Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys

31 273 0
Comprehensive nuclear materials 4 01   radiation effects in zirconium alloys

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys Comprehensive nuclear materials 4 01 radiation effects in zirconium alloys

4.01 Radiation Effects in Zirconium Alloys F Onimus and J L Be´chade Commissariat a` l’Energie Atomique, Gif-sur-Yvette, France ß 2012 Elsevier Ltd All rights reserved 4.01.1 Irradiation Damage in Zirconium Alloys 4.01.1.1 4.01.1.1.1 4.01.1.1.2 4.01.1.1.3 4.01.1.2 4.01.1.2.1 4.01.1.2.2 4.01.1.2.3 4.01.1.3 4.01.1.3.1 4.01.1.3.2 4.01.1.3.3 4.01.1.3.4 4.01.1.3.5 4.01.1.4 4.01.1.4.1 4.01.1.4.2 4.01.2 4.01.2.1 4.01.2.1.1 4.01.2.1.2 4.01.2.1.3 4.01.2.1.4 4.01.2.2 4.01.2.3 4.01.3 4.01.3.1 4.01.3.1.1 4.01.3.1.2 4.01.3.2 4.01.3.2.1 4.01.3.2.2 4.01.3.3 References Damage Creation: Short-Term Evolution Neutron–zirconium interaction Displacement energy in zirconium Displacement cascade in zirconium Evolution of Point Defects in Zirconium: Long-Term Evolution Vacancy formation and migration energies SIA formation and migration energies Evolution of point defects: Impact of the anisotropic diffusion of SIAs Point-Defect Clusters in Zirconium Alloys hai Dislocation loops hai Loop formation: Mechanisms hci Component dislocation loops hci Loop formation: Mechanisms Void formation Secondary-Phase Evolution Under Irradiation Crystalline to amorphous transformation of Zr-(Fe,Cr,Ni) intermetallic precipitates Irradiation effects in Zr–Nb alloys: Enhanced precipitation Postirradiation Mechanical Behavior Mechanical Behavior During Tensile Testing Irradiation hardening: Macroscopic behavior Irradiation hardening: Mechanisms Post-yield deformation: Macroscopic behavior Post-yield deformation: Mechanisms Effect of Postirradiation Heat Treatment Postirradiation Creep Deformation Under Irradiation Irradiation Growth Irradiation growth: Macroscopic behavior Irradiation growth: Mechanisms Irradiation Creep Irradiation creep: Macroscopic behavior Irradiation creep: Mechanisms Outlook Abbreviations BWR CANDU DAD EAM EID FP-LMTO Boiling-water reactor Canadian deuterium uranium Diffusion anisotropy difference Embedded atom method Elastic interaction difference Full-potential linear muffin-tin orbital GGA hcp HVEM LDA MB MD NRT 2 2 4 7 9 10 10 10 13 14 14 14 14 16 16 17 18 19 19 19 21 24 24 25 26 27 Generalized gradient approximation Hexagonal close-packed High-voltage electron microscope Local density approximation Many body Molecular dynamics Norgett–Robinson–Torrens Radiation Effects in Zirconium Alloys PKA PWR RXA SANS SIA SIPA SIPA-AD SIPN SRA TEM Tm UTS YS Primary knocked-on atom Pressurized water reactor Recrystallization annealed Small-angle neutron scattering Self interstitial atom Stress-induced preferential absorption Stress preferential induced nucleationanisotropic diffusion Stress preferential induced nucleation Stress-relieved annealed Transmission electron microscopy Melting temperature Ultimate tensile strength Yield stress 4.01.1 Irradiation Damage in Zirconium Alloys 4.01.1.1 Damage Creation: Short-Term Evolution 4.01.1.1.1 Neutron–zirconium interaction Zirconium alloys are used as structural components for light and heavy water nuclear reactor cores because of their low capture cross section to thermal neutrons and their good corrosion resistance In a nuclear reactor core, zirconium alloys are subjected to a fast neutron flux (E > MeV), which leads to irradiation damage of the material In the case of metallic alloys, the irradiation damage is mainly due to elastic interaction between fast neutrons and atoms of the alloy that displace atoms from their crystallographic sites (depending on the energy of the incoming neutron) and can create point defects without modifications of the target atom, as opposed to inelastic interactions leading to transmutation, for instance During the collision between the neutron and the atom, part of the kinetic energy can be transferred to the target atom The interaction probability is given by the elastic collision differential cross section1,2 which depends on both the neutron kinetic energy and the transferred energy.3 For a typical fast  Þ of neutron of MeV, the mean transferred energy ðT  % 22keV For low value of the the Zr atomglide processes occur at even higher stress For very high stress, close to the YS, dislocation channeling occurs For cold-worked zirconium alloys, such as SRA Zircaloy or cold-worked Zr–2.5Nb alloy,163 the SIPA mechanism on the initial dislocations is a likely mechanism for irradiation creep However, according to Holt,171 the creep anisotropy of cold-worked zirconium alloys computed from the SIPA mechanism assuming only hai type dislocations is not in agreement with the experimental anisotropy The anisotropy computed from the climb-plus-glide mechanism assuming 80% prism slip and 20% basal slip is in good agreement with the experimental anisotropy, demonstrating that climb-plus-glide mechanism is probably the effective mechanism It should also be pointed out that, since dislocations climb toward grain boundaries or toward other dislocations, recovery of the initial dislocation network occurs In order to maintain a steady-state creep rate, multiplication of dislocations should also occur either via loop coalescence or via dislocation sources, as discussed previously It should also be pointed out that, as there is a coupling between swelling and irradiation creep in stainless steel,181 we could assume a coupling between growth and irradiation creep to occur in zirconium alloys due to the effect of the stress on the partitioning of point defects.134,162 Nevertheless, the simple assumption of two separable deformation components has proved to hold correctly for the results given in the literature.163,180 4.01.3.3 Outlook Concerning damage creation and point-defect cluster formation, improvement in the knowledge of anisotropic diffusion of SIAs as well as better understanding of the microstructure of vacancy and interstitial hai loops and basal hci vacancy loops (origin of the loop alignment, origin of the corduroy contrast Radiation Effects in Zirconium Alloys for instance) has to be aimed at Multiscale modeling approaches coupled with fine experimental analyses of the irradiation microstructure (high-resolution TEM, synchrotron radiation analyses, tomography atom probe, etc.) should bring new insight concerning the previous points mentioned but also elements in order to propose modeling of the microstructure evolution during irradiation: for instance, origin of the alignments of Nb precipitates, stability of b-Nb precipitates, etc Concerning the mechanical behavior of Zr alloys after irradiation, multiscale modeling of the postirradiation deformation with a better understanding of the dislocation channeling mechanism and understanding of its effects on the postirradiation mechanical behavior are needed Moreover, better understanding of the postirradiation creep deformation mechanisms is also needed using multiscale modeling The last point concerns the deformation mechanisms under irradiation In that field, the basic questions are still without answers: What are the irradiation creep deformation mechanisms? What are the coupling between the deformation under irradiation and the thermal creep and growth? Progress has to be made especially using in situ deformation devices under irradiation, coupled with modeling approaches (See also Chapter 1.01, Fundamental Properties of Defects in Metals; Chapter 2.07, Zirconium Alloys: Properties and Characteristics and Chapter 5.03, Corrosion of Zirconium Alloys) 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 References 10 11 Beyster, J R.; Walt, M.; Salmi, E W Phys Rev 1956, 104, 1319–1331 Guenther, P.; Smith, A.; Whalen, J Phys Rev C 1975, 12, 1797–1808 Lune´ville, L.; Simeone, D.; Jouanne, C J Nucl Mater 2006, 353(1–2), 89–100 Neely, H H Radiat Effects 1970, 3, 189–201 Biget, M.; Maury, F.; Vajda, P.; Lucasson, A.; Lucasson, P Radiat Effects 1971, 7, 223–229 Griffiths, M J Nucl Mater 1989, 165, 315–317 Ackland, G J.; Woodings, S J.; Bacon, D J Philos Mag A 1995, 71, 553–565 Gao, F.; Bacon, D J.; Howe, L M.; So, C B J Nucl Mater 2001, 294, 288–298 Was, G S Fundamentals of Radiation Materials Science: Metals and Alloys; Springer: New York, 2007 Norgett, M J.; Robinson, M T.; Torrens, I M Nucl Eng Des 1975, 33, 50–54 Zinkle, S J.; Singh, B N J Nucl Mater 1993, 199(3), 173–191 40 41 42 43 44 45 46 47 48 49 50 51 27 Shishov, V.; Peregud, M M.; Nikulina, A V.; et al J ASTM Int (JAI); 2005, 2(8) Woo, C H.; Singh, B N Philos Mag A 1992, 65, 889–912 Woo, C H.; Semenov, A A.; Singh, B N J Nucl Mater 1993, 206(2–3), 170–199 Kapinos, V G.; Osetsky, Y N.; Platonov, P A J Nucl Mater 1991, 184(2), 127–143 Wooding, S J.; Howe, L M.; Gao, F.; Calder, A F.; Bacon, D J J Nucl Mater 1998, 254(2–3), 191–204 MacEwen, S R.; Zee, R H.; Birtcher, R C.; Abromeit, C J Nucl Mater 1984, 123, 1036 Hood, G M J Nucl Mater 1988, 159, 149–175 Frank, W Philos Mag A 1991, 63, 897–913 Horvath, J.; Dyment, F.; Mehrer, H J Nucl Mater 1984, 126, 206–214 Douglass, D L Atomic Energy Review Supplement; International Atomic Energy Agency: Vienna, 1971; pp 311–342 Hood, G M.; Schultz, R J Acta Mater 1974, 22, 459 Hood, G M.; Zou, H.; Schultz, R J.; Jackman, J A J Nucl Mater 1984, 126, 79–82 Hood, G M J Nucl Mater 1986, 139, 179–184 Frank, W J Nucl Mater 1988, 159, 122–148 Lubbehusen, M.; Vieregge, K.; Hood, G M.; Mehrer, H.; Herzig, C J Nucl Mater 1991, 182, 164–169 Hood, G M.; Zou, H.; Gupta, D.; Schultz, R J J Nucl Mater 1995, 223, 122–125 Bacon, D J J Nucl Mater 1988, 159, 176–189 Bacon, D J J Nucl Mater 1993, 206, 249–265 Le Bacq, O.; Willaime, F.; Pasturel, A Phys Rev B 1999, 59, 8508–8515 Pasianot, R C.; Monti, A M J Nucl Mater 1999, 264, 198–205 Pasianot, R C.; Monti, A M.; Simonelli, G.; Savino, E J J Nucl Mater 2000, 276, 230–234 Osetsky, Y N.; Bacon, D J.; De Diego, N Metall Mater Trans A 2002, 33A, 777–782 Woo, C H.; Liu, X Philos Mag 2007, 87(16), 2355–2369 Willaime, F J Nucl Mater 2003, 323, 205–212 Domain, C.; Legris, A Philos Mag 2005, 85, 569–575 Domain, C J Nucl Mater 2006, 351(1–3), 1–19 Ve´rite´, G.; Willaime, F.; Chun, F C Solid State Phenom 2007, 129, 75–81 Pe´rez, R A.; Weissmann, M J Nucl Mater 2008, 374(1–2), 95–100 Pasianot, R C.; Pe´rez, R A.; Ramunni, V P.; Weissmann, M J Nucl Mater 2009, 392(1), 100–104 Johnson, R A.; Beeler, J R In Interatomic Potential and Crystalline Defects; Lee, J K., Ed.; AIME: New York, 1981; p 165 Woo, C H.; Huang, H.; Zhu, W J Appl Phys A: Mater Sci Process 2003, 76, 101–106 Barbu, A.; Martin, G Solid State Phenom 1993, 30/31, 179–228 Woo, C H J Nucl Mater 1988, 159, 237–256 Northwood, D O.; Gilbert, R W.; Bahlen, L E.; et al J Nucl Mater 1979, 79, 379–394 Griffiths, M J Nucl Mater 1988, 159, 190–218 Gulden, T D.; Bernstein, I M Philos Mag 1966, 14, 1087–1091 Kelly, P M.; Blake, R G Philos Mag 1973, 28(2), 415–426 Northwood, D O.; Fidleris, V.; Gilbert, R W.; Carpenter, G J C J Nucl Mater 1976, 61(2), 123–130 Jostsons, A.; Kelly, P M.; Blake, R G J Nucl Mater 1977, 66(3), 236–256 Northwood, D O Atomic Energy Rev 1977, 15, 547–610 28 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 Radiation Effects in Zirconium Alloys Gilbert, R W.; Farrell, K.; Coleman, C E J Nucl Mater 1979, 84(1–2), 137–148 Carpenter, G J C.; Watters, J F J Nucl Mater 1981, 96, 213–226 Griffiths, M.; Gilbert, R W.; Fidleris, V.; Tucker, R P.; Adamson, R B J Nucl Mater 1987, 150, 159–168 Hellio, C.; de Novion, C H.; Boulanger, L J Nucl Mater 1988, 159, 368–378 Griffiths, M Philos Mag B 1991, 63(5), 835–847 Griffiths, M J Nucl Mater 1993, 205, 225–241 Griffiths, M.; Loretto, M H.; Sallmann, R E J Nucl Mater 1983, 115(2–3), 313–322 Griffiths, M.; Loretto, M H.; Smallman, R E Philos Mag A 1984, 49(5), 613 Griffiths, M.; Mecke, J F.; Winegar, J E Evolution of microstructure in zirconium alloys during irradiation In Eleventh International Symposium on Zirconium in the Nuclear Industry; Bradley, E R., Sabol, G P., Eds.; American Society for testing and Materials: West Conshohocken, PA, p 580, ASTM STP 1295 Jostsons, A.; Kelly, P M.; Blake, R G.; Farrell, K In 9th Conference on Neutron Irradiation-Induced Defect Structures in Zirconium, Effects of Radiation on Structual Materials; Sprague, J A., Kramer, D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1979; pp 46–61, ASTM STP 683 Bell, W L J Nucl Mater 1975, 55, 14–22 Kelly, P M.; Blake, R G.; Jostons, A J Nucl Mater 1976, 59, 307–315 Foll, H.; Wilkens, M Phys Stat Sol (a) 1977, 39, 561–571 Kapinos, V G.; Osetsky, Y N.; Platonov, P A J Nucl Mater 1992, 195(1–2), 83–101 De Diego, N.; Osetsky, Y N.; Bacon, D J J Nucl Mater 2008, 374(1–2), 87–94 Jostsons, A.; Blake, R G.; Napier, J G.; Kelly, P M.; Farrell, K J Nucl Mater 1977, 68, 267–276 Dubinko, V.; Turkin, A.; Abyzov, A.; Griffiths, M J ASTM Int 2005, 2, 157 Are´valo, C.; Caturla, M J.; Perlado, J M J Nucl Mater 2007, 367–370, 338–343 Holt, R A.; Gilbert, R W J Nucl Mater 1983, 116, 127–130 Holt, R A.; Gilbert, R W J Nucl Mater 1986, 137, 185–189 Holt, R A J Nucl Mater 1988, 159, 310–338 Griffiths, M.; Gilbert, R W In Fidleris V Accelerated irradiation growth of zirconium alloys, In Eighth International Symposium on Zirconium in the Nuclear Industry, Philadelphia, PA, 1989; Van Swam, L F P., Eucken, C M., Eds.; American Society for Testing and Materials: West Conshohocken, PA, pp 658–677, ASTM STP 1023 Griffiths, M.; Loretto, M H.; Smallman, R E J Nucl Mater 1983, 115(2–3), 323–330 Gilbon, D.; Simonot C Effect of irradiation on the microstructure of zircaloy-4 In Eleventh International Symposium on Zirconium in the Nuclear Industry; Garde, E M., Bradley, E R., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1994; pp 521–548, ASTM STP 1245 De Carlan, Y.; Re´gnard, C.; Griffiths, M.; Gilbon, D Influence of iron in the nucleation of component dislocation loops in irradiated zircaloy-4 In Eleventh International Symposium on Zirconium in the Nuclear Industry; Bradley, E R., Sabol, G P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1996; pp 638–653, ASTM STP 1295 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 Adamson, R B Effects of neutron irradiation on microstructure and properties of zircaloy In Twelfth International Symposium on Zirconium in the Nuclear Industry; Sabol, G P., Moan, G D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp 15–31, ASTM STP 1354 Faulkner, D.; Woo, C H J Nucl Mater 1980, 90, 307–316 Griffiths, M.; Gilbert, R W.; Carpenter, G J C J Nucl Mater 1987, 150(1), 53–66 Gilbert, R W.; Griffiths, M.; Carpenter, G J C J Nucl Mater 1985, 135, 265–268 Yang, W J S J Nucl Mater 1988, 158, 71–80 Motta, A T.; Lefebvre, F.; Lemaignan, C Amorphisation of precipitates in Zircaloy under neutron and charged particle irradiation In Ninth International Symposium on Zirconium in the Nuclear Industry; Eucken, C M., Garde, A M., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1991; pp 718–739, ASTM Special Technical Publication 1132 Garzarolli, F.; Goll, W.; Seibold, A.; Ray, I Effect of in-PWR irradiation on size, structure and composition of intermetallic precipitates of Zr alloys; Bradley, E R., Sabol, G P., Eds.; 1996; pp 541–556, ASTM STP 1295 Motta, A T.; Lemaignan, C J Nucl Mater 1992, 195, 277–285 Toffolon-Masclet, C.; Barberis, P.; Brachet, J C.; Mardon, J P.; Legras, L J ASTM Int 2005, 2, 81–101 Doriot, S.; Gilbon, D.; Be´chade, J L.; Mathon, M.; Legras, L.; Mardon, J P J ASTM Int 2005, 2, 175–201 Shishov, V.; Nikulina, A V.; Markelov, V A.; et al Influence of neutron irradiation on dislocation structure and phase composition of Zr-base alloys; Bradley, E R., Sabol, G P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1996; pp 603–622, ASTM-STP 1295 Cann, C D.; So, C B.; Styles, R C.; Coleman, C E J Nucl Mater 1993, 205, 267–272 Kobylyansky, G P.; Novoselov, A E.; Ostrovsky, Z E.; et al J ASTM Int.; 2008, 5(4) Howe, L.; Thomas, W R J Nucl Mater 1960, 2(3), 248–260 Hardy, D G The effect of neutron irradiation on the mechanical properties of zirconium alloy fuel cladding in uniaxial and biaxial tests In Irradiation Effects on Structural Alloys for Nuclear Reactor Applications; Bement, A L., Ed.; American Society for Testing and Materials: West Conshohocken, PA, 1970; pp 215–258, ASTM-STP 484 Higgy, H R.; Hammad, F H J Nucl Mater 1972, 44, 215–227 Rieger, G F.; Lee, D Strength and ductility of neutron irradiated and textured Zircaloy-2 In Zirconium in Nuclear Applications; Schemel, J H., Rosenbaum, H S., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1974; pp 355–369, ASTM STP 551 Baroch, C J Effect of irradiation at 130, 650, and 775 F on tensile properties of Zircaloy-4 at 70, 650, and 775 F In Properties of Reactor Structural Alloys after Neutron or Particle Irradiation; Baroch, C J., Ed.; American Society for Testing and Materials: West Conshohocken, PA, 1975; p 129, ASTM STP 570 Pettersson, K.; Vesterlund, G.; Andersson, T Effect of irradiation on the strength, ductility, and defect sensitivity of fully recrystallized zircaloy tube In Schemel, J H., Papazoglou, T P., Eds.; American Radiation Effects in Zirconium Alloys 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 Society for Testing and Materials: West Conshohocken, PA, 1979; pp 155–173, ASTM STP 681 Onchi, T.; Kayano, H.; Higashiguchi, Y J Nucl Mater 1980, 88(2–3), 226–235 Yasuda, T.; Nakatsuka, M.; Yamashita, K Deformation and fracture properties of neutron-irradiated recrystallized Zircaloy-2 cladding under uniaxial tension In Seventh International Symposium on Zirconium in the Nuclear Industry, Strasbourg, France, June 24–27, 1985; Adamson, R B., Van Swan, L F P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1987; pp 734–747, ASTM STP 939 Morize, P.; Baicry, J.; Mardon, J.-P Effect of irradiation at 588 K on mechanical properties and deformation behavior of zirconium alloy strip In In Zirconium in the Nuclear Industry, Strasbourg, France, June 24–27, 1985; Adamson, R B., Van Swan, L F P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1987; pp 101–119, ASTM STP 939 Byun, T S.; Farrell, K J Nucl Mater 2004, 326, 86–96 Lemaignan, C.; Motta, A T Zirconium alloys in nuclear applications;In Materials Science and Technology Series, A Comprehensive Treatment; Cahn, R W, Haasen, P., Kramer, E J., Eds.; VCH-Verlag publisher: Weinheim, Germany, 1994; Vol 10B, Nuclear Materials, Part 2, Frost, B R T., Ed Adamson, R B.; Bell, W L Effects of neutron irradiation and oxygen content on the microstructure and mechanical properties of zircaloy In Microstructure and Mechanical Behaviour of Materials, X’ian, Republic of China, Oct 21–24, EMAS Warley, UK, 1985; Vol I, pp 237–246 Torimaru, T.; Yasuda, T.; Nakatsuka, M J Nucl Mater 1996, 238(2–3), 169–174 Nakatsuka, M.; Nagai, M J Nucl Sci Tech 1987, 24, 832–838 Zu, X T.; Sun, K.; Atzmon, M.; et al Philos Mag 2005, 85(4), 649–659 Ribis, J.; Onimus, F.; Be´chade, J L.; et al J ASTM Int.; 2008, 5(3) Kroupa, F.; Hirsch, P B Discuss Faraday Soc 1964, 38, 49–55 Makin, M J Philos Mag 1964, 10, 695–711 Saada, G.; Washburn, J J Phys Soc Jpn 1963, 18 (Suppl 1), 43 Foreman, A J E.; Sharp, J V Philos Mag 1969, 19, 931–937 Hirsch, P B In Proceedings of a Conference on Point Defect Behavior and Diffusional Processes, University of Bristol, Sept 13–16 1976 Carpenter, G J C Scr Metall 1976, 10, 411–413 Fregonese, M.; Re´gnard, C.; Rouillon, L.; Magnin, T.; Lefebvre, F.; Lemaignan, C Failure mechanisms of irradiated Zr alloys related to PCI: Activated slip systems, localized strains, and iodine-induced stress corrosion cracking In 12th International Symposium on Zirconium in Nuclear Industry; Sabol, G P., Moan, G D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; p 377, ASTM STP 1354 Onimus, F.; Monnet, I.; Be´chade, J L.; Prioul, C.; Pilvin, P J Nucl Mater 2004, 328, 165–179 Voskoboynikov, R E.; Osetsky, Y N.; Bacon, D J Mater Sci Eng A 2005, 400–401, 54–58 Onchi, T.; Kayano, H.; Higashiguchi, Y J Nucl Sci Technol 1977, 14(5), 359–369 Onimus, F.; Be´chade, J L.; Duguay, C.; Gilbon, D.; Pilvin, P J Nucl Mater 2006, 358, 176–189 117 29 Garde, A M Effects of irradiation and hydriding on mechanical properties of Zy-4 at high fluence In Eighth International Symposium on Zirconium in the Nuclear Industry; Van Swam, L F P., Eucken, C M., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1989; pp 548–569, ASTM STP 1023 118 Williams, C D.; Adamson, R B.; Olshausen, K D Effects of boiling water reactor irradiation on tensile properties of Zircaloy In European Conference on Irradiation Behaviour of Fuel Cladding and Core Component Materials, Karlsruhe, Germany 1974 119 Adamson, R B; Wisner, S B; Tucker, R P; Rand, R A Failure strain for irradiated zircaloy based on subsized specimen testing and analysis, the use of small scale specimens for testing irradiated materials; Corwin, W R., Rosinski, S R., van Walle, E., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1986, p 171, ASTM STP 888 120 Re´gnard, C.; Verhaeghe, B.; Lefebvre-Joud, F.; Lemaignan, C Activated slip systems and localized straining of irradiated alloys in circumferential loadings In 13th International Symposium on Zirconium in the Nuclear Industry; Moan, G D., Rudling, P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 2002; p 384, ASTM STP 1423 121 Coleman, C E.; Mills, D.; van der Kuur, J Can Metall Q 1972, 11, 91–100 122 Tomalin, D S Localized ductility of irradiated Zircaloy-2 cladding in air and iodine environments In 13th International Symposium on Zirconium in the Nuclear Industry; Lowe, P., Jr, Ed.; American Society for Testing and Materials: West Conshohocken, PA, 1977; pp 557–572, ASTM STP 633 123 Pettersson, K J Nucl Mater 1982, 105, 341–344 124 Onimus, F.; Be´chade, J L.; Prioul, C.; et al J ASTM Int.; 2005, 2(8) 125 Fournier, L.; Serres, A.; Auzoux, Q.; Leboulch, D.; Was, G S J Nucl Mater 2009, 384(1), 38–4731 126 Wechsler, M S The Inhomogeneity of Plastic Deformation; ASM: Metals Park, OH, 1973; pp 19–52 127 Luft, A Prog Mater Sci 1991, 35, 97–204 128 Sharp, J V Philos Mag 1967, 16, 77–96 129 Sharp, J V Radiat Effects 1972, 14, 71 130 Makin, M J Philos Mag 1970, 21, 815–821 131 Nogaret, T.; Robertson, C.; Rodney, D Philos Mag 2007, 87(6), 945 132 Nogaret, T.; Rodney, D.; Fivel, M.; Robertson, C J Nucl Mater 2008, 380, 22–29 133 Lee, D.; Adamson, R B In Modeling of localized deformation in neutron irradiated Zircaloy-2; Lowe, P., Jr., Ed.; American Society for Testing and Materials: West Conshohocken, PA, 1977; pp 385–401, ASTM STP 633 134 Franklin, D G.; Lucas, G E.; Bement, A L Creep of zirconium in nuclear reactors; Franklin, D G., Lucas, G E., Bement, A L., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1983; pp 1–167, ASTM STP 815 135 Onimus, F.; Be´chade, J L J Nucl Mater 2009, 384, 163–174 136 Nakatsuka, M.; Nagai, M J Nucl Sci Technol 1987, 24, 832–838 137 Delobelle, P.; Robinet, P.; Geyer, P.; Bouffioux, P J Nucl Mater 1996, 238(2–3), 135 138 Coleman, C E.; Chow, P C K.; Ells, C E.; Griffiths, M.; Ibrahim, E F.; Sagat, S Rejuvenation of fracture properties of irradiated Zr-2,5 Nb by heat treatment; Stoller, R E., Kumar, A S., Gelles, D S., Eds.; American 30 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 Radiation Effects in Zirconium Alloys Society for Testing and Materials: West Conshohocken, PA, 1992; pp 318–336, ASTM-STP 1125 Dollins, C C Radiat Effects 1972, 16, 271–280 Snowden, K U.; Veevers, K Radiat Effects Defects Solids 1973, 20(3), 169–174 Carpenter, G J C; Watters, J F Irradiation damage recovery in some zirconium alloys In Zirconium in the Nuclear Industry; Schemel, J H., Rosenbaum, H S., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1974; p 400, ASTM STP 551 Ito, K.; Kamimura, K.; Tsukuda, Y Evaluation of irradiation effect on spent fuel cladding creep properties In Proceedings of the 2004 International Meeting on LWR Fuel Performance, Orlando, FL, Sept 19–22, 2004 Veevers, K.; Rotsey, W B J Nucl Mater 1968, 27, 108–111 Williams, C D.; Gilbert, R W Radiation damage in reactor In Proceedings of the IAEA Symposium, Vienna, 1969; Vol 1, p 235 Northwood, D O.; Causey, A R J Nucl Mater 1977, 64, 308–312 Eyre, B L.; Maher, D M Philos Mag 1971, 24, 767–797 Hirth, J P.; Lothe, J Theory of Dislocations; Wiley: New York, 1982 Burton, B.; Speight, M V Philos Mag A 1986, 53, 385 Peehs, M.; Fleisch, J J Nucl Mater 1986, 137, 190–202 Fidleris, V J Nucl Mater 1988, 159, 22–42 Mayuzumi, M.; Murai, K In Proceedings of the 1993 International Conference on Nuclear Waste Management and Environmental Remediation Volume 1: Low and Intermediate Level Radioactive Waste Management; American Society of Mechanical Engineers: New York, NY, 1993; Vol 776, pp 607612 Schaăffler, I.; Geyer, P.; Bouffioux, P.; Delobelle, P J Eng Mater Technol Trans ASME 2000, 122, 168–176 Soniak, A.; L’Hullier, N.; Mardon, J P.; Rebeyrolle, V.; Bouffioux, P.; Bernaudat, C Irradiation creep behavior of Zr-base alloys In Thirteenth International Symposium on Zirconium in the Nuclear Industry, 2002; Moan, G D., Rudling, P., Eds.; pp 837–862, ASTM STP 1423 Cappelaere, C.; Limon, R.; Gilbon, D.; et al Impact of irradiation defects annealing on long-term thermal creep of irradiated Zircaloy-4 cladding tube In Thirteenth International Symposium on Zirconium in the Nuclear, Industry; 2002; Moan, G D., Rudling, P., Eds.; pp 720–739, ASTM STP 1423 Limon, R.; Lehmann, S J Nucl Mater 2004, 335, 322–334 Yasuda, T.; Nakatsuka, M.; Mayuzumi, M Trans Am Nucl Soc 1990, 61, 77–78 Murty, K L.; Mahmood, S T Effects of recrystallization and neutron irradiation on creep anisotropy of zircaloy cladding .In In Ninth International Symposium on Zirconium in the Nuclear Industry; Eucken, C M., Garde, A M., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1990; p 198, ASTM STP 1132 Tsai, H.; Billone, M C J ASTM Int 2006, 3(1) Fidleris, V.; Tucker, R P.; Adamson, R B An overview of microstructural and experimental factors that affect the irradiation growth behavior of zirconium alloys In Seventh International Symposium on Zirconium in the Nuclear Industry; Adamson, R B., Van Swan, L F P., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1987; pp 49–85, ASTM STP 939 Rogerson, A J Nucl Mater 1988, 159, 43–61 Carpenter, G J C.; Zee, R H.; Rogerson, A J Nucl Mater 1988, 159, 86–100 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 Holt, R A J ASTM Int.; 2008, 5(6) Holt, R A J Nucl Mater 2008, 372, 182–214 Carpenter, G J C.; Murgatroyd, R A.; Rogerson, A.; Watters, J F J Nucl Mater 1981, 101, 28–37 Williams, J.; Darby, E C; Minty, D C C Irradiation growth of annealed Zircaloy-2 In Sixth International Symposium on Zirconium in the Nuclear Industry; Franklin, D G., Adamson, R B., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1984; pp 376–393, ASTM STP 824 Garzarolli, F.; Dewes, P.; Maussner, G.; Basso, H H Effects of high neutron fluence on microstructure and growth of Zircaloy-4 In Eighth International Symposium on Zirconium in the Nuclear Industry, Philadelphia, PA; Van Swam, L F P., Eucken, C M., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1989; pp 641–657, ASTM STP 1023 Baron, J L.; Esling, C.; Feron, J L.; et al Textures Microstruct 1990, 12(1–3), 125–140 Gilbon, D.; Soniak, A.; Doriot, S.; Mardon, J P Irradiation creep and growth behavior, and microstructural evolution of advanced Zr-base alloys In Twelfth International Symposium on Zirconium in the Nuclear Industry; Sabol, G P., Moan, G D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 2000; pp 51–71, ASTM STP 1354 Franklin, D G.; Adamson, R B J Nucl Mater 1988, 159, 12–21 Ibrahim, E F.; Holt, R A J Nucl Mater 1980, 91(2–3), 311–321 Holt, R A J Nucl Mater 1980, 90(1–3), 193–204 Buckley, S N In Properties of Reactor Materials and Effect of Radiation; Litter, W J., Ed.; Butterworths: London, 1962; p 413 Northwood, D O Irradiation growth in zirconium and its alloys In Effects of Radiation on Structural Materials; Sprague, J A., Kramer, D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1979; pp 62–76, ASTM STP 683 Woo, C H.; Goăsele, U J Nucl Mater 1983, 119, 219228 Monti, A M.; Sarce, A.; Smetninsky-De-Grande, N.; Savino, E J.; Tome, C N Philos Mag A 1991, 63, 925–936 Ball, C J J Nucl Mater 1981, 101, 147–149 Fleck, R G.; Holt, R A.; Perovic, V.; Tadros, J J Nucl Mater 1988, 159, 75–85 Tome´, C N.; Christodoulou, N.; Turner, P A.; et al J Nucl Mater 1996, 227(3), 237–250 Field, G J J Nucl Mater 1988, 159, 3–11 Christodoulou, N.; Causey, A R.; Holt, R A.; et al Modeling in-reactor deformation of Zr–2.5Nb pressure tubes in CANDU power reactors In Eleventh International Symposium on Zirconium in the Nuclear Industry; 1996; Bradley, E R., Sabol, G P., Eds.; p 518, ASTM STP 1295 Matthews, J R.; Finnis, M W J Nucl Mater 1988, 159, 257–285 Garde, A M.; Smerd, P G.; Garzarolli, F.; Manzel, R Influence of metallurgical condition on the in-reactor dimensional changes of Zircaloy fuel rods In Sixth International Symposium on Zirconium in the Nuclear Industry; Franklin, D G., Adamson, R B., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1984; p 289, ASTM STP 824 Coleman, C E.; Causey, A R.; Fidleris, V J Nucl Mater 1976, 60, 185–194 Tinti, F Nucl Technol 1983, 60(1), 104–113 Radiation Effects in Zirconium Alloys 185 Faulkner, D.; McElroy, R J Irradiation creep and growth in zirconium during proton bombardment In Effects of Radiation on Structural Materials; Sprague, J A., Kramer, D., Eds.; American Society for Testing and Materials: West Conshohocken, PA, 1979; pp 329–345, ASTM STP 683 186 Garner, F A.; Gelles, D S J Nucl Mater 1988, 159, 286–309 187 188 189 190 31 MacEwen, S R.; Fidleris, V J Nucl Mater 1977, 66, 250–257 Nichols, F A J Nucl Mater 1970, 37, 59 Griffiths, M.; Gilbert, R W J Nucl Mater 1987, 150(2), 169–181 Griffiths, M.; Gilbon, D.; Re´gnard, C.; Lemaignan, C J Nucl Mater 1993, 205, 273–283 ... Eds.; American 30 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 1 54 155 156 157 158 159 160 161 Radiation Effects in Zirconium Alloys Society for Testing and Materials: West Conshohocken,... Zinkle, S J.; Singh, B N J Nucl Mater 1993, 199(3), 173–191 40 41 42 43 44 45 46 47 48 49 50 51 27 Shishov, V.; Peregud, M M.; Nikulina, A V.; et al J ASTM Int (JAI); 2005, 2(8) Woo, C H.; Singh, B... straining of irradiated alloys in circumferential loadings In 13th International Symposium on Zirconium in the Nuclear Industry; Moan, G D., Rudling, P., Eds.; American Society for Testing and Materials:

Ngày đăng: 03/01/2018, 17:04

Mục lục

  • 4.01.1.1.2 Displacement energy in zirconium

  • 4.01.1.1.3 Displacement cascade in zirconium

  • 4.01.1.2 Evolution of Point Defects in Zirconium: Long-Term Evolution

    • 4.01.1.2.1 Vacancy formation and migration energies

    • 4.01.1.2.2 SIA formation and migration energies

    • 4.01.1.2.3 Evolution of point defects: Impact of the anisotropic diffusion of SIAs

    • 4.01.1.3.2 a Loop formation: Mechanisms

    • 4.01.1.3.3 c Component dislocation loops

    • 4.01.1.3.4 c Loop formation: Mechanisms

    • 4.01.1.4 Secondary-Phase Evolution Under Irradiation

      • 4.01.1.4.1 Crystalline to amorphous transformation of Zr-(Fe,Cr,Ni) intermetallic precipitates

      • 4.01.1.4.2 Irradiation effects in Zr-Nb alloys: Enhanced precipitation

      • 4.01.2 Postirradiation Mechanical Behavior

        • 4.01.2.1 Mechanical Behavior During Tensile Testing

          • 4.01.2.1.1 Irradiation hardening: Macroscopic behavior

          • 4.01.2.1.3 Post-yield deformation: Macroscopic behavior

          • 4.01.2.2 Effect of Postirradiation Heat Treatment

          • 4.01.3 Deformation Under Irradiation

            • 4.01.3.1 Irradiation Growth

              • 4.01.3.1.1 Irradiation growth: Macroscopic behavior

              • 4.01.3.2 Irradiation Creep

                • 4.01.3.2.1 Irradiation creep: Macroscopic behavior

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan