formulation in solutions and enzymes, 203–208 Chloro(phenyl)carbene, 28 generation, 30s Clathrates, 1, 10 Crystal packing, 112, 113, 144 Cyclodextrins (CyDs), a- and b-CyDs, versatile hosts, Cyclooctanylidene, 21–22 CyD IC formation, driving forces, DEF see Diethyl fumarate Dendritic–macrocyclic polyradicals, 181–184 magnetic shape isotrophy, 181, 184 Monte Carlo conformational searches, 183 organic spin clusters, 181 SANS, 184 SQUID magnetic measurements, 181 Dianions dicobalt complex, 56–57 KIE, 55–57 phosphomonoesters, 54–58 phosphoryl group, 55t, 56 Diazirine, 13, 15, 16, 17, 24, 29, 33 Diethyl fumarate (DEF), 25 Diol formation, stereochemistry conformational effects, 267–270 transition-state effects, 266–267 SUBJECT INDEX Diradicals antiferromagnetic coupling, 163, 165f, 168 Electron paramagnetic resonance (EPR) spectroscopy, 159, 166, 168, 171, 172 Electron transfer (ET) reaction, 208, 210, 213 Empirical valence bond (EVB) advantages, 206 downhill trajectories, 209, 236f ET reactions, 208 HAW equation, 210 LFER, solutions and enzymes, 208–212 molecular dynamic trajectories, 205 PT process, 207, 212 reliability, 206 solvent reorganization energy, 210 transition state theory, 209 Encapsulated methylene, 13 Enzymatic catalysis dinuclear Zn complex, 69 implications, 66–70 Pauling’s rule, 68 phosphorus-nucleophile distance, 67, 68f phosphoryl transfer, 67, 68f stabilization, 67 Enzyme active sites, nonpolar activation barrier, 222 catalytic effect, 222, 223, 224 desolvation proposal and assumption, 222–225 reactant state stabilization, 222 substrate autocatalysis, 224 Enzyme catalysis, computer modeling carbonic anhydrase, proton transport, 212–217 catalytic proposals, concepts, 221 chemical reactivity, formulation, 203–208 empirical valence bond, 203–208 EVB, basis for LFER, 208–212 physical organic chemistry, concepts, 201, 203, 204 protein preorganization concept, 218–221 protein reorganization energy, 217–221 QM/MM methods, 203–208 329 Enzyme-catalyzed phosphoryl transfer enzymatic catalysis, implications, 66–70 mechanistic possibilities, phosphoryl transfer, 51–53 nomenclature issues, 53 phosphodiesterases, 94–97 phosphodiesters, 60–63 phosphomonoesters, 53–60 phosphoryl group, 54, 66, 67, 70 phosphotriesterases, 97–101 phosphotriesters, 64–66 uncatalyzed reaction, 53–60, 60–63, 64–66 Epoxide isomerization oxygen walk, 283, 284 pH-independent reaction, 283–286 zwitterionic structure, 284–285 Epoxide reactions limiting mechanism, 248–250 protonation, 249–250 Epoxides, hydrolysis and rearrangements 1-phenylcyclohexene oxide, 264–266 acid-catalyzed hydrolyses, 251–253, 254–258, 264–270 benzylic epoxides, 274–277, 280–281, 286–291 chloride ion effects, 290–291 general acid catalysis, 271–277 hydroxycarbocations, partitioning, 291–294 indene oxides, 266–267 isomerization, 283–286 limiting mechanisms, 248–250 pH-independent reactions, 277–283 pH-rate profiles, 286–291 simple alkenes and cycloalkenes, 250–254 styrene oxides, 258–264 tetrahydronaphthalene epoxide, 267–270 Epoxides, mechanism of hydrolysis acid-catalyzed hydrolysis, 251–253 aliphatic epoxides, 251–254 ion-catalyzed hydrolysis, 254 kinetic studies, 250–251 simple alkenes and cycloalkenes, 250–254 Epoxy ethers, 272 EPR see Electron paramagnetic resonance spectroscopy ET see Electron transfer reaction EVB see Empirical valence bond EVB, basis for LFER, 208 330 Exchange coupling, 155–161, 168, 175, 180–181 Exchange coupling and magnetism ferromagnetic coupling units, 159, 160, 161 McConnell’s perturbation theory, 159 magnetic dipole–dipole interactions, 157 spin–orbit coupling, 157 Faujasite (FAU) IC, 23–24 zeolites, 5–6 Ferrimagnetic coupling, 161 Ferromagnetic coupling, 158, 159, 161, 166, 171 Ferromagnetic coupling units (fCUs), 159, 160, 161, 180 Ferromagnetic–ferrimagnetic coupling, 186, 187, 188, 189, 191, 192f Finite assemblies, solid state functional assemblies, 123–143 synthetic assemblies, 114–123 Finite molecular assemblies, 109, 110–112 finite assemblies, solid state, 112, 113 functional solids, 112–113 organic solid state, 109, 112 solid-state reactivity, template-controlled, 143–148 solids, engineering properties, 109 supramolecular synthons, 112–113 Free-energy profiles, 203, 206, 226f Functional assemblies 1D assemblies, 129–130 2D assemblies, 130–136 3D assemblies, 136–143 two-component assemblies, 123–129 Functional solids, 109, 112–113 GAPs see GTPase activating proteins G-proteins see Guanine triphosphate (GTP)binding proteins GTPase activating proteins (GAPs), 88 Guanine triphosphate (GTP)-binding proteins, 88 Guest@host definition, 1–2 IC, characterizing, supramolecular chemistry, SUBJECT INDEX Guests neutral organic reaction intermediates, 3–4 HAW see Hwang Aqvist Warshel equation Homodimer, 110, 114, 116, 117, 123, 125, 127 Hosts choice, 6–7 cyclodextrins, zeolites, 5–6 Hwang Aqvist Warshel (HAW) equation, 210, 217 Hydrogen-bond acceptor, 114, 117, 119 donor, 69, 114, 117, 119, 130, 141 Hydroxycarbocations partitioning, 291–294 Indene oxides acid-catalyzed hydrolysis, 266–267 cis/trans hydrolysis ratio, 266 Intermolecular reaction, inhibition, 10–11 Intersystem-crossing, facilitation, 10 Intramolecular reactions, control, 10 constraint, 10 topologic distortion, 10 Kinetic studies hydrolysis of epoxides, 250–254 rate expression, 251 simple alkenes and cycloalkenes, 250–254 Lewis acid activation, 69 LFER see Linear free-energy relationship Limit guest mobility, 11 Linear free-energy relationship (LFER), 58, 206, 241 EVB, 206, 208–212 HAW relationship, 210 PT reaction, 211–212 Linear response approximation (LRA), 208, 213, 223, 227 Linear templates, 144–146 head-to-head geometry, 145 head-to-head photoproduct, 145–146 UV-irradiation, 145 Loading factor, 6, 24 SUBJECT INDEX Low-barrier hydrogen bond, VB concepts, 229–233 LRA see Linear response approximation Macrocyclic–macrocyclic polyradicals, 184–186 percolation model, 185, 186 Magnetism, 155–161 Microscopic and phenomenological LFERs difference, 212–218 Molecular recognition, 7–8, 110, 143 Molecular tetrahedron, 123, 124f, 142 Monoanions hydrolysis reactions, 59 LFER, 58 metaphosphate, formation, 58–59 phosphomonoesters, 58–60 Monte Carlo conformational searches, 168, 174, 183 NAC see Near attack conformation Near attack conformation (NAC) binding free energy, 227 electrostatic stabilization, 228 enzyme catalysis, 225 ground state destabilization, 227 proposal, 225 Neutral organic reaction intermediates 1,3-cyclobutadiene, carbenes, ortho-benzyne, 3–4 Nomenclature issues More-O’Ferrall–Jencks diagram, 53, 54f transition state, 53 Ortho-benzyne, 3–4 Paraoxon, 98 structure, 99f Parathion mosquito control, 98 structure, 99f Pauling’s rule, 68, 93 Phase transfer catalysis (PTC), 11–13 CyD derivatization, 12–13 encapsulated methylene, 13 Reimer–Tiemann reaction, CyD-mediated, 12–13 331 Phenylcarbene, 7, 28, 168 pH-independent reactions, epoxides 1,2-hydrogen migration, 280–281 arene oxides, 277–279 benzo[a]pyrene 7,8-diol 9,10-epoxides, 281–283 benzylic epoxides, 280–281 cyclic vinyl epoxides, 279–280 isomerization, 283–287 mechanism summary, 283 simple alkyl epoxides, 277 Phosphatases: general, 70–74 Phosphodiesterases RNase, 95–97 staphylococcal nuclease, 94–95 Phosphodiesters, uncatalyzed reaction isotope labeling study, 61 Leffler a index, 62 Phosphoglucomutases enzyme–substrate complex, 92s Lactococcus lactis, b-PGM, 93 stereochemical analysis, 92 Phosphomonoesters, uncatalyzed reaction aryl phosphomonoesters, 56 dianions, 54–58 dicobalt complex, 56–57 hydrolysis reactions, 58 isotope effect designations, 55f kinetic isotope effects (KIEs), 55, 56 LFER, 58 monoanions, 58–60 Phosphoryl (POÀ ) group, transfer acid phosphatase, 74, 75f alkaline phosphatase, 70–74 phosphatases: general, 70 phosphoglucomutases, 91–94 PTPases, 83–88 purple acid phosphatases, 75–79 Ras, 88–91 Ser/Thr protein phosphatases, 79–83 Phosphoryl transfer mechanistic possibilities, 51–53 Phosphotriesterases active site, structure, 99f kinetic studies, 98 pesticides and insecticides, 97 Pseudomonas diminuta, 98 332 Phosphotriesters, uncatalyzed reactions oxyanion nucleophiles, 64 Photolysis, chloro(phenyl)carbene in alcohol solution, 29–30 in supramolecular phase, 30–37 Physical organic chemistry, polyradicals exchange coupling, 155–161 high-spin polyradicals, design, 177–180 magnetism, 155–161 organic spin clusters, 180–188 polyarylmethyl polymers, very high-spin, 188–193 polyarylmethyl polyradicals, 154, 161–162 polyarylmethyl polyradicals, star-branched and dendritic, 175–177 polyradicals, high-spin versus low-spin, 163 Polyarylmethyl polymers, very high-spin, 188–193 quasi-linear chain, 189 SQUID magnetic studies, 189 Polyarylmethyl polyradicals anionic polymerization, 162 carbanion method, 161, 162f preparation and characterization, 161–162 star-branched and dendritic, 175–177 Polyradicals, high-spin versus low-spin anions and dianions, diradical, 174–175 diradicals, 163–169 tetraradicals, 172–174 triradicals, 169–171 Polyradicals, very high-spin defect, 177 definition, 153 design, 177–180 physical organic chemistry, 153 Precocene I 3,4-oxide, 286–288 Protein reorganization energy and preorganization concept, 218–221 dielectric continuum theory, 219 electrostatic effects, 219 FEP approach, 219 HAW equation, 217 Marcus’ reorganization energy, 221 Protein–tyrosine phosphatases (PTPases) 59, 83–87 kinetic isotope effects, 86t Michaelis complex, 87 Yersinia active site, 84f SUBJECT INDEX Proton transfer (PT), 213, 214 Pseudorotation, 52 PT see Proton transfer PTC see Phase transfer catalysis PTPases see Protein–tyrosine phosphatases Purple acid phosphatases catalytic mechanism, 76 nucleophilic role, 75 proteolysis, 78, 79 QM/MM methods, 203 enzyme catalysis, 204 EVB, 204, 206 VB structures, 204 Ras Fourier transfer infrared study, 91 guanine triphosphate binding proteins, 88 Rebek’s imide, 115 Reimer–Tiemann reaction, CyD-mediated, 11–12 Relative reactivities, epoxides A-2 mechanism, 254 acid-catalyzed hydrolyses, 254 biomolecular rate constants, 255t Reorganization energy dynamical proposals, 233–236 protein, 218–221 static nature, 233–236 Ribonuclease (RNase), 95–97 Lys-41, role, 97 phosphodiester bond, 95 RNase see Ribonuclease SANS see Small-angle neutron scattering Sarin, 98 structure, 99f Schardinger dextrins see Cyclodextrins Schlenk hydrocarbons, 163, 164, 168 Ser/Thr protein phosphatases Brønsted analysis, 81 glycine residue, 82 human calcineurin, 80 uni–bi-mechanism, 81 Simple alkyl epoxides pH-independent reactions, 277 SUBJECT INDEX Singlet–triplet energy gap, 165, 168 Small-angle neutron scattering (SANS), 184, 185f Solids, engineering properties finite molecular assemblies, 109 Solid-state reactivity, template-controlled, 143–148 head-to-head photoproduct, 145–146 linear templates, 144–146 single-crystal X-ray structure analysis, 146 target-oriented syntheses, 146–148 UV-irradiation, 145, 146 Spin clusters, organic, 180 dendritic–macrocyclic polyradicals, 181–184 macrocyclic–macrocyclic polyradicals, 184–186 macrocyclic polyradicals, annelated, 186–188 polymer-based polyradical, 180 SQUID magnetic studies, 166, 167, 168, 180, 187, 189, 191 Staphylococcal nuclease (SNase), 50, 94–95 Structure and stoichiometry cyclodextrins, zeolites, 5–6 Styrene oxides hydrolysis, mechanism A-1 mechanism, 259 A-2 mechanism, 260 acid-catalyzed hydrolysis, 258–262 amines and hydroxide ion, addition, 262–263 carbocation lifetime, 260–262 Hammett value, 258, 262, 263 pH-independent reactions, 263–264 Supramolecular carbene chemistry, 11 2-adamantanylidene, 15–17 2-methylcyclohexanylidene, 17–21 3-nortricyclanylidene, 22–28 carbene reactions, 11 carbenes, choice, 14 chloro(phenyl)carbene, 28 cyclooctanylidene, 21–22 phase transfer catalysis, 11–13 phenylcarbene, 28 Supramolecular synthons crystal packing, 112, 113 solid-state structure, 112 333 Synthetic assemblies 1D assemblies, 118–119 2D assemblies, 119–123 3D assemblies, 123 two-component assemblies, 114–118 Synthons, 112, 114, 115, 128 Target-oriented syntheses, 146–148 single-crystal X-ray structure analysis, 146 UV-irradiation, 146 Tertiary epoxides acid-catalyzed hydrolysis, 252–253 general acid catalysis, 272 Tetraradicals macrocyclic, 172, 173 Monte Carlo conformational searches, 174 polyarylmethyl, structures, 172 SQUID magnetization, 173 star-branched, 172 Topologic distortion intramolecular reactions, control, 10 Trigonal prism, 136 Triradicals calix[3]arene-based triradicals, 171 diamagnetic tetramer, 169 quasi-linear triradical, 170 SQUID magnetometry, 171 Zimmermann triradical, 170 Tunneling and related effects, 236–238 Boltzmann probability, 238 enzyme catalysis, 237 Two-component assemblies anionic capsule, 126 electrostatic forces, 117 homodimer, 123, 125, 128 Rebek’s imide, 115, 116f single tropylium cation, 127 wheel-and-axle compounds, 123 Uncatalyzed reactions phosphodiesters, 60–64 phosphomonoesters, 53–60 phosphotriesters, 64–66 Uteroferrin, 77f UV irradiation, 128, 145, 146 334 VET see Vibrationally enhanced tunneling Vibrationally enhanced tunneling (VET), 236–237 Boltzmann probability, 237, 238 enzyme catalysis, 237 Vinyl epoxides, 273 A-1 mechanism, 257 A-2 mechanism, 255 acid-catalyzed hydrolysis, 255–258 allylic carbocation, 256, 257, 258 SUBJECT INDEX cyclic, 257–258 epoxide ring opening, transition 256, 258 simple, 255–256 Zeolites, 5–6 derivatization, nitrogenous carbene precursors, 12–13 FAU zeolites, 5–6 Lewis acidity, NaY FAU, Author Index Aakeroăy, C.B., 119, 121, 129, 150 Abboud, K.A., 154, 194 Abeles, R.H., 97, 107 Abelt, C.-J., 12–13, 42 Adam, W., 9, 40 Admiraal, S., 90, 106 Admiraal, S.J., 56, 58, 67–68, 90, 102 Adusei-Poku, K.S., 274, 280, 286–288, 297 Agarwal, P.K., 237, 245 Ahlrichs, R., 51, 101 Ahmadian, M.R., 90–91, 106 Akagi, H., 248, 295 Alajarin, M., 116, 127, 150 Albery, W.J., 218–219, 241 Alcala, R., 120, 150 Alden, R.A., 229, 243 Alderfer, J.L., 3, 23, 32, 39 Aldrich, T., 89, 106 Alhambra, C., 56, 67, 87, 101, 237, 245 Allaga-Alcalde, N., 154, 194 Allemand, P.-M., 155, 157, 195 Allen, F.H., 114, 149 Allen, K.N., 93–94, 106 Allin, C., 91, 106 Amyes, T.L., 265, 267, 296 Anderson, E., 272, 297 Anderson, K.K., 154, 190, 194–195 Anderson, K.S., 84, 105 Anderson, M.A., 65, 101 Anderson, M.W., 13, 42, 89, 106 Anderson, V.E., 60, 102 Andersson, G., 78, 104 Anet, F.A., 258, 296 Anslyn, E., 96, 107 Anslyn, E.V., 63, 96, 102 Anstine, D.T., 129, 151 Aoki, K., 137, 151 Aquino, A.-M., 12, 42 Aqvist, J., 87, 106, 204–205, 209–210, 239 A˚qvist, J., 211–214, 221–222, 237, 241–242, 245 Arakawa, R., 116, 127, 150 Archer, I.V.J., 253, 295 Arjunan, P., 222, 242 Armet, O., 165, 197 Armstrong, C., 81–82, 105 Arnold, B.R., 3, 39 Asano, Y., 74, 104 Ashton, P., 116, 118, 150 Asthagiri, D., 56, 67, 87, 101 Atwood, J.L., 111, 114, 123, 126, 134, 137, 141–142, 149–151 Aubert, S.D., 99, 101, 108 Audier, H.E., 258, 261–262, 296 Autrup, H., 248, 295 Averill, B.A., 71, 75–76, 78–79, 103–104 Azbel’, B.I., 25, 46 Baczynskyj, L., 2, 39 Bagchi, B., 235, 244 Bailey Walsh, R.D., 128, 134, 151 Bakowies, D., 204, 239 Balani, S.K., 290, 298 Bale, J., 71, 103 Ballester, M., 155, 195 Bally, T., 15, 43 Balsamo, A., 264, 266, 290, 296 Balzani, V., 149, 152 Bannwarth, W., 84, 105 Bantu, R.N., 10, 41 Banzon, J.A., 73, 104 Baran, P.S., 146, 152 Barbacid, M., 88, 106 Barbour, L.J., 126, 134, 137, 141, 150–151 Barford, D., 79–80, 82–84, 104–105 Barman, T., 95, 107 Barnard, E.A., 95, 107 Bartlett, P.D., 255, 296 Ba-Saif, S.A., 65, 102 Basch, H., 249, 295 Bash, P.A., 204, 239 Bashford, D., 56, 67, 87, 101, 106 Basran, J., 233, 244 299 300 Battistini, C., 264–265, 296 Bayley, H., 15, 43 Beachy, M.D., 204, 239 Beatty, A.M., 119, 121, 129, 150 Beck, J.L., 76, 104 Beck, J.S., 5, 40 Becker, A.R., 267–268, 280, 296 Beijer, F.H., 116–117, 150 Bello, J., 95, 107 Belorizky, E., 159, 195 Benkovic, S.J., 233, 244 Benning, M.M., 98, 108 Berendsen, H.J.C., 233, 244 Berger, K.-L., 12, 42 Beroza, M., 248, 295 Berry, R.S., 52, 101 Berson, J.A., 158, 195 Berti, G., 258, 264, 266, 290, 296 Bertrand, G., 14, 43 Beyer, H.K., 7, 40 Bhattacharyya, K., 235, 244 Boăhmer, V., 125, 127, 139, 150151 Bierl, B.A., 248, 295 Biggs, J., 258, 296 Billeter, S.R., 206, 237, 240, 245 Biradha, K., 122–123, 134, 150–151 Blackburn, G.M., 93, 106, 224, 242 Blackburn, P., 95, 107 Bloch, W., 71, 103 Blow, D., 222, 242 Blumenstein, J.J., 258, 260–261, 263, 284, 296, 298 Bobek, M.M., 16–17, 37, 44 Boiadjiev, S.E., 129, 151 Bolton, P.H., 94, 107 Bonneau, R., 30, 47 Borden, W.T., 158–159, 195 Borecka, B., 143–144, 151–152 Borgis, D., 206–207, 237, 240, 244–245 Bosio, S.G., 9, 40 Botta, M., 154, 194 Bottari, F., 258, 296 Bourne, H.R., 88, 106 Boutchard, C.L., 78, 104 Boyd, D.R., 277–278, 297 Boyland, E., 248, 295 Bradley, D., 10, 41 Bradley, G.F., 27, 46 Bradley, K., 264–265, 292, 296 AUTHOR INDEX Brauer, H.-D., 164–165, 197 Brauns, M., 163–164, 196 Braun-Sand, S., 201, 217–218, 241 Brecker, L., 16–17, 37, 44 Breslow, R., 8, 14, 40, 43, 72–73, 96, 103, 107 Brew, K., 82, 105 Brezinski, D.J., 73, 103 Brinker, U.H., 1, 3–4, 8, 10, 15–17, 22–27, 29–30, 32–34, 36–37, 39–41, 43–45, 47 Brønsted, J.N., 250, 271, 277, 295 Brooks, C.L., 233, 236, 244 Brown, A., 222, 242 Brown, D.M., 62, 95, 102, 107 Brown, M., 14, 43 Bruice, P.Y., 274, 279, 283, 297 Bruice, T.C., 225–226, 228, 243, 267–268, 273–274, 277–280, 283, 296–297 Bryan, C.D., 65, 102 Bryant, L., 172, 198 Buchanenko, A.L., 155, 195 Buchkremer, R., 15–16, 26–27, 37, 43 Buchwald, S.L., 54, 58, 71, 101, 103 Bunnett, J.F., 252, 295 Burnier, J., 95, 107 Buron, C., 14, 43 Burton, N.A., 87, 106 Burykin, A., 217, 241 Bushby, R.J., 154, 190, 194 Butler, P., 174, 180–181, 183–185, 193, 198 Butler-Ransohoff, J.E., 73, 104 Byrum, A.L., 2, 39 Caldwell, S.R., 98–99, 107–108 Cameron, C.E., 233, 244 Campbell, R.F., 128, 151 Caneshi, A., 154, 158, 194 Carano, K.S., 73, 104 Caravan, P., 154, 194 Careri, G., 233, 244 Carnahan, J.E., 14, 43 Caron, P.R., 79–80, 104 Carrington, L.E., 78, 104 Carter, P., 229, 243 Cassano, A.G., 60, 102 Castro, A.J., 168, 197 Casu, B., 3, 23, 32–33, 39 Cave, G.W.V., 141, 151 Cawley, J.J., 19, 44 AUTHOR INDEX Cerny, R., 180, 199 Cerny, R.L., 180, 186–189, 192, 199 Chadha, R.K., 127, 150–151 Chaidaroglou, A., 73, 103 Champion, W.C., 19, 44 Chang, C.-D., 13, 42 Chang, M.J., 15, 43 Chapman, J., 9, 40 Chapman, N.B., 258, 296 Chapman, R.G., 126, 150 Charifson, P.S., 89, 106 Cheung, W., 61, 102 Chiang, Y., 273, 297 Chiarelli, R., 160, 196 Chiefari, J., 116, 149–150 Chin, J., 56–57, 61, 102 Cho, H., 84, 105 Chock, P., 71, 103 Choe, J.Y., 93, 107 Choi, S., 174, 180–181, 183–185, 193, 198 Christou, G., 154, 194 Chu, C.-T.-W., 13, 42 Chu, Z.T., 211, 237, 241, 245 Churg, A.K., 222, 242 Ciurli, S., 76, 104 Cleland, W.W., 56, 61, 63, 65–67, 74, 96–97, 99, 101–104, 107–108, 229, 231–232, 243 Clemens, J.C., 82, 105 Clifford, E.P., 159, 196 Closs, G.L., 11, 41 Coffman, D.D., 14, 43 Cohen, P., 50, 101 Cohen, P.T., 79–80, 82–83, 104 Coleman, J.E., 70, 72–73, 103 Coles, B.F., 248, 295 Collier, C.W., 248, 295 Combariza, M.Y., 142, 151 Conney, A.H., 248, 295 Cooperman, B.S., 71, 103 Coppens, P., 139, 151 Corbin, D.R., 6, 40 Cossette, M.-V., 12, 42 Coulson, C.A., 229, 243 Coxon, J.M., 281, 286, 298 Cram, D.J., 2–3, 39 Cram, J.M., 2, 39 Cramer, F., 4, 39 Crayston, J.A., 154, 194 Creighton, S., 222, 242 301 Crespo, M.I., 165, 197 Cristol, S.J., 22, 25, 45 Cronstedt, A.F., 5, 40 Crosby, J., 222, 242 Cross, A.D., 248, 295 Crotti, P., 264–266, 290, 296 Crowder, M.W., 71, 76, 103104 Csoăregh, I., 134, 151 Cuchillo, C.M., 95, 107 Cui, Q., 204, 238–239, 245 Cuma, M., 208, 240 Curtin, D.Y., 294, 298 Czyryca, P.G., 58, 86–87, 102, 106 Dagani, R., 13, 42 Dahm, K.H., 248, 295 Daly, J., 277, 297 Daly, J.W., 277–278, 297 Danielsson, U., 229, 243 Dansette, P., 274, 297 Dansette, P.M., 290, 298 D’Arcy, A., 74, 104 Darden, T.A., 89, 106 Darragh, C.M., 12, 42 Das, A.K., 79, 82–83, 104 Davidson, E.R., 159, 195 Davis, A.M., 62, 102 Davis, A.P., 116, 118, 150 Davis, T.L., 28–29, 34, 47 Day, V.W., 166, 197 de Jersey, J., 76, 78, 104 Dell’Acqua, M., 94, 107 Dell’Omodarme, G., 264, 296 Denkel, K.-H., 165, 197 Denu, J., 84, 105 Denu, J.M., 79, 82–85, 104–106 Desai, S.R., 165–167, 171, 173, 175, 177, 179, 197 Desiraju, G.R., 109–114, 123, 149–150 Devi-Kesavan, L.S., 222, 224, 242 Devine, J.N., 154, 194 Dewar, M.J.S., 222, 242 DeWolfe, R.H., 256, 296 Di Sabato, G., 68, 103 Diamante, P.R., 139, 151 Dikiy, A., 76, 104 Dillet, V., 56, 67, 87, 101, 106 Dinner, A.R., 224, 242 302 Dionysius, D.A., 76, 104 Dixon, J., 84, 105 Dixon, J.E., 82–85, 105–106 Doan, L., 264–265, 267, 281, 288–290, 292–293, 296, 298 Domingo, V.M., 165, 197 Donarski, W.J., 98, 107–108 Donatella, D., 264–265, 296 Donovan, S., 155, 157, 195 Dougherty, D.A., 154, 159, 183, 190, 193–195, 199 Dowd, P., 159, 196 Doăring, S., 137, 151 Doărpinghaus, N., 134, 151 Dragsted, L., 248, 295 Draper, S.M., 116, 118, 150 Duchamp, D.J., 120, 150 Ducharme, Y., 114, 149 Duennebacke, D., 155, 195 Dumas, D.P., 98, 107–108 Dunaway-Mariano, D., 93–94, 106 Dunn, B.M., 273, 297 Dunne, G., 116, 118, 150 Dupin, C., 258, 296 Dupin, J.F., 258, 261–262, 296 Duvall, B., 265–267, 280, 296 Dvolaitzky, M., 160, 196 Eberson, L., 155, 195 Eccleston, J.F., 71, 103 Eckstein, F., 71, 95, 103, 107 Edens, W.A., 51, 54–56, 72, 101 Egloff, M., 79–80, 104 Eisenmesser, E.Z., 233, 235, 244 El Masri, A.M., 248, 295 Eliseev, A.V., 3, 23, 32, 39 Ellison, G.B., 159, 196 Ellison, J.J., 154, 194 Elmer, T., 69, 103 Elsing, H., 51, 54–56, 72, 101 Emsley, J., 231, 244 E´pel’baum, E.T., 25, 46 Epstein, A.J., 154, 194 Erenrich, E.S., 95, 107 Etter, M.C., 119, 130, 150–151 Evans, M.E., 32, 47 Evans, S.V., 114, 149 Evans, W.B.L., 27, 46 AUTHOR INDEX Fan, E., 120, 150 Fasano, O., 89, 106 Fasella, P., 233, 244 Fauman, E.B., 83, 85, 105 Feierberg, I., 237, 245 Feldman, K.S., 128, 151 Ferguson, G., 123, 142, 150 Ferrarini, P.L., 258, 296 Ferretti, M., 264, 266, 290, 296 Fersht, A.R., 229, 243 Feuerstein, J., 71, 88, 103 Field, J.E., 142, 151 Field, M., 204, 239 Field, M.J., 204, 239 Fife, T.H., 58, 102, 272, 275, 297 Finch, A.F., 258, 296 Fitzgerald, L.J., 114, 149 Fitzgibbon, M.J., 79–80, 104 Fjeld, C.C., 82–83, 105 Fleischman, S.G., 128, 134, 151 Fleming, G.R., 235, 244 Fleming, M.A., 79–80, 104 Flint, A.J., 83–84, 105 Florian, J., 206, 240 Foăldiak, G., 2223, 2627, 44 Foley, C.K., 89, 106 Folmer, B.J.B., 116–117, 150 Forconi, M., 56, 61, 66, 102 Forrester, A.R., 9, 11, 40 Fothergill, M., 210–212, 221, 240–242 Frech, M., 89, 106 Freedman, A., 93, 107 Freeman, P.K., 23, 26, 45 Freeman, S., 54, 101 Freemantle, M., 14, 42 Frey, P.A., 71, 97, 103, 107, 229, 232, 243 Froăhlich, R., 122, 150 Friedman, J.M., 54, 58, 101 Friedman, J.R., 154, 194 Friedman, S., 267, 275, 289, 292, 296–297 Friedman, S.L., 270, 276–277, 296–297 Fries, P.H., 159, 195 Friese, J.C., 137, 151 Friesner, R., 204, 239 Frisˇ cˇic´, T., 115, 143–144, 146, 149, 151 Frohlich, R., 76, 104 Fromm, H.J., 93, 107 Frye, J.S., 130, 151 Fuchs, D.N., 97, 107 AUTHOR INDEX Fuji, T., 258, 296 Fujisawa, I., 137, 151 Fujiwara, Y., 30, 47 Fukuda, J., 12, 42 Fukuzawa, Y., 126, 150 Funhoff, E.G., 76, 78, 104 Furth, M., 89, 106 Furukawa, N., 139, 151 Gadosy, T.A., 4, 40 Gahan, L.R., 78, 104 Gallagher, J.F., 123, 142, 150 Gallo, G.G., 3, 23, 32–33, 39 Gallucci, J.C., 114, 149 Gamblin, S.J., 93, 106 Gao, J., 56, 67, 87, 101, 204, 222, 224, 239, 242 Gao, X., 115, 143–144, 146, 149, 151 Garavito, R.M., 94, 107 Garben, O., 163, 196 Garcia-Garibay, M.A., 6, 10–11, 40 Garcia-Viloca, M., 204, 239 Gassman, P.G., 97, 107, 215, 218, 241 Gatteschi, D., 154, 158, 194 Gatteshi, D., 154, 194 Gavardinas, K., 284–285, 298 Geib, S.J., 120–121, 150 George, D.E., 23, 26, 45 Gerdes, S., 264–265, 292, 296 Gerkin, R.E., 114, 149 Gerlt, J.A., 94–95, 97, 107, 215, 218, 229, 232, 241, 243 German, E.K., 237, 245 Gerratana, B., 63, 102 Gerwert, K., 91, 106 Geyer, M., 89–90, 106 Ghadiri, M.R., 127, 150–151 Gillan, M.J., 237, 245 Gillilan, R.E., 267–268, 280, 293, 296, 298 Giorgi, J.B., 4, 40 Glidewell, C., 123, 142, 150 Go´mez-Lo´pez, M., 149, 152 Goering, H.L., 268, 296 Gold, A., 267, 296 Goldberg, J., 79, 82, 104–105 Gol’dshleger, N.F., 25, 46 Gomberg, M., 154, 193, 195 Gondoh, K., 74, 104 303 Gong, B., 116–117, 150 Gonzalez, M.A., 71, 103 Gonzalez-Lafont, A., 204, 239 Gooding, D., 154, 190, 194 Goody, R.S., 71, 88–89, 103, 106 Gorenstein, D.G., 54, 64, 101–102 Gornitzka, H., 14, 43 Grabowski, J.J., 159, 196 Graham, W.H., 29, 47 Granja, J.R., 127, 150–151 Gratton, E., 233, 244 Graves, D., 80–81, 104 Graves, D.J., 80–81, 104 Greengard, P., 79, 82, 104–105 Griffith, E.C., 81–82, 105 Griffith, J.P., 79–80, 104 Gross, M.L., 15–16, 26–27, 37, 43 Grossman, R.B., 133, 151 Grossman, S.J., 274, 280, 286–288, 297 Grubmeyer, C., 71, 103 Gruner, G., 155, 157, 195 Grunwald, E., 252, 260, 295 Grzyska, P.K., 58, 85–86, 102, 106 Guan, K.L., 84, 105 Guasch, A., 95, 107 Guddat, L.W., 78, 104 Guengerich, F.P., 248, 295 Guimaraes, C.R.W., 228, 243 Guo, H., 226, 243 Guo, Y., 84, 105 Gupta, S.C., 275–277, 282–283, 292, 297 Guthrie, R.D., 51, 101 Habisch, D., 23, 45 Habrych, M., 154, 194 Haino, T., 126, 150 Hale, S.P., 95, 107 Halkides, C.J., 232, 244 Hall, A.D., 62, 72, 102–103 Hall, C.R., 64, 102 Hamilton, A.D., 7, 40, 120–121, 150 Hamilton, S., 78, 104 Hamilton, S.E., 76, 78, 104 Hamilton, T.D., 109, 145, 152 Hammes-Schiffer, S., 237, 245 Han, R., 72–73, 103 Hanson, G.R., 78, 104 Hansson, T., 87, 106 304 Hardie, M.J., 126, 141, 150–151 Harker, D., 95, 107 Harms, E., 84–85, 105 Harms, E.H., 74, 104 Harrington, J.K., 22, 25, 45 Harris, K.D.M., 8, 40 Harris, M.E., 60, 102 Harris, T.M., 248, 295 Harrowfield, J.M., 56, 102 Hart, J.C., 87, 106 Hashimoto, S., 4, 40 Haslam, E., 226, 243 Hassner, A., 2, 38 Hattori, K., 133, 151 Havlas, Z., 157, 195 Hayes, R.B., 248, 295 Hayward, S., 233, 244 Heitmeyer, D.P., 98, 107 Helfrich, B.A., 119, 121, 129, 150 Heller, A., 252, 260, 295 Helps, N.R., 79, 82–83, 104 Henchman, M., 93, 107 Hendrickson, D.N., 154, 194 Hendry, P., 56, 102 Hengge, A.C., 49, 51, 54–56, 58, 60–61, 66–67, 72, 81, 85–87, 96–97, 101–103, 105–107 Henglein, F.M., 4, 39 Herges, R., 23, 45 Hernandez, O., 293, 298 Herschlag, D., 54, 56, 58, 67–70, 73, 90, 97, 101–104, 106–107 Hext, N.M., 132, 151 Hibbert, F., 231, 244 Hibler, D.W., 94, 107 Hillier, I.H., 87, 106 Hilvert, D., 202, 239 Hine, J., 11, 41 Hirai, K., 14, 42 Hof, F., 141, 151 Hoff, R.H., 54, 81, 86, 101, 105–106 Hoffman, R., 284, 298 Hoffmann, R., 9, 41 Holczer, K., 155, 157, 195 Holden, H.M., 98, 108 Holmes, J., 5, 40 Holmes, R.R., 53, 61, 101 Holtz, K.M., 70–71, 103 Hong, G., 204, 239 AUTHOR INDEX Hong, S.B., 98, 107–108 Honzatko, R.B., 93, 107 Horiuchi, A., 82, 105 Horn, E., 139, 151 Horn, H., 51, 101 Hosokoshi, Y., 155, 195 Houk, K.N., 20, 44, 222, 242, 249, 295 Hoz, S., 249, 295 Hsiao, K., 79–80, 104 Hu, J., 159, 196 Huang, C., 71, 103 Huang, H.B., 79, 82, 104–105 Hulst, R., 136, 151 Humphry, T., 56, 61, 66, 102 Hur, S., 225–226, 228, 243 Hutchins, H.E.C., 272, 297 Hwang, J.-K., 206–207, 210–211, 213–214, 229, 233–234, 237, 240–241, 243–244 Hynes, J.T., 211, 237, 241, 244–245 Iancu, C.V., 93, 107 Ickes, H., 116–117, 150 Ilao, M.C., 17, 20, 44 Inch, T.D., 64, 102 Inoue, K., 154–155, 177, 194–195, 198 Inoue, Y., 62, 102 Iordanov, T., 237, 245 Iovine, P.M., 141, 151 Iranzo, O., 69, 103 Isaacs, N.S., 253, 296 Isaev, S.D., 13, 15, 26, 42–43, 46 Isakov, Ya.I., 25, 46 Ishikawa, K., 74, 104 Islam, N., 275, 289, 292, 297 Islam, N.B., 275, 282–283, 292, 297 Itakura, H., 14, 42 Ito, Y., 143–144, 151–152 Ivers, R.S., 248, 295 Ives, D.H., 71, 103 Iwamoto, E., 14, 42 Iwamura, H., 154, 158, 177, 193–195, 198 Jackson, D.Y., 95, 107 Jackson, M.D., 79, 83, 85, 104–106 Jacobs, P.A., 7, 40 Jacobs, S.J., 183, 199 Jacoby, M., 13, 27, 42, 46 Jahn, D.A., 130, 151 AUTHOR INDEX Jain, R., 183, 199 Janusy, J.M., 267–268, 280, 296 Jao, L.K., 272, 275, 297 Jarvinen, P., 62–63, 102 Jencks, W.P., 51, 53–54, 56, 58, 67–69, 72, 97, 101–103, 107, 222, 242, 258–262, 282, 289, 292, 296, 298 Jerga, A., 134, 141, 151 Jerina, D.M., 248, 267, 270, 274–283, 286–290, 292–293, 295–298 Jetti, R.K.R., 123, 150 Jiang, T., 110–114, 125, 137, 141, 143, 149 Jime´nez, M.-C., 12, 41 Johansson, E., 75, 104 Johnson, D.W., 141, 151 Joines, R.C., 28–29, 34, 47 Jones, D.R., 56, 102 Jones, J.P., 67, 102 Jones, S.R., 71, 87, 103 Jones, W.M., 28–29, 34, 47 Jordan, F., 222, 242 Jordan, K.D., 159, 196 Jorgensen, W.L., 26–27, 46, 116–117, 150 Josephson, R.R., 268, 296 Joshi, G.C., 12, 42 Jukawa, Y., 258, 296 Jullien, J., 258, 261–262, 296 Jurado, L.A., 81, 105 Kabanov, V.V., 155, 157, 195 Kabsch, W., 89–90, 106 Kaden, T.A., 56, 102 Kagawa, Y., 71, 103 Kaăhlig, H., 1617, 37, 44 Kaija, H., 75, 104 Kaiser, E.T., 73, 104 Kakegawa, H., 172, 198 Kalbitzer, H.R., 89–90, 106 Kalish, V.J., 79, 104 Kalleymeyn, G.W., 2, 39 Kam, S.M., 17, 37, 44 Kanaya, T., 155, 195 Kaneko, T., 179, 198 Kano, K., 4, 40 Kantrowitz, E.R., 70–71, 73, 103 Kar, D.J., 54, 101 Karbach, S., 2, 39 Karpenko, N.F., 15, 26, 43 305 Karplus, M., 204, 224, 233, 239, 242, 244 Kartha, G., 95, 107 Kasperek, G.J., 274, 277–279, 283, 297 Kast, P., 202, 239 Katoh, K., 155, 179, 195, 198 Katz, I., 72–73, 103 Kaubisch, N., 279, 297 Kelley, S.-E., 12, 42 Kendall, D.A., 73, 104 Khan, S.A., 60, 64, 102 Khanjin, N.A., 226, 243 Khemani, K.C., 155, 157, 195 Kiefer, P.M., 211, 241 Kienhofer, A., 202, 239 Kilpatrick, M., 250, 271, 277, 295 Kim, E.E., 68, 70–72, 79–80, 103–104 Kim, J.B., 159, 196 Kim, J.L., 79–80, 104 Kim, Y., 85, 106 Kim, Y.H., 2, 39 Kim, Y.W., 116–117, 150 Kindman, L.A., 71, 87, 103 King, G., 208–209, 231, 238, 240 Kirby, A.J., 53–54, 58, 60, 64, 101–102 Kirmse, W., 23, 28, 45, 47 Kissinger, C.R., 79, 104 Kitas, E., 84, 105 Klaassen, C.H., 76, 78, 104 Klabunde, T., 56, 75–76, 102, 104 Klebahn, L., 163, 196 Klein, D.J., 10, 41 Klein, F.S., 252, 260, 295 Kleiner, H.-J., 14, 43 Klinman, J.P., 233, 236–238, 244–245 Klinowski, J., 13, 42 Kluger, R., 54, 101 Knapp, M.J., 237–238, 245 Knighton, D.R., 79, 104 Knowles, J.R., 15, 43, 54, 58, 71, 76, 87, 101, 103, 218–219, 241 Kobayashi, H., 155, 157, 195 Kobayashi, K., 127, 139, 150–151 Koch, A., 155, 157, 195 Koelsch, C.F., 155, 195 Koga, N., 154, 177, 194, 198 Kohen, A., 233, 236, 244 Kohler, B., 11, 41 Kolehmainen, E., 137, 139, 151 Kollman, P.A., 222, 242 306 Kolmodin, K., 87, 106 Kolodziejczyk, M., 15–16, 26–27, 37, 43 Kolyada, G.G., 15, 26, 43, 46 Kong, Y., 210–211, 240 Kooijman, H., 116–117, 150 Kopannia, S., 28, 47 Koreeda, M., 248, 295 Kosonen, M., 62, 102 Kostrewa, D., 74, 104 Kothe, G., 165, 197 Kovalevsky, A.Y., 69, 103 Kraft, A., 122, 150 Krajca, K.E., 28–29, 34, 47 Krebs, B., 56, 75–76, 102, 104 Kreevoy, M.M., 229, 231, 243 Krengel, U., 89, 106 Kresge, A.J., 58, 102, 273, 297 Kresge, C.T., 5, 40 Krishnaraj, R., 84, 105 Krishtalik, L.I., 219, 241 Krois, D., 3–4, 16–17, 23, 32, 37, 39, 44 Kuciel, R., 74, 104 Kuduva, S.S., 123, 128, 134, 150–151 Kupfer, R., 3, 10, 15–16, 22, 26–27, 37, 39, 41, 43–44 Kuriyan, J., 79, 104 Kusuyama, Y., 258, 296 Kuznetsov, A.M., 237, 245 Kwon, Y.G., 79, 104 Kyere, S., 284–285, 298 Lad, C., 50, 56, 101 Lahiri, S.D., 93–94, 106 Lahti, P.M., 179, 198 Laird, R.M., 262, 296 Lakshminarasimhan, P., 9, 40 Lastovenko, S.I., 13, 42 Lattman, E.E., 94, 107 Lauffer, R.B., 154, 194 Lautwein, A., 90, 106 Lawrence, D.S., 110–114, 125, 137, 141, 143, 149 Le Noble, W., 68, 103 Leak, D.J., 253, 295 Leatherbarrow, R.J., 229, 243 Lebuis, A.-M., 56–57, 61, 102 Lee, E.Y., 82, 105 Lee, F.S., 220, 242 AUTHOR INDEX Lee, J.K., 222, 242 Lee, Y.-G., 54, 101 Lei, X., 9, 40 Leiserowitz, L., 114, 149 Leonowicz, M.E., 5, 40 Levett, M., 110–114, 125, 137, 141, 143, 149 Levin, W., 248, 295 Levitt, M., 204, 239 Lewis, C.T., 79, 104 Lewis, V.E., 98, 107–108 Li, G.H., 238, 245 Li, H., 222, 242 Li, Y., 49, 99, 101, 108 Lienhard, G.E., 222, 242 Lightner, D.A., 116, 129, 149–151 Lightstone, F.C., 222, 242 Lin, B., 258, 263, 275, 281, 288–290, 292, 296–298 Lin, D., 84, 105 Lin, J., 232, 244 Lindner, P.E., 19, 44 Lindoy, L.F., 56, 102 Lindqvist, Y., 74–75, 104 Lindskog, S., 212, 241 Lineberger, W.C., 159, 196 Lipscomb, W.N., 56, 76, 102 Lis, T., 154, 194 Liu, H., 204, 239 Liu, J.O., 81–82, 105 Liu, L., 8, 40 Liu, M.T.H., 17, 30, 44, 47 Liu, T., 56, 67, 87, 101 Ljusberg, J., 78, 104 Lluch, J.M., 204, 239 Lohse, D.L., 84, 105 Loll, P.J., 94, 107 Loncharich, R.J., 290, 298 Long, F.A., 250–252, 254–255, 271, 273, 277, 295, 297 Lonnberg, H., 62–63, 96, 102, 107 Low, J.N., 123, 142, 150 Lowe, G., 71, 92, 103, 106 Lo´pez-La´zaro, A., 116, 127, 150 Lu, A.Y.H., 248, 295 Lu, K., 180, 198 Luch, A., 248, 295 Luzhkov, V., 237, 245 Lyne, P.D., 204, 239 AUTHOR INDEX Ma, B.-Q., 139, 151 Macchia, B., 258, 264, 266, 290, 296 Macchia, F., 264–266, 290, 296 MacGillivray, L.R., 109, 111, 114–115, 123, 139, 142–146, 149, 151–152 Maclagan, R.G.A.R., 281, 286, 298 Maegley, K.A., 90, 106 Mahata, G., 134, 151 Mak, T.C.W., 123, 150 Makha, M., 126, 150 Malochowski, W.P., 84, 105 Manly, R., 5, 40 Manriquez, J.M., 154, 194 March, J., 26–27, 46 Marcus, R.A., 206, 208, 221, 240, 242 Marecek, J., 68, 103 Marendaz, J.-L., 120–121, 150 Markham, R., 95, 107 Maroncelli, M., 235, 244 Marsh, R.E., 120, 150 Martı´ , S., 226, 243 Marti, K., 2, 39 Marti, S., 204, 239 Martin, B., 80–81, 104 Martin, B.L., 80–81, 104–105 Martinez-Carrera, S., 120, 150 Marvel, M.A., 28, 47 Mas, M., 169, 197–198 Mascal, M., 132, 151 Mataga, N., 157, 195 Mathias, J.P., 119, 150 Matlin, A.R., 73, 104 Matsen, F.A., 10, 41 Matsubara, R., 137, 151 Matsuda, K., 177, 198 Matzinger, S., 15, 43 Maverick, E., 116, 129, 149–151 McBride, J.M., 155, 195 McCain, D.F., 85, 106 McCammon, J.A., 233, 244 McConnell, H.M., 159–160, 196 McCormick, F., 88, 106 McCoy, M., 7, 40 McKee, M.L., 23, 45 McLean, R.S., 154, 194 McMahon, J.A., 128, 134, 151 McMurry, T.J., 154, 194 McRee, D.E., 127, 150–151 Mehdi, S., 94, 107 307 Meijer, E.W., 116–117, 150 Menger, F.M., 226, 243 Merkx, M., 76, 78–79, 104 Mertz, P., 76, 80–82, 104–105 Merz, K.M., 204, 239 Meskens, F.A.J., 32, 47 Messmore, J.M., 97, 107 Michelman, J.S., 14, 43 Michl, J., 3, 39, 157, 195 Middleton, S.A., 73, 103 Mihailovic, D., 155, 157, 195 Mihara, Y., 74, 104 Mildvan, A.S., 50, 90, 94, 101, 107 Miller, J.S., 154, 194 Minachev, Kh.M., 25, 46 Minore, J., 68, 103 Miranda, M.-A., 12, 41 Mitic, N., 78, 104 Mito, M., 155, 195 Mitsuhashi, T., 28–29, 34, 47 Miyasaka, M., 154, 179, 190, 194 Modarelli, D.A., 12, 42 Mogck, O., 125, 150 Mohan, R.S., 258, 260–261, 263, 284–285, 290, 292, 296, 298 Molins, E., 169, 197–198 Monard, G., 204, 239 Mondragon, A., 81–82, 105 Montemarano, J.A., 275–276, 281, 297–298 Moomaw, E.W., 79, 104 Moore, M.H., 132, 151 Moore O’Ferrall, R.A., 53, 101 Moore, S., 95, 107 Morgan, S., 12, 15, 42–43 Mori, A.L., 272, 297 Morrow, J.R., 69, 103 Moss, R.A., 15, 43 Motherwell, W.D.S., 114, 149 Moubaraki, B., 78, 104 Moulton, B., 128, 134, 151 Muegge, I., 214, 225, 241–243 Mueller, E.G., 71, 76, 103 Mulholland, A.J., 204, 239 Mulkern, R.V., 154, 194 Mullins, L.S., 98, 108 Murayama, K., 137, 151 Murray, C.J., 232, 244 Murray, K.S., 78, 104 Murugesu, M., 154, 194 308 Murzinova, Z.N., 13, 42 Mushak, P., 72, 103 Myers, J.A., 28–29, 34, 47 Nagae, T., 137, 151 Nageswer Rao, B., 10, 41 Nairn, A.C., 79, 82, 104–105 Naito, I., 30, 47 Nakamura, N., 154, 177, 194, 198 Nakano, H., 155, 195 Nakazawa, Y., 155, 195 Nam, K., 224, 234–236, 242 Nandi, N., 235, 244 Nangia, A., 123, 150 Narymbetov, B., 155, 157, 195 Nashed, N.R., 290, 298 Navia, M.A., 79–80, 104 Neria, E., 233, 244 Neumann, W.P., 155, 195 Newby, Z.E.R., 228, 243 Newcomb, J.R., 98, 108 Nichols, P.J., 126, 150 Nickon, A., 10, 17, 20, 41, 44 Nicolaou, D.C., 248, 295 Nicolaou, K.C., 146, 152 Nii, T., 179, 198 Nishide, H., 154, 178–179, 190, 194, 198 Noble, C.J., 78, 104 Nogues, M.V., 95, 107 Noodleman, L., 56, 67, 87, 101 Nooigen, W.J., 248, 295 Nooijen, P.J.F., 248, 295 Nordlund, P., 84, 87, 105–106 Novak, J., 183, 199 Novak, M.A., 154, 194 Novikov, S.S., 15, 26, 43, 46 Nuckolls, C., 141, 151 O’Brien, P.J., 70, 73, 103–104 Ohara, M., 12, 42 Oivanen, M., 62–63, 102 Oku, A., 30, 47 Olivier-Lilley, G.L., 75, 104 Olofson, R.A., 14, 43 Olovsson, G., 126, 150 Olson, J.H., 248, 295 Olsson, M.H.M., 201, 223–224, 234–235, 242 Omburo, G.A., 98, 108 AUTHOR INDEX Omerzu, A., 155, 157, 195 Orenes, R.-A´., 127, 150 Orlando, M., 15–16, 26–27, 37, 43 Orr, G.W., 137, 151 Ostanin, K., 74, 104 Otani, N., 30, 47 Ovchinnikov, A.A., 159, 196 Ozawa, T., 154, 179, 190, 194 Padmakumar, R., 175, 177, 179, 198 Pai, E.F., 89, 106 Paik, A., 265–267, 280, 296 Palacio, F., 165, 197 Palfey, B.A., 84, 105 Pallen, C., 80–81, 104 Pande, L.M., 12, 42 Pannifer, A.D.B., 84, 105 Papaefstathiou, G.S., 115, 145, 149, 152 Papazyan, A., 229–230, 232, 243–244 Pares, X., 95, 107 Parge, H.E., 79, 104 Parker, R.E., 253, 262, 296 Parkin, S., 133, 151 Parson, W.W., 208, 211, 222, 225, 233, 240–241 Partick, B.O., 133, 151 Pastor, A., 116, 127, 150 Paul, M.A., 271, 297 Paulson, J.F., 93, 107 Paulus, E.F., 125, 127, 139, 150–151 Pedersen, C.J., 2, 38–39 Pedersen, L.G., 89, 106 Pelletier, L.A., 79, 104 Penefsky, H.S., 71, 103 Penenory, A., 155, 195 Peon, J., 11, 41 Perreault, D.M., 63, 96, 102 Persoons, C.J., 248, 295 Petsko, G.A., 89, 106 Pfleiderer, W., 62–63, 102 Phillips, D.C., 222, 242 Pierre, V.C., 154, 194 Pinkse, M.W., 76, 78, 104 Platt, K.L., 248, 295 Platz, M.S., 12, 15, 42–43 Pleier, J.M., 12–13, 42 Pocker, Y., 272–273, 297 AUTHOR INDEX Pohl, T.M., 267–268, 276–277, 280, 293, 296–298 Poliks, M.D., 3, 15–16, 26–27, 37, 39, 43 Polshakov, D., 11, 41 Poole, L.B., 95, 107 Poon, T., 9, 40 Pople, J.A., 203, 239 Potter, B.V., 71, 103 Potter, B.V.L., 92, 106 Poulose, B., 267, 296 Pourmotabbed, T., 94, 107 Pranata, J., 116–117, 150 Prasher, D.C., 71, 103 Preto, R.J., 58, 102 Prince, P.D., 116, 127, 150 Pritchard, J.G., 250–252, 254–255, 273, 277, 295 Pu, Y.-J., 178–179, 198 Purcell, J., 58, 86, 102 Quan, C., 95, 107 Quirk, S., 94, 107 Raatgever, J.W., 248, 295 Rabinow, B.E., 11, 41 Radhe, R., 273, 297 Radkiewicz, J.L., 233, 236, 244 Radzicka, A., 202, 239 Raines, R.T., 95–97, 107 Raithby, P.R., 114, 149 Rajca, A., 153–155, 158, 162, 165–169, 171–181, 183–199 Rajca, S., 153–154, 165–169, 171, 173–175, 177, 179–181, 183–194, 197–199 Ramamurthy, V., 6, 10, 40–41 Ramesha, A., 267, 296 Ramirez, F., 68, 103 Ramponi, G., 84, 105 Ramsay, G.S., 248, 295 Ranaghan, K.E., 228, 243 Raney, K.D., 248, 295 Rao, S.N., 229, 243 Rao, V.N.M., 23, 26, 45 Rassat, A., 160, 196 Raston, C.L., 126, 141, 150–151 Rauk, A., 281, 286, 298 Raushel, F.M., 49, 65, 98–99, 101, 107–108 Rawlings, J., 56, 102 309 Raymond, K.N., 154, 194 Rebek, J., 137, 141, 151 Reddy, D.S., 123, 150 Reese, K.M., 1, 38 Reggiani, M., 3, 23, 32–33, 39 Reid, J.L., 139, 151 Reid, R.C., 98, 107 Reinemer, P., 79–80, 104 Reinhoudt, D.N., 136, 151 Reutzel, S.M., 119, 150 Rey, P., 154, 158, 194 Reynolds, M.A., 94, 107 Richard, J.P., 69, 71, 103, 252, 258–262, 265, 267, 292, 295–296, 298 Richards, F.M., 95, 107 Richardson, D.I.J., 95, 107 Ridgway, C., 50, 101 Ripmeester, J., 136, 151 Ripmeester, J.A., 139, 151 Rissanen, K., 136–137, 139, 151 Ritchie, C.D., 289, 292, 298 Ritter, F.J., 248, 295 Roberts, B.A., 141, 151 Rodriguez-Hornedo, N., 128, 134, 151 Rokita, S.E., 73, 104 Roller, H., 248, 295 Romanenko, V., 14, 43 Ronald, B.P., 272–273, 297 Rose, K.N., 137, 151 Rosen, G.M., 154, 194 Rosenberg, M., 15–16, 26–27, 37, 43 Rosenberg, M.G., 1, 17, 23–25, 29–30, 33–34, 36–37, 44–45, 47 Ross, A.M., 266, 273, 275–276, 279–280, 290, 292, 296–298 Ross, S.D., 255, 296 Roth, W.J., 5, 40 Rothenberg, M.E., 258–262, 292, 296 Rovira, C., 165, 169, 197–198 Rowell, R., 64, 102 Ruiz-Molina, D., 169, 197–198 Rusnak, F., 76, 80–82, 104–105 Russell, S., 208, 240 Russell, S.T., 213, 220, 222, 225, 241–242 Sadd, J.S., 9, 11, 40 Saenger, W., 95, 107 Saini, M.S., 71, 103 310 Sakamoto, S., 139, 151 Salem, L., 26–27, 46 Sampson, K., 265–267, 280, 296 Sampson, R.M., 2, 39 Samyn, B., 76, 78, 104 Sander, W.W., 28, 34, 47 Sanders, D.A., 88, 106 Sandoval, C.A., 126, 150 Sangaiah, R., 267, 296 Saper, M.A., 83–85, 105 Sarachik, M.P., 154, 194 Sargeson, A.M., 56, 102 Sato, K., 155, 195 Satoh, K., 62, 102 Sawada, M., 258, 296 Sawicka, D., 249, 295 Sayer, J., 267, 296 Sayer, J.M., 270, 274, 280, 286–288, 290, 296–298 Scanlan, T.S., 98, 107 Schaleger, L.L., 272, 297 Schardinger, F., 4, 39 Scheffer, J.R., 143–144, 151–152 Scheffzek, K., 89–90, 106 Schenk, G., 78, 104 Schlecht, K.A., 98, 108 Schlenk, W., 163–164, 196 Schlesinger, M.J., 71, 103 Schleyer, P.v.R., 25, 45 Schmidt, G.M.J., 128, 143, 145, 151 Schmidt, R., 164–165, 197 Schmitt, U.W., 207–208, 240 Schmitz, E., 23, 45 Schmitz, F., 90, 106 Schneider, E., 154, 194 Schneider, G., 74–75, 104 Schnell, R., 62–63, 102 Schowen, K.B., 65, 102 Schowen, R.L., 65, 102 Schroeder, H.E., 2, 39 Schubert, H., 85, 105 Schubert, H.L., 83, 85, 105 Schutz, C.N., 214–217, 230–233, 241, 244 Schweins, T., 89–90, 106, 210–211, 213, 240–241 Scrimgeour, S.N., 123, 142, 150 Scrutton, N.S., 233, 236, 244 Sedo, J., 169, 197–198 Seidel, A., 248, 295 AUTHOR INDEX Selander, H.G., 274, 297 Senter, P., 71, 103 Serpersu, E.H., 94, 107 Sessoli, R., 154, 194 Seto, C.T., 119, 150 Sham, Y.Y., 225, 242–243 Sheppard, D.W., 87, 106 Sherman, J.C., 126, 150 Shevlin, P.B., 23, 45 Shields, G.P., 114, 149 Shim, H., 65, 98, 101, 107 Shiomi, D., 155, 195 Shipley, D.Y., 290, 298 Shirasaka, T., 139, 151 Shivanyuk, A., 127, 137, 139, 150–151 Shortkroff, S., 154, 194 Shortle, D., 94, 107 Showalter, R.E., 79, 104 Shultz, D.A., 183, 199 Shurki, A., 204, 208, 223–226, 239, 242 Siebke, M.M., 114, 149 Sijbesma, R.P., 116–117, 150 Sikkink, R., 81, 105 Silverman, D.N., 212–214, 241 Silverton, J.V., 270, 296–297 Simanek, E.E., 119, 150 Simopoulos, T.T., 72, 103 Sims, P., 248, 295 Singh, N., 12, 42 Sintchak, M.D., 79–80, 104 Skrzypczak-Jankunn, E., 116–117, 150 Smerdon, S.J., 93, 106 Smith, A.L., 248, 295 Smith, G., 121, 150 Smith, J.D., 95, 107 Smith, J.N., 248, 295 Smithhisler, D.J., 165, 167–168, 197 Smondyrev, A.M., 206, 240 Snyder, J.P., 226, 243 Sowa, G.A., 63, 85, 96–97, 102, 105, 107 Spek, A.L., 116–117, 150 Sprecher, M., 249, 295 Squires, R.R., 159, 196 Srivastava, S., 68, 103 Stanley, M., 95, 107 Stark, A., 23, 45 Stark, O., 163, 196 Staufacher, C.V., 84, 105 Stauffacher, C.V., 84–85, 105 AUTHOR INDEX Stec, B., 70–71, 103 Steed, J.W., 116, 127, 150 Stefani, M., 84, 105 Stege, P., 90, 106 Stepanov, F.N., 15, 26, 43, 46 Stern, A.G., 17, 20, 44 Stevens, I.D.R., 27, 46 Stevens, L.W., 265, 296 Stevis, P.E., 74, 104 Stoddart, J.F., 109, 149, 152 Stolowich, N.J., 94, 107 Stone, R., 222, 242 Stone, R.L., 82, 105 Storch, D.M., 222, 242 Storer, J.W., 20, 44 Strajbl, M., 204, 217–218, 225–228, 239, 241, 243 Strater, N., 56, 75–76, 102, 104 Stromberg, R., 62, 102 Stuckey, J.A., 83, 85, 105 Stumer, C., 2, 38 Su, X.D., 84, 105 Suck, D., 95, 107 Suămmermann, W., 165, 197 Sun, L., 8182, 105 Sussman, F., 229, 233, 243 Sutcliffe, M.J., 233, 236, 244 Suzuki, E., 74, 104 Swain, C.G., 271, 297 Syamala, M.S., 10, 41 Szejtli, J., 7, 40 Szekeres-Bursics, E., 22–23, 26–27, 44 Szondy, T., 22–23, 26–27, 44 Taber, R.L., 19, 44 Tabernero, L., 84–85, 105 Tabushi, I., 12, 42 Taddei, N., 84, 105 Takahashi, M., 178–179, 198 Takahashi, N., 12, 42 Takasaki, B., 56, 102 Takashima, J., 178–179, 198 Takeda, K., 155, 195 Takui, T., 155, 195 Talman, E., 248, 295 Tamanoi, F., 89, 106 Tamiya, Y., 4, 40 Tanimoto, Y., 30, 47 311 Tanner, M.E., 3, 39 Taparowsky, E., 89, 106 Taylor, R., 114, 149 Tee, O.S., 4, 40 Tejada, J., 154, 194 Tempczyk, A., 79, 104 ten Kate, F.J.W., 248, 295 Thakker, D.R., 248, 275–276, 281, 295, 297–298 Thatcher, G.R.J., 54, 101 Thayumanavan, S., 175–177, 198 The´ry, V., 204, 239 Thiel, W., 204, 239 Thier, R., 248, 295 Thomas, R., 3, 39 Thompson, J.D., 155, 157, 195 Thompson, J.E., 95–97, 107 Thompson, W.R., 14, 43 Thomson, J.A., 79–80, 104 Thondorf, I., 125, 150 Thorpe, A.J., 281, 286, 298 Tidwell, T.T., 164, 196 Timmerman, P.T., 136, 151 Tobin, J.B., 229, 232, 243 Todd, A.R., 95, 107 Tokumoto, M., 155, 157, 195 Tom, J., 95, 107 Tomioka, H., 14, 42 Tonks, N.K., 83–84, 105 Tormos, R., 12, 41 Toteva, M.M., 252, 267, 295–296 Travers, F., 95, 107 Trentham, D.R., 71, 103 Trost, B.M., 248, 295 Trotter, J., 114, 126, 143–144, 149–152 Truttman, L., 15, 43 Tsuchida, E., 154, 178–179, 190, 194, 198 Tsuno, Y., 258, 296 Tucker, K.D., 79, 104 Tucker, P., 75, 104 Turkenburg, J.P., 132, 151 Turner, A.B., 28–29, 34, 47 Turro, N.J., 6, 9–11, 40–41 Udachin, K.A., 136, 151 Udenfriend, S., 277, 297 Ukachukwu, V.C., 258, 260–261, 263, 284, 296, 298 312 Ulrich, S., 155, 195 Ulstrup, J., 237, 245 Urban´czyk-Lipkowska, Z., 130, 151 Usher, D.A., 62, 95, 102, 107 Utamapanya, S., 155, 158, 165–169, 171–173, 175–177, 195, 197–198 Vachet, R.W., 142, 151 Valizadeh, M., 78, 104 Van Beeumen, J., 76, 78, 104 Van Dine, G.W., 9, 41 Van Etten, R.L., 56, 67, 71, 74, 84–85, 87, 101, 103–106 van Herwijnen, H.W.G., 8, 40 van Hooff, J.H.C., 13, 42 van Loon, A.P., 74, 104 Van Nieuwenhuize, J.P., 248, 295 Vanhooke, J.L., 98, 108 Varner, M.A., 133, 151 Vartuli, J.C., 5, 40 Varvoglis, A.G., 53–54, 58, 101 Veciana, J., 165, 169, 197–198 Venegas, F.D., 95, 107 Venkataraman, D., 142, 151 Ventosa, N., 169, 197–198 Verboom, W., 136, 151 Verwiel, P.E.J., 248, 295 Vichard, C., 56, 102 Vigevani, A., 3, 23, 32–33, 39 Viggiano, A.A., 93, 107 Vihko, P., 75, 104 Vila, F., 159, 196 Villa, J., 203, 206, 208–209, 221–222, 233, 235–240 Villiers, A., 4, 39 Vincent, J.B., 75–76, 104 Virtanen, P.O.I., 289, 292, 298 Vogt, W., 125, 150 Voth, G.A., 206–208, 237, 240, 245 Vourloumis, D., 146, 152 Vreekamp, R.H., 136, 151 Vuilleumier, R., 206–207, 240 Waali, E.E., 28–29, 34, 47 Wagner, W.J., 17, 44 Wahnon, D., 61, 102 Wall, M., 56, 102 Walsh, C.T., 84, 105 AUTHOR INDEX Walsh, P.W., 116, 149–150 Walton, J.C., 154, 194 Wang, C.X., 159, 196 Wang, J., 80–81, 104 Wang, S., 84–85, 105 Wang, Y., 78, 84, 104–105 Wanzlick, H.-W., 14, 43 Waring, M.A., 65, 102 Warmuth, R., 3, 24, 28, 33, 39, 47, 132, 151 Warshel, A., 89–90, 106, 201–206, 208–225, 229–245 Webb, M.R., 71, 88, 103 Webb, S.P., 237, 245 Weber, E., 134, 151 Webster, C.E., 93–94, 106 Weimaster, J.F., 273, 297 Weiss, P.M., 67, 74, 99, 102, 104, 108 Weiss, R.M., 231, 244 Wells, J.A., 95, 107, 229, 243 Welsh, K.M., 71, 103 Wenthold, P.G., 159, 196 Wenz, G., 4, 39 Wermuth, U.D., 121, 150 Werner, A., 16–17, 37, 44 Wernsdorfer, W., 154, 194 Westheimer, F.H., 50, 53, 101 Whalen, D., 267, 296 Whalen, D.L., 247, 255, 257–258, 260–261, 263–268, 270, 273, 275–277, 279–286, 288–290, 292–293, 296–298 Whalley, E., 68, 103 White, J.M., 121, 150 Whitesides, G.M., 119, 150 Whitt, S.A., 229, 232, 243 Woăhler, F., 2, 38 Widdowson, D.A., 253, 295 Wiesmuller, L., 90, 106 Wigler, M., 89, 106 Wihko, P., 74, 104 Wild, J.R., 98, 107–108 Wilde, J.A., 94, 107 Williams, A., 62, 65, 72, 102–103 Williams, N.H., 50, 56–57, 61, 66, 93, 101–102, 106 Williams, R.T., 248, 295 Wilsey, S., 249, 295 Wilt, J.W., 17, 44 Winalski, C.S., 154, 194 Winberg, H.E., 14, 43 AUTHOR INDEX Winssinger, N., 146, 152 Winter, G., 229, 243 Witkop, B., 277, 297 Wittinghofer, A., 89–91, 106 Witzel, H., 75–76, 104 Wogan, G.N., 248, 295 Wohl, R.A., 252, 295 Wojna´rovits, L., 22–23, 26–27, 44 Wolfenden, R., 50, 56, 101, 202, 239 Wolk, J.L., 249, 295 Wongsriratanakul, J., 153–154, 174, 180–181, 183–194, 198–199 Wood, A.W., 248, 295 Woodward, R.B., 284, 298 Wormhoudt, J., 93, 107 Wray, V., 258, 296 Wu, L., 56, 67, 84–87, 101, 105–106 Wu, Y.Q., 232, 244 Wudl, F., 155, 157, 195 Wuest, J.D., 114, 149 Wyckhoff, H.W., 95, 107 Wyckoff, H.W., 68, 70–72, 103 Wynberg, H., 11, 41 Wynne, C.J., 76, 104 Wyss, M., 74, 104 Xiong, F., 81–82, 105 Xu, J., 165–166, 197 Xue, F., 123, 150 Yadav, A., 221, 242 Yagi, H., 248, 270, 274–277, 279, 281–283, 288–290, 292–293, 295–298 Yamaguchi, K., 139, 151 Yampol’skii, Yu.Yu., 25, 46 Yan, Y., 116–117, 150 Yanase, M., 126, 150 Yang, J., 120–121, 150 313 Yang, M.Y., 69, 103 Yang, N.C., 168, 197 Yang, W., 204, 239 Yarnell, A., 217, 241 Yavari, I., 258, 296 Yee, G.T., 154, 194 Yoshida, Z.-I., 12, 42 Younas, M., 60, 102 Young, G., 50, 101 Young, W.G., 256, 296 Youseti-Salakdeh, E., 62, 102 Yu, L., 76, 81, 104–105 Yurchenko, A.G., 13, 15, 26, 42–43, 46 Yuvaniyama, C., 85, 105 Yuvaniyama, J., 83, 105 Zaltaman-Nirenberg, P., 277, 297 Zaworotko, M.J., 122–123, 128, 134, 150–151 Zeiss, G.D., 9, 41 Zeng, H., 116–117, 150 Zerkowski, J.A., 119, 150 Zhalnina, G.G., 13, 42 Zhang, G., 93–94, 106 Zhang, J., 82, 105 Zhang, M., 84–85, 105 Zhang, Y., 139, 151, 204, 239 Zhang, Z., 6, 10–11, 40, 82, 84, 105 Zhang, Z.-Y., 56, 67, 83–87, 101, 105–106 Zhao, Y., 84–85, 87, 105–106 Zhou, B., 86, 106 Zhou, G., 84, 105 Zhou, M., 84, 105 Zhou, M.M., 74, 104 Zhu, J., 116–117, 150 Zhuo, S., 82, 105 Ziolo, R., 154, 194 ... GAPs see GTPase activating proteins G-proteins see Guanine triphosphate (GTP)binding proteins GTPase activating proteins (GAPs), 88 Guanine triphosphate (GTP)-binding proteins, 88 Guest@host definition,... Linear templates 144 Target-oriented syntheses 146 Summary and outlook 148 Acknowledgment 149 References 149 112 Introduction Crystal engineering involves the understanding of intermolecular interactions... structure on the basis of intermolecular forces.2 In this context, a central challenge in the engineering of organic solids has been to control crystal packing in one (1D) (e.g chains), two (2D) (e.g

Ngày đăng: 01/02/2018, 14:35

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
47. Schweins, T., et al. (1996). Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5 0 -triphosphate hydrolysis of p21 ras. Biochem- istry 35, 14225–14231 Sách, tạp chí
Tiêu đề: 47. Schweins, T., et al. (1996). Linear free energy relationships in the intrinsic and GTPase activating protein-stimulated guanosine 5 0 -triphosphate hydrolysis of p21 ras. Biochem- istry 35, 14225–14231
Tác giả: Schweins, T., et al
Năm: 1996
79. Warshel, A., et al. (2000). Remarkable rate enhancement of orotidine 5 0 -monophosphate decarboxylase is due to transition state stabilization rather than ground state de- stabilization. Biochemistry 39, 14728–14738 Sách, tạp chí
Tiêu đề: 79. Warshel, A., et al. (2000). Remarkable rate enhancement of orotidine 5 0 -monophosphate decarboxylase is due to transition state stabilization rather than ground state de- stabilization. Biochemistry 39, 14728–14738
Tác giả: Warshel, A., et al
Năm: 2000
2. Warshel, A. (1998). Electrostatic origin of the catalytic power of enzymes and the role of preorganized active sites. J. Biol. Chem. 273, 27035–27038 Khác
3. Kienhofer, A., Kast, P. and Hilvert, D. (2003). Selective stabilization of the chorismate mutase transition state by a positively charged hydrogen bond donor. J. Am. Chem. Soc.125 (11), 3206–3207 Khác
4. Villa, J. and Warshel, A. (2001). Energetics and dynamics of enzymatic reactions. J.Phys. Chem. B 105, 7887–7907 Khác
5. Pople, J.A. (1999). Quantum chemical models (Nobel lecture). Angew. Chem. Int. Ed.Engl. 38, 1894–1902 Khác
6. Shurki, A. and Warshel, A. (2003). Structure/function correlations of proteins using MM, QM/MM and related approaches; methods, concepts, pitfalls and current progress. Advan. Protein Chem. 66, 249–312 Khác
7. Warshel, A. and Levitt, M. (1976). Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J.Mol. Biol. 103, 227–249 Khác
8. The´ry, V., et al. (1994). Quantum mechanical computations on very large molecular systems: the local self-consistent field method. J. Comp. Chem. 15, 269–282 Khác
11. Bakowies, D. and Thiel, W. (1996). Hybrid models for combined quantum mechanical and molecular approaches. J. Phys. Chem. 100, 10580–10594 Khác
12. Field, M.J., Bash, P.A. and Karplus, M. (1990). A combined quantum mechanical and molecular mechanical potential for molecular dynamics simulations. J. Comp. Chem. 11, 700–733 Khác
13. Friesner, R. and Beachy, M.D. (1998). Quantum mechanical calculations on biological systems. Curr. Op. Struct. Biol. 8, 257–262 Khác
16. Marti, S., et al. (2001). Transition structure selectivity in enzyme catalysis: a QM/MM study of chorismate mutase. Theor. Chem. Acc. 105, 207–212 Khác
17. Field, M. (2002). Stimulating enzyme reactions: challenges and perspectives. J. Comp.Chem. 23, 48–58 Khác
18. Mulholland, A.J., Lyne, P.D. and Karplus, M. (2000). Ab initio QM/MM study of the citrate synthase mechanism: a low-barrier hydrogen bond is not involved. J. Am. Chem.Soc. 122, 534–535 Khác
21. Aqvist, J. and Warshel, A. (1993). Simulation of enzyme reactions using valence bond force fields and other hybrid quantum/classical approaches. Chem. Rev. 93, 2523–2544 22. Warshel, A. (1991). Computer Modeling of Chemical Reactions in Enzymes and Solutions.Wiley, New York Khác
23. Hwang, J.-K., et al. (1988). Simulation of free energy relationships and dynamics of S N 2 reactions in aqueous solution. J. Am. Chem. Soc. 110, 5297–5311 Khác
24. Warshel, A. (1991). Computer Modeling of Chemical Reactions in Enzymes and Solutions.Wiley, New York Khác
25. Warshel, A. (1982). Dynamics of reactions in polar solvents. Semiclassical trajectory studies of electron-transfer and proton-transfer reactions. J. Phys. Chem. 86, 2218–2224 26. Marcus, R.A. (1964). Chemical and electrochemical electron transfer theory. Ann. Rev.Phys. Chem. 15, 155–196 Khác
27. Marcus, R.A. (1993). Electron-transfer reactions in chemistry – theory and experiment (Nobel lecture). Angew. Chem. Int. Ed. Engl. 32, 1111–1121 Khác