Mô tả: tài liệu uy tín được biên soạn bởi giảng viên đại học Bách Khoa TPHCM, thuận lợi cho qua trình tự học, nghiên cứu bổ sung kiến thức môn vật lý, vật lý cao cấp, tài liệu từ cớ bản tới nâng cao, bổ sung kiến thức thi học sinh giỏi vật lý, nghiên cứu, công thức có chú thích, đính kèm tài liệu tiếng anh, tiếng pháp
ENTROPY – LAW OF THERMODYNAMICS ND OUTLINE • Reversible Process vs Irreversible Process • Quasi-Static vs Quick Process • Carnot’s theorem • Clausius’s Integration • Entropy • The Principle of Increase of Entropy • The Change in Entropy of an Ideal Gas REVERSIBLE – IRREVERSIBLE PROCESS In a reversible process, the system can be returned to its initial conditions along the same path on a PV diagram, and every point along this path is an equilibrium state A process that does not satisfy these requirements is irreversible P P 1 Quasi–static process irreversible Quick (sudden) process 2 irreversible reversible V V QUASI-STATIC vs QUICK PROCES P P Quasi–static process Quick (sudden) process 2 irreversible reversible V V Carnot's theorem Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also called Carnot's rule, is a principle that specifies limits on the maximum efficiency any heat engine can obtain Carnot's theorem states: • All heat engines between two heat reservoirs are less efficient than a Carnot heat engine operating between the same reservoirs • Every Carnot heat engine between a pair of heat reservoirs is equally efficient, regardless of the working substance employed or the operation details Tc emax eCarnot Th CARNOT ENGINE Two reservoirs, temperature Th, Tc e ecarnot Q' T 1 c 1 c Qh Th Q' T c c Qh Th Qc Q h Tc Th Qh Qc 0 Th Tc CLAUSIUS’S INEGALITY Qj, Tj P Divide any reversible cycle into a series of thin Carnot cycles, where the isothermal processes are infinitesimally short: Qi, Ti V reversiblecycle Qi T irriversiblecycle i i reversiblecycle 0 T irriversible cycle Q ENTROPY reversiblecycle 0 T irriversible cycle Q Consider a reversible cycle 1a2b1 The Clausius integration has sign “=“ P Q a b 1a 2b1 1a V Definition: We define a state variable S that the change in the entropy dS is equal to the heat received in a reversible process divided by the absolute temperature of the system 1a T Q T Q T 0 Q T 2b1 Q 2b1 Q 1a _ rever T S 0 T 1b _ rever Q 12 _ reversible dS Qrev T T Q T ENTROPY (Cont.) Consider an irreversible cycle 1a2: irreversible 2b1: reversible The Clausius integration has sign “ the change in entropy during a process depends only on the endpoints => the change in entropy is independent of the actual path followed Consequently, the entropy change for an irreversible process can be determined by calculating the entropy change for a reversible process that connects the same initial and final states The principle of Increase of Entropy Qrev S12 T 12 S may be >0; S12 0 reversible_ process S > 0, for irreversible processes S = 0, for reversible processes S < 0, the process is impossible The entropy of the Universe increases in all real processes The Change in Entropy of an Ideal Gas dS Qrev T dU Q PdV Q dU PdV dU PdV i nRdT nR dS dV T T V T2 V i nRdT nR S dV T1 T V1 V T2 V nR ln T1 V1 PV V nCv ln 2 nR ln P1V1 V1 P V V nCv ln nCv ln nR ln P1 V1 V1 nCv ln P2 V2 S nCv ln nCp ln P1 V1 i U nRT; PV nRT i Cv R i2 Cp R Cv R The Change in Entropy of an Ideal Gas Isothermal Process dQ Q12 T T S V2 V1 T nR ln V2 V1 nCvdT T2 S nCv ln T T1 Isovolumetric Process nC dT p S Isobaric Process Adiabatic Process nRTln S T nCp ln S const T2 T1 Iso_entropy Process Example 22.6 Change in Entropy: Melting A solid that has a latent heat of fusion Lf melts at a temperature Tm Calculate the change in entropy of this substance when a mass m of the substance melts dQ S T T Tmelt Const Q mLf S T Tmel Entropy trao đổi, entropy tạo Độ biến thiên entropy hệ Entropy trao đổi Q: nhiệt mà hệ nhận Tnguon nhiet: Nhiệt độ nguồn nhiệt Entropy tạo S Straodoi Stao _ Q S T Q Straodoi Tnguon _ nhiet Stao _ S Straodoi Stạo =0: q trình Thuận nghịch Stạo >0: q trình Khơng Thuận nghịch ... 1a 2irr 2b1rev Q Q T T 1a _ irr 1b2 _ rev Q T S 1 2rev Q S T 1a _ irr ENTROPY S • Entropy S is a state variable S S2 S1 State_ State_1 P a b V S1a 2irrev S1b2rev... 0 Q T 2b1 Q 2b1 Q 1a _ rever T S 0 T 1b _ rever Q 1 2 _ reversible dS Qrev T T Q T ENTROPY (Cont.) Consider an irreversible cycle 1a2: irreversible 2b1: reversible... nRdT nR dS dV T T V T2 V i nRdT nR S dV T1 T V1 V T2 V nR ln T1 V1 PV V nCv ln 2 nR ln P1V1 V1 P V V nCv ln nCv ln nR ln P1 V1 V1 nCv ln P2 V2 S nCv ln nCp ln P1