Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
196,77 KB
Nội dung
Lithuanian Mathematical Journal, Vol 54, No 1, January, 2014, pp 48–60 L1 bounds for some martingale central limit theorems Le Van Dung a,1 , Ta Cong Son b,2 , and Nguyen Duy Tien b,1 a Faculty of Mathematics, Da Nang University of Education, 459 Ton Duc Thang, Da Nang, Viet Nam b Faculty of Mathematics, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Viet Nam (e-mail: lvdung@ud.edu.vn; congson82@hus.edu.vn; nduytien2006@gmail.com) Received September 24, 2013; revised January 7, 2014 Abstract The aim of this paper is to extend the results in [E Bolthausen, Exact convergence rates in some martingale central limit theorems, Ann Probab., 10(3):672–688, 1982] and [J.C Mourrat, On the rate of convergence in the martingale central limit theorem, Bernoulli, 19(2):633–645, 2013] to the L1 -distance between distributions of normalized partial sums for martingale-difference sequences and the standard normal distribution MSC: 60F05, 60G42 Keywords: mean central limit theorems, rates of convergence, martingale Introduction and statements of results Let X1 , X2 , , Xn be a sequence of real-valued random variables with mean √ zero and finite variance σ Put S := X1 +X2 +· · ·+Xn Denote by Fn the distribution functions of S/σ n, and let Φ be the standard normal distribution function The classical central limit theorem confirms that if X1 , X2 , , Xn are independent and identically distributed, then Fn (x) converges to Φ(x) as n → ∞ for all x ∈ R In 1954, Agnew [1] showed that the convergence also holds in Lp for p > 1/2 The convergence in the case of p = is called the mean central limit theorem The rate of convergence in the mean central limit theorem was also studied by Esseen [7], who showed that Fn − Φ = O n−1/2 as n → ∞ Recently, Sunklodas [12, 13] has extended this result to independent nonidentically distributed random variables and ϕ-mixing random variables by using the Bentkus approach [2] Let X = (X1 , , Xn ) be a square-integrable martingale-difference sequence of real-valued random variables with respect to the σ -fields Fj = σ(X1 , , Xj−1 ), j = 2, 3, , n + 1; F1 = {∅, Ω} Let Mn denote the class of all such sequences of length n If X ∈ Mn , we write σj2 = E(Xj2 | Fj−1 ), σ 2j = E(Xj2 ), S = S(X) = nj=1 Xj , s2 = s2 (X) = nj=1 σ 2j , V = V (X) = nj=1 σj2 /s2 (X), and The research of the author has been partially supported by the Viet Nam National Foundation for Science and Technology Development (NAFOSTED), grant No 101.03-2012.17 The research of the author has been partially supported by project TN-13-01 0363-1672/14/5401-0048 c 2014 Springer Science+Business Media New York 48 L1 bounds for some martingale CLT 49 X p = max1 j n Xj p for p ∞ We denote by N a standard normal random variable; the distribution function and the density function of N are denoted by Φ(x) and ϕ(x), respectively If X ∈ Mn , V (X) → in probability, and some Lindeberg-type condition is satisfied, then lim P n→∞ S(X) s(X) x = Φ(x) for all x ∈ R For bounds of the convergence rate in this central limit theorem, the following results were shown by Bolthausen [4] Theorem (See [4].) Let < α β < ∞, < γ < ∞ There exists a constant < Cα,β,γ < ∞ such that, for any n and any X ∈ Mn satisfying σj2 = σ 2j a.s., α σ 2j β for j n, and X γ , sup P x∈R S s x − Φ(x) Cα,β,γ n−1/4 Theorem (See [4].) Let γ ∈ (0; +∞) There exists a constant < Cγ < ∞, depending only on γ , such that, for any n and any X ∈ Mn satisfying X ∞ γ and V (X) = a.s., sup P x∈R S s x − Φ(x) Cγ n log n s3 Relaxing the condition that V = a.s., Bolthausen [4] also showed the following result Corollary (See [4].) Let γ ∈ (0; +∞) There exists a constant Cγ > such that, for any n X ∈ Mn satisfying X ∞ γ , sup P x∈R S s x − Φ(x) Cγ n log n + s3 1/3 , V2−1 V2−1 1/2 ∞ and any Mourrat [11] generalized Corollary and obtained the optimality of the result to any p ∈ [1; +∞) Theorem (See [11].) Let p ∈ [1; +∞) and γ ∈ (0; +∞) There exists a constant Cp,γ > such that, for any n and any X ∈ Mn satisfying X ∞ γ , sup P x∈R S s x − Φ(x) Cp,γ n log n + s3 V2−1 p p + s−2p 1/(2p+1) The aim of this article is to extend these results to L1 -bounds in the mean central limit theorem for martingale-difference sequences Theorem Let < α β < ∞, < γ < ∞ If X γ , σj2 = σ 2j a.s., and α then there exists a constant C = C(α, β, γ) ∈ (0; ∞) such that FS/s − Φ Theorem Let < γ < ∞ If X such that ∞ β for j n, Cn−1/4 γ and V (X) = a.s., then there exists a constant < C < ∞ FS/s − Φ C We have the following corollary, similar to Corollary Lith Math J., 54(1):48–60, 2014 σ 2j γ n log n s3 50 L.V Dung, T.C Son, and N.D Tien Corollary Let < γ < ∞ and p > 1/2 If X depending only on p, such that FS/s − Φ γ n log n + s3 C γ , then there exists a positive constant C = C(p), ∞ V2−1 1/2 , ∞ E V2−1 p 1/2p The following corollary is an L1 -version of Theorem Corollary Let < γ < ∞ and p > 1/2 If X depending only on p, such that FS/s − Φ γ , then there exists a positive constant C = C(p), ∞ γ n log n p + E V − + s−2p s3 C 1/2p 1/3 Note that the term V − 1 appearing in Corollary is replaced by the smaller term (E|V − 1|p )1/2p in Corollary 2, and the term ( V − pp + s−2p )1/(2p+1) appearing in Theorem is replaced by the smaller term (E|V − 1|p + s−2p )1/2p in Corollary Auxiliary lemmas For two random variables X and Y with distribution functions FX and GY , respectively, applying the Kantorovich–Rubinstein theorem (see, e.g., [6, Thm 11.8.2]), we have that ∞ FX − G Y FX (x) − GY (x) dx = sup E f (X) − E f (Y ) , = f ∈Λ1 −∞ where Λ1 is the set of 1-Lipschitzian functions from R to R For more details, we refer the reader to [8] and [5] For functions f, g : R → R, their convolution f ∗ g is defined by ∞ f ∗ g(x) = f (x − y)g(y) dy −∞ We have the following lemmas p, q, r Lemma (See [3, p 205].) If have ∞, 1/p + 1/q = + 1/r, f ∈ Lp (R), and g ∈ Lq (R), then we f ∗g f r p g q Lemma Let X and η be real random variables Then, for any p > 1/2, we have FX − Φ FX+η − Φ + 2(2p + 1) E η 2p X Proof The conclusion is trivial in the case of E(η 2p | X) γ < ∞ For any a > 0, we have that ∞ ∞ FX − Φ P(X = −∞ t − a) − Φ(t − a) dt 1/2p ∞ = ∞ So, we assume that E(η 2p | X) (2.1) ∞ = L1 bounds for some martingale CLT 51 ∞ ∞ P(X t − a) − P(X + η t) dt + −∞ Φ(t) − Φ(t − a) dt −∞ + FX+η − Φ (2.2) First, we consider the first term on the right-hand side of (2.2) We have that P(X + η t) = E P(η t − X | X) E I(X = P(X t − a) − E I(X t − a)P(η t − X | X) t − a)P(η > t − X | X) , where E I(X t − a)P(η > t − X | X) γE (t − X)−2p I(X t − a) γE (t − X)−2p I(X t − a) , Therefore, P(X t − a) − P(X + η t) + which implies ∞ P(X t − a) − P(X + η t) + dt −∞ ∞ ∞ γE (t − X) −2p I(X (t − X)−2p I(X t − a) dt = γE −∞ t − a) dt −∞ ∞ (t − X)−2p dt = γE = (2p − 1) X+a γ a2p−1 (2.3) On the other hand, P(X + η t) = E I(X t − a)P(η + E I(t − a < X t − X | X) t + a)P(η + E I(X > t + a)P(η t − X | X) t − X | X) P(X t − a) + P(t − a < X t + a) + E I(X > t + a)P(η t − X | X) P(X t − a) + P(t − a < X t + a) + γE (t − X)−2p I(X > t + a) , which implies that P(X + η t) − P(X t − a) P(t − a < X Hence, ∞ P(X −∞ Lith Math J., 54(1):48–60, 2014 t − a) − P(X + η t) − dt t + a) + γE (t − X)−2p I(X > t + a) 52 L.V Dung, T.C Son, and N.D Tien ∞ ∞ P(t − a < X γE (t − X)−2p I(X > t + a) dt t + a) dt + −∞ −∞ ∞ X−a (t − X) = 2a + γE −2p I(X > t + a) dt (t − X)−2p dt = 2a + γE −∞ = 2a + (2p − 1) −∞ γ a2p−1 (2.4) Combining (2.3) and (2.4) yields ∞ P(X t − a) − P(X + η t) dt −∞ ∞ ∞ P(X = t − a) − P(X + η − t) P(X dt + −∞ t − a) − P(X + η t) + dt −∞ 2a + 2(2p − 1) γ a2p−1 (2.5) Next, we consider the second term on the right-hand side of (2.2) We have that ∞ ∞ Φ(t − a) − Φ(t) dt = −∞ Φ(t − a) − Φ(t) dt + −∞ Φ(t − a) − Φ(t) dt 0 ∞ aϕ(t) dt + −∞ aϕ(t − a) dt 2a (2.6) Combining (2.2), (2.3), and (2.6) yields FX − Φ FX+η − Φ 1 + (2p − 1) γ a2p−1 + 2a Taking a = γ 1/2p gives conclusion (2.1) of Lemma Lemma Let ψ be a function R → R with ψ E ψ(X) ∞ < ∞ and ψ ψ ∞ |FX ∞ < ∞ If X is a random variable, then − Φ|1 + ψ ∞ Proof It is clear that ∞ E ψ(X) − E ψ(N ) ∞ ψ(x) dFX (x) − = −∞ ∞ ψ(x) dΦ(x) = −∞ FX (x) − Φ(x) ψ (x) dx −∞ ∞ ψ ∞ −∞ FX (x) − Φ(x) dx = ψ ∞ FX − Φ L1 bounds for some martingale CLT 53 and E ψ(N ) ψ ∞ Proof of Theorem Let Z1 , Z2 , , Zn , η be independent normally distributed random variables with mean and E(Zj2 ) = σ 2j , n E(η ) = n1/2 Let Um = m−1 j=1 Xj /s and Z = j=1 Zj According to Lemma with p = 1, we have FS/s − Φ F(S+η)/s − Φ 1/2 E η2 s2 +C F(S+η)/s − F(Z+η)/s F(S+η)/s − F(Z+η)/s ∞ 1/4 + Cn +C E η2 s 1/2 ∞ (3.1) On the other hand, by a proof is similar to that of Theorem in [4] we get that S+η P s n Z +η t −P s t |Xm |3 ϕ λm s E m=1 n E + m=1 |Zm |3 ϕ λm s where θm , θm and λm = ( nj=m+1 σ 2j + n1/2 )/s ∞ Applying the Fubini theorem and noting that −∞ |ϕ (t)| dt ∞ S+η s P −∞ ∞ n |Xm |3 ϕ λ3m s3 E m=1 −∞ n ∞ m=1 −∞ ∞ n E m=1 −∞ |Xm |3 ϕ λ3m s3 ∞ n E + m=1 n m=1 −∞ |Xm |3 2E λ3m s3 t dt + t − Um Zm − θm λm λm s 2E m=1 |Zm |3 λ3m s3 Combining (3.1) and (3.2) yields The theorem is proved Lith Math J., 54(1):48–60, 2014 dt t − Um Zm − θm λm λm s n , 2, we have t − Um Xm − θm λm λm s |Zm |3 ϕ λ3m s3 FS/s − Φ t − Um Zm − θm λm λm s t − Um Xm − θm λm λm s |Zm |3 ϕ λ3m s3 E + Z +η s t −P t − Um Xm − θm λm λm s Cn−1/4 dt dt dt Cn−1/4 (3.2) 54 L.V Dung, T.C Son, and N.D Tien Proof of Theorem For n ∈ N, s > 0, and γ > 0, let G(s, γ) = X ∈ Mn : s(X) = s, X γ, V (X) = a.s ∞ and Δ(n, s, γ) = sup sup E f f ∈Λ1 S(X) s − E f (N) : X ∈ G(s, γ) It is clear that Δ(n, s, γ) Δ(n − 1, s, 2γ) For a fixed element X ∈ G(s, γ), where we assume that γ 1, let Z1 , Z2 , , Zn be i.i.d standard normal variables, and let η be a centered normal r.v with variance κ2 such that η is independent of anything else The variance κ2 will be specified later, but in any case, κ2 > 2γ Let m−1 j=1 Xj Um = n j=m+1 σj Zj +η λ2m n j=m+1 σj s2 + κ2 s s Conditioned on σ(Fn+1 , Zm ), Wm is normally distributed with mean and variance λ2m , and Z = n j=1 σj Zj /s is a standard normal variable Hence, by Lemma we have , Wm = FS/s − Φ F(S+η)/s − F( n j=1 , = σj Zj +η)/s κ +C s (4.1) Now we consider the first term on the right-hand side of (4.1) Let ϕλm (x) be the density function of Wm For any 1-Lipschitzian f , according to an idea that goes back to Lindeberg [10], we write E f S+η s −E f n j=1 σj Zj s n = E f Wm + U m + Xm s − E f Wm + U m + E f ∗ ϕλ m U m + Xm s − E f ∗ ϕλ m U m + m=1 n = m=1 n E gm Um + = m=1 n E = m=1 + +η Xm s − E gm Um + − σm Z m s σm Z m s (where gm = f ∗ ϕλm ) Z2 − X2 σm m m gm (Um ) s2 σm Z m − X m gm (Um ) − s θm σm Z m (σm Zm )3 gm Um − s s σm Z m s Xm θ Xm gm Um − m s s Since Um and λm are F m−1 -measurable, where F m−1 is the completion of Fm−1 , from E(Xm | F m−1 ) = Z 2F 2 E(σm Zm | F m−1 ) = a.s and E(σm j m−1 ) = E(Xj | F m−1 ) = σj a.s it follows that the first two sums in the above expression must vanish Moreover, since gm (x) = f ∗ ϕλm (x), we get that S+η E f s −E f n j=1 σj Zj s +η L1 bounds for some martingale CLT n |σm Zm |3 s3 E m=1 n 6s3 + := m=1 θσm Zm s E |σm Zm |3 f ∗ ϕλm Um − m=1 +E 3| |Xm s3 gm Um + θm Xm s θm Xm s E |Xm |3 f ∗ ϕλm Um − n 6s3 gm Um + 55 θm σm Z m s (I + II) 6s3 (4.2) We define the sequence of stopping times τj (1 k τ0 = 0, τj = inf k: j n) by j n σi2 i=1 for j n − 1, τn = n θm Xm s Then n m=1 E |Xm |3 f ∗ ϕλm Um − τj n E = m=τj−1 +1 j=1 If τj−1 < m θm Xm s |Xm |3 f ∗ ϕλm Um − (4.3) τj , then λ2m n j=τj +1 σj s2 n λ2m + κ2 s2 − js2 /n − γ + κ2 := λ2j , s s2 − (j − 1)s2 /n + κ2 := λj s σj2 + κ2 s2 j=τj−1 +1 We denote Rm = be defined by m−1 i=τj−1 +1 Xi and Amt = {|Rm | ψ(x) = sup |Uτj−1 +1 − t|/2} for t ∈ R Let the function ψ : R → R ϕ (y) : |y| |x| −1 We conclude that, for every t, ϕ holds on Amt ∩ {τj−1 < m τj E m=τj−1 +1 Lith Math J., 54(1):48–60, 2014 U m − t θm Xm − λm λm s ψ τm } Then, |Xm |3 f ∗ ϕλm Um − θm Xm s Uτj−1 +1 − t λj 56 L.V Dung, T.C Son, and N.D Tien τj γE m=τj−1 +1 Xm f ∗ ϕλ m U m − ∞ τj γE m=τj−1 +1 τj γE m=τj−1 +1 Xm Xm ∞ m=τj−1 +1 γE m=τj−1 +1 ∞ m=τj−1 +1 Xm τj m=τj−1 +1 Xm ψ Uτj−1 +1 − t λj −∞ f (t) dt ∞ m=τj−1 +1 m=τj−1 +1 U m − t θm Xm − f (t) IAcmt dt λm λm s λ−3 m ϕ −∞ ∞ τj τj γλ−3 j E U m − t θm Xm − f (t) IAmt dt λm λm s λ−3 m ϕ −∞ + γE + −∞ Xm τj γλ−3 j E U m − t θm Xm − f (t)IAcmt dt λm λm s λ−3 m ϕ ∞ τj + Xm θm Xm − t f (t) dt s U m − t θm Xm − f (t)IAmt dt λm λm s λ−3 m ϕ −∞ + γE γλ−3 j E ϕλ m U m − −∞ ∞ τj γλ−3 j E θm Xm s Xm IAcmt dt −∞ ∞ Xm ψ Uτj−1 +1 − t λj −∞ f (t) dt ∞ τj m=τj−1 +1 Xm IAcmt dt −∞ := γλ−3 j (Mj + Nj ) (4.4) We first consider Mj Since Uτj−1 +1 is Fτj−1 -measurable, we obtain ∞ Mj = τj E m=τj−1 +1 −∞ ∞ τj E −∞ ∞ ψ −∞ Uτj−1 +1 − t λj Uτj−1 +1 − t λj Uτj−1 +1 − t m=τj−1 +1 E ψ = Xm ψ λj f (t) dt E Xm Fτj−1 τj m=τj−1 +1 E Xm Fτj−1 f (t) dt f (t) dt L1 bounds for some martingale CLT ∞ 2γ Uτj−1 +1 − t E ψ ∞ = 2γ E f (t) dt λj −∞ Uτj−1 +1 − t ψ f (t) dt = 2γ E gj (Uτj−1 +1 ) , λj −∞ 57 where ∞ gj (x) = x−t λj ψ −∞ f (t) dt Now, since n n Xi2 E Fτj−1 σi2 Fτj−1 =E i=τj−1 +1 s2 − i=τj−1 +1 j−1 n a.s., from Lemma we obtain E gj (Uτj−1 +1 ) C FS/s − Φ j−1 + λj n + 1− 1− j−1 + λj n Hence, Mj Cγ FS/s − Φ + (4.5) Next, we consider Nj Let k Bj = Xi > max τj−1 t dt + |x|3 P |Zm | > |x| =2 |x|} |x| Using this expression as above, we obtain C γ n κ2 − 2γ II −1/2 Δ(n, s, γ) + γ n log n Combining this with (4.1), (4.2), and (4.7), we obtain Cs−3 γ n κ2 − 2γ Δ(n, s, γ) −1/2 Taking κ2 = 2γ + C 22 γ n2 and putting Kn = supγ κ Δ(n − 1, s, 2γ) + γ n log n + C s 1, 0 if C is suitably chosen ˆ = For the estimate V − 1 , we again let X = (X1 , , Xn ) ∈ Mn with X γ and define X ˆ ˆ (X1 , , X2n ) as in the proof of Corollary in [4] Then, by Theorem 2, FS/s − Φ Cγ n log n/s3 , and by Burkholder’s inequality (see, e.g., ˆ Lith Math J., 54(1):48–60, 2014 60 L.V Dung, T.C Son, and N.D Tien [9, Thm 2.11]) it is easy to see that E(Sˆ − S)2p p CE s2 V − s2 (5.2) For any x > 0, we have ∞ FS/s − Φ FS/s ˆ −Φ + −∞ Sˆ P s C E(Sˆ − S)2p + 2x x2p−1 s2p E|V − 1|p FS/s − Φ + C + 2x, ˆ x2p−1 FS/s ˆ −Φ ∞ S t+x −P s + t dt + Φ(t + x) − Φ(t) dt −∞ (by (2.5) and (2.6)) (5.3) and now putting x = (E V − )1/2p , we have |FS/s − Φ|1 C γ n log n +C E V2−1 s3 Combining this with (5.1) yields the conclusion of Corollary Substituting, instead of (5.2), the inequality E(Sˆ − S)2p immediately get the conclusion of Corollary 1/2p C(E|s2 V − s2 |p + 2γ 2p ) into (5.3), we Acknowledgment We would like to express our gratitude to the referee for his/her detailed comments and valuable suggestions, which helped us to improve the manuscript References R.P Agnew, Global versions of the central limit theorem, Proc Natl Acad Sci USA, 40(9):800–804, 1954 V Bentkus, A new method for approximation in probability and operator theories, Lith Math J., 43(4):367–388, 2003 V.I Bogachev, Measure Theory, Vol 1, Springer-Verlag, Berlin, 2007 E Bolthausen, Exact convergence rates in some martingale central limit theorems, Ann Probab., 10(3):672–688, 1982 J Dedecker and E Rio, On mean central limit theorems for stationary sequences, Ann Inst Henri Poincaré, Probab Stat., 44(4):693–726, 2008 R.M Dudley, Real Analysis and Probability, Cambridge Univ Press, Cambridge, 2004 C.G Esseen, On mean central limit theorems, Kungl Tekn Högsk Handl., Stockholm, 121(3):1–30, 1958 L Goldstein, Bounds on the constant in the mean central limit theorem, Ann Probab., 38(4):1672–1689, 2010 P Hall and C.C Heyde, Martingale Limit Theory and Its Application, Academic Press, New York, 1980 10 J.W Lindeberg, Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math Z., 15(1):211–225, 1922 11 J.C Mourrat, On the rate of convergence in the martingale central limit theorem, Bernoulli, 19(2):633–645, 2013 12 J.K Sunklodas, Some estimates of the normal approximation for independent non-identically distributed random variables, Lith Math J., 51(1):66–74, 2011 13 J.K Sunklodas, Some estimates of the normal approximation for ϕ-mixing random variables, Lith Math J., 51(2):260–273, 2011 ... Vol 1, Springer-Verlag, Berlin, 2007 E Bolthausen, Exact convergence rates in some martingale central limit theorems, Ann Probab., 10(3):672–688, 1982 J Dedecker and E Rio, On mean central limit. .. mean central limit theorems, Kungl Tekn Högsk Handl., Stockholm, 121(3):1–30, 1958 L Goldstein, Bounds on the constant in the mean central limit theorem, Ann Probab., 38(4):1672–1689, 2010 P Hall... respectively If X ∈ Mn , V (X) → in probability, and some Lindeberg-type condition is satisfied, then lim P n→∞ S(X) s(X) x = Φ(x) for all x ∈ R For bounds of the convergence rate in this central limit