1. Trang chủ
  2. » Thể loại khác

DSpace at VNU: Measurement of the CKM angle gamma from a combination of LHCb results

59 129 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 59
Dung lượng 1,53 MB

Nội dung

Published for SISSA by Springer Received: November 10, 2016 Accepted: December 9, 2016 Published: December 19, 2016 The LHCb collaboration E-mail: matthew.william.kenzie@cern.ch Abstract: A combination of measurements sensitive to the CKM angle γ from LHCb is performed The inputs are from analyses of time-integrated B + → DK + , B → DK ∗0 , B → DK + π − and B + → DK + π + π − tree-level decays In addition, results from a time-dependent analysis of Bs0 → Ds∓ K ± decays are included The combination yields ◦ γ = (72.2+6.8 −7.3 ) , where the uncertainty includes systematic effects The 95.5% confidence level interval is determined to be γ ∈ [55.9, 85.2]◦ A second combination is investigated, also including measurements from B + → Dπ + and B + → Dπ + π − π + decays, which yields compatible results Keywords: B physics, CKM angle gamma, CP violation, Hadron-Hadron scattering (experiments) ArXiv ePrint: 1611.03076 Open Access, Copyright CERN, for the benefit of the LHCb Collaboration Article funded by SCOAP3 doi:10.1007/JHEP12(2016)087 JHEP12(2016)087 Measurement of the CKM angle γ from a combination of LHCb results Contents Introduction 2 Inputs from LHCb analyses sensitive to γ Auxiliary inputs 10 Results 11 5.1 DK combination 11 5.2 Dh combination 12 5.3 Coverage of the frequentist method 13 5.4 Interpretation 17 Bayesian analysis 18 6.1 DK combination 20 6.2 Dh combination 20 Conclusion 20 Appendices 26 A Relationships between parameters and observables 26 B Input observable values and uncertainties 33 C Uncertainty correlations for the input observables 38 D External constraint values and uncertainties 46 E Uncertainty correlations for the external constraints 48 F Fit parameter correlations 48 References 49 –1– JHEP12(2016)087 Statistical treatment Introduction Updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/ See also 2015 update Updated results and plots available at: http://ckmfitter.in2p3.fr Updated results and plots available at: http://www.utfit.org/UTfit/ –2– JHEP12(2016)087 Understanding the origin of the baryon asymmetry of the Universe is one of the key issues of modern physics Sakharov showed that such an asymmetry can arise if three conditions are fulfilled [1], one of which is the requirement that both charge (C) and charge-parity (CP ) symmetries are broken The latter phenomenon arises in the Standard Model (SM) of particle physics through the complex phase of the Cabibbo-Kobayashi-Maskawa (CKM) quark mixing matrix [2, 3], although the effect in the SM is not large enough to account for the observed baryon asymmetry in the Universe [4] Violation of CP symmetry can be studied by measuring the angles of the CKM unitarity triangle [5–7] The least precisely ∗ /V V ∗ ], can be measured using only tree-level proknown of these angles, γ ≡ arg[−Vud Vub cd cb cesses [8–11]; a method that, assuming new physics is not present in tree-level decays [12], has negligible theoretical uncertainty [13] Disagreement between such direct measurements of γ and the value inferred from global CKM fits, assuming the validity of the SM, would indicate new physics beyond the SM The value of γ can be determined by exploiting the interference between favoured b → cW (Vcb ) and suppressed b → uW (Vub ) transition amplitudes using decay channels such as B + → Dh+ , B → DK ∗0 , B → DK + π − , B + → Dh+ π − π + and Bs0 → Ds∓ K ± [8– 11, 14–21], where h is a kaon or pion and D refers to a neutral charm meson that is a mixture of the D0 and D0 flavour eigenstates The inclusion of charge conjugate processes is implied throughout, unless otherwise stated The most precise way to determine γ is through a combination of measurements from analyses of many decay modes Hadronic parameters X ) or strong phase difference (δ X ) between the V such as those that describe the ratio (rB B cb and Vub transition amplitudes and where X is a specific final state of a B meson decay, are also simultaneously determined The ratio of the suppressed to favoured B decay X ±γ) X ei(δB amplitudes is related to γ and the hadronic parameters by Asup /Afav = rB , where the + (−) sign refers to the decay of a meson containing a b (b) The statistical uncertainty X, with which γ can be measured is approximately inversely proportional to the value of rB Dπ is which is around 0.1 for B + → DK + decays [22].1 In the B + → Dπ + channel, rB expected to be of order 0.005 [23] because the favoured amplitude is enhanced by |Vud |/|Vus | while the suppressed amplitude is further reduced by |Vcd |/|Vcs | with respect to B + → DK + decays Consequently, the expected sensitivity to γ in B + → Dπ + decays is considerably lower than for B + → DK + decays, although the signal yields are higher For B → DK ∗0 DK ∗0 ∼ r Ds K ∼ 0.3, (and also Bs0 → Ds∓ K ± ) decays a higher value is expected [24], rB B which compensates for the lower branching fraction [25],2 whilst the expected value for DKππ is similar to r DK The current world average, using only direct measurements of rB B ◦ B → DK-like decays, is γ = (73.2 +6.3 −7.0 ) [26] (or, using different inputs with an alternative statistical approach, γ = (68.3 ± 7.5)◦ [27]4 ) The previous LHCb combination found ◦ γ = (73 +9 −10 ) [28] RCP = Γ(B − → DCP K − ) + Γ(B + → DCP K + ) , Γ(B − → D0 K − ) + Γ(B + → D0 K + ) (1.1) where DCP refers to the final state of a D meson decay into a CP eigenstate Experimentally it is convenient to measure RCP , for a given final state f , by forming a double ratio that is normalised using the rate for a Cabibbo-favoured decay (e.g D0 → K − π + ), and the equivalent quantities from the relevant B + → Dπ − decay mode Defining the ratio of the favoured B + → D0 K + and B + → D0 π + partial widths, for a given final state f , as f RK/π = Γ(B − → D[→ f ]K − ) + Γ(B + → D[→ f¯]K + ) , Γ(B − → D[→ f ]π − ) + Γ(B + → D[→ f¯]π + ) (1.2) the double ratios are constructed as KK RCP ≈ KK RK/π Kπ RK/π , ππ RCP ≈ ππ RK/π Kπ RK/π , KKπ RCP ≈ –3– KKπ RK/π Kππ RK/π 0 , πππ RCP ≈ πππ RK/π Kππ RK/π , etc (1.3) JHEP12(2016)087 This paper presents the latest combination of LHCb measurements of tree-level decays that are sensitive to γ The results supersede those previously reported in refs [28–31], including more decay channels and updating selected channels to the full Run dataset of √ pp collisions at s = and TeV, corresponding to an integrated luminosity of fb−1 Two combinations are performed, one including all inputs from B → DK-like modes (referred to as DK) and one additionally including inputs from B + → Dπ + and B + → Dπ + π − π + decays (referred to as Dh) The DK combination includes 71 observables depending on 32 parameters, whilst the Dh combination has 89 observables and 38 parameters The analyses included in the combinations use a variety of methods to measure γ, which are reviewed in ref [32] The observables are briefly summarised below; their dependence on γ and various hadronic parameters is given in appendix A The Gronau-London-Wyler (GLW) method [8, 9] considers the decays of D mesons to CP eigenstates, for example the CP -even decays D → K + K − and D → π + π − The Atwood-Dunietz-Soni (ADS) approach [10, 11] extends this to include final states that are not CP eigenstates, for example D0 → π − K + , where the interference between the Cabibbo-allowed and doubly Cabibbo-suppressed decay modes in both the B and D decays gives rise to large charge asymmetries This introduces an additional dependence on the D decay dynamics through the ratio of suppressed and favoured D decay amplitudes, rD , and their phase difference, δD The GLW/ADS formalism is easily extended to multibody D decays [10, 11, 33] although the multiple interfering amplitudes dilute the sensitivity to γ For multibody ADS modes this dilution is parameterised in terms of a coherence factor, κD , and for the GLW modes it is parametrised by F+ , which describes the fraction of CP -even content in a multibody decay For multibody D decays these parameters are measured independently and used as external constraints in the combination as discussed in section The GLW/ADS observables are constructed from decay-rate ratios, double ratios and charge asymmetries as outlined in the following For GLW analyses the observables are the charge-averaged rate and the partial-rate asymmetry The former is defined as These relations are exact when the suppressed B + → Dπ + decay amplitude (b → u) vanishes and the flavour specific rates, given in the denominator of eq (1.1), are measured using the appropriate flavour-specific D decay channel The GLW partial-rate asymmetry, for a given D meson decay into a CP eigenstate f , is defined as ADh,f = CP Γ(B − → DCP h− ) − Γ(B + → DCP h+ ) Γ(B − → DCP h− ) + Γ(B + → DCP h+ ) (1.4) ¯ Dh,f RADS = Γ(B − → D[→ f¯]h− ) + Γ(B + → D[→ f ]h+ ) , Γ(B − → D[→ f ]h− ) + Γ(B + → D[→ f¯]h+ ) (1.5) whilst the partial-rate asymmetry is defined as ¯ f ADh, ADS = Γ(B − → D[→ f¯]h− ) − Γ(B + → D[→ f ]h+ ) Γ(B − → D[→ f¯]h− ) + Γ(B + → D[→ f ]h+ ) (1.6) The equivalent charge asymmetry for favoured ADS modes is defined as ADh,f fav = Γ(B − → D[→ f ]h− ) − Γ(B + → D[→ f¯]h+ ) Γ(B − → D[→ f ]h− ) + Γ(B + → D[→ f¯]h+ ) (1.7) Some of the input analyses determined two statistically independent observables instead of those in eqs (1.5) and (1.6), namely the ratio of partial widths for the suppressed and favoured decays of each initial B flavour, Γ(B + Γ(B + Γ(B − Dh,f¯ R− = Γ(B − ¯ Dh,f R+ = → D[→ f ]h+ ) , → D[→ f¯]h+ ) → D[→ f¯]h− ) → D[→ f ]h− ) (1.8) (1.9) It should be noted that eqs (1.5) and (1.6) are related to eqs (1.8) and (1.9) by RADS = R+ + R − R− − R+ , AADS = , R− + R+ (1.10) if the rates of the Cabibbo-favoured decays for B − and B + are identical Similar to the ADS approach is the Grossman-Ligeti-Soffer (GLS) method [16] that exploits singly Cabibbo-suppressed decays such as D → KS0 K − π + The GLS observables are defined in analogy to eqs (1.5)–(1.7) Note that in the GLS method the favoured decay has sensitivity to γ because the ratio between the suppressed and favoured amplitudes is much larger than in the ADS approach It is therefore worthwhile to include the favoured GLS decays in the combinations, which is not the case for the favoured ADS channels alone The Giri-Grossman-Soffer-Zupan (GGSZ) method [14, 15] uses self-conjugate multibody D meson decay modes like KS0 π + π − Sensitivity to γ is obtained by comparing the –4– JHEP12(2016)087 Similarly, observables associated to the ADS modes, for a suppressed D → f decay, are the charge-averaged rate and the partial-rate asymmetry For the charge-averaged rate, it is adequate to use a single ratio (normalised to the favoured D → f¯ decay) because the detection asymmetries cancel out The charge-averaged rate is defined as distributions of decays in the D → f Dalitz plot for opposite-flavour initial-state B and B mesons The population of candidates in the Dalitz plot depends on four variables, referred to as Cartesian variables which, for a given B decay final state X, are defined as X X xX ± = rB cos(δB ± γ), (1.11) X y± (1.12) = X rB X sin(δB ± γ) dΓBs0 →f (t) = |Af |2 (1 + |λf |2 )e−Γs t cosh dt ∆Γs t + A∆Γ f sinh ∆Γs t + Cf cos (∆ms t) − Sf sin (∆ms t) , dΓB →f (t) s dt p = |Af |2 q (1 + |λf |2 )e−Γs t cosh − Cf cos (∆ms t) + Sf sin (∆ms t) , (1.13) ∆Γs t + A∆Γ f sinh ∆Γs t (1.14) where λf ≡ (q/p) · (A¯f /Af ) and Af (A¯f ) is the decay amplitude of a Bs0 (B 0s ) to a final state f In the convention used, f (f¯) is the Ds− K + (Ds+ K − ) final state The parameter ∆ms is the oscillation frequency for Bs0 mesons, Γs is the average Bs0 decay width, and ∆Γs is the decay-width difference between the heavy and light mass eigenstates in the Bs0 system, which is known to be positive [34] as expected in the SM The observables sensitive to γ are A∆Γ f , Cf and Sf The complex coefficients p and q relate the Bs meson mass eigenstates, |BL,H , to the flavour eigenstates, |Bs0 and |B 0s , as |BL = p|Bs0 +q|B 0s and |BH = p|Bs0 − q|B 0s with |p|2 + |q|2 = Similar equations can be written for the ∆Γ CP -conjugate decays replacing Sf by Sf¯, and A∆Γ f by Af¯ , and, assuming no CP violation in either the decay or mixing amplitudes, Cf¯ = −Cf The relationships between the observables, γ and the hadronic parameters are given in appendix A –5– JHEP12(2016)087 These are the preferred observables for GGSZ analyses The GLW/ADS and GGSZ formalisms can also be extended to multibody B decays by including a coherence factor, κB , that accounts for dilution from interference between competing amplitudes This inclusive approach is used for all multibody and quasi-two-body B decays, with the exception of the GLW-Dalitz analysis of B → DK + π − decays where an amplitude analysis is performed to X determine xX ± and y± Here the term quasi-two-body decays refer to a two body resonant decay that contributes to a three body final state (e.g B → DK ∗ (892)0 decays in the B → DK + π − final state) Time-dependent (TD) analyses of Bs0 → Ds∓ K ± are also sensitive to γ [17–19] Due to the interference between the mixing and decay amplitudes, the CP -sensitive observables, which are the coefficients of the time evolution of Bs0 → Ds∓ K ± decays, have a dependence on (γ − 2βs ), where βs ≡ arg(−Vts Vtb∗ /Vcs Vcb∗ ) In the SM, to a good approximation, −2βs is equal to the phase φs determined from Bs0 → J/ψ φ and similar decays, and therefore an external constraint on the value of φs provides sensitivity to γ The time-dependent decay rates for the initially pure Bs0 and B 0s flavour eigenstates are given by Inputs from LHCb analyses sensitive to γ The LHCb measurements used as inputs in the combinations are summarised in table and described briefly below The values and uncertainties of the observables are provided in appendix B and the correlations are given in appendix C The relationships between the observables and the physics parameters are listed in appendix A All analyses use a data sample corresponding to an integrated luminosity of fb−1 , unless otherwise stated • B + → Dh+ , D → h+ h− The GLW/ADS measurement using B + → Dh+ , D0 → h+ h− decays [44] is an update of a previous analysis [53] The observables are defined in analogy to eqs (1.3)–(1.7) • B + → Dh+ , D → h+ π − π + π − The ADS measurement using the B + → Dh+ , D → K ± π ∓ π + π − decay mode [44] is an update of a previous measurement [54] The quasi-GLW measurement with B + → Dh+ , D → π + π − π + π − decays is included in the combination for the first time The label “quasi” is used because the D → π + π − π + π − decay is not completely CP -even; the fraction of CP -even content is given by Fππππ as described in section The method for constraining γ using these decays is described in ref [33], with observables defined in analogy to eqs (1.3)–(1.7) • B + → Dh+ , D → h+ h− π Inputs from the quasi-GLW/ADS analysis of B + → Dh+ , D → h+ h− π decays [45] are new to this combination The CP -even –6– JHEP12(2016)087 The combinations are potentially sensitive to subleading effects from D0 –D0 mixing [35–37] These are corrected for where necessary, by taking into account the D0 decaytime acceptances of the individual measurements The size of the correction is inversely X and so is particularly important for the B + → Dπ + (π + π − ) modes proportional to rB For consistency, the correction is also applied in the corresponding B + → DK + (π + π − ) modes The correction for other decay modes would be small and is not applied There can also be an effect from CP violation in D → h+ h− decays [38–41], which is included in the relevant B + → D0 h+ (π + π − ) analyses using the world average values [22], although the latest measurements indicate that the effect is negligible [42] Final states that include a KS0 meson are potentially affected by corrections due to CP violation and mixing in the neutral kaon system, parametrised by the non-zero parameter K [43] The effect is h ), which is negligible for B + → DK + decays since | expected to be O( K /rB K | ≈ 0.002 DK + + Dπ and rB ≈ 0.1 [22] For B → Dπ decays this ratio is expected to be O(1) since rB is expected to be around 0.5% [23] Consequently, the B + → Dπ + decay modes affected, such as those with D → KS0 K ∓ π ± , are not included in the Dh combination To determine γ with the best possible precision, auxiliary information on some of the hadronic parameters is used in conjunction with observables measured in other LHCb analyses More information on these quantities can be found in sections and 3, with a summary provided in tables and Frequentist and Bayesian treatments are both studied Section describes the frequentist treatment with results and coverage studies reported in section Section describes the results of a Bayesian analysis D decay Method Ref Status since last combination [28] B + → Dh+ D → h+ h− GLW/ADS [44] Updated to fb−1 B + → Dh+ D → h+ π − π + π − GLW/ADS [44] Updated to fb−1 B + → Dh+ D → h+ h− π GLW/ADS [45] New B + → DK + D → KS0 h+ h− GGSZ [46] As before B + → DK + D → KS0 K − π + GLS [47] As before B + → Dh+ π − π + D → h+ h− GLW/ADS [48] New B → DK ∗0 D → K +π− ADS [49] As before B → DK + π − D → h+ h− GLW-Dalitz [50] New B → DK ∗0 D → KS0 π + π − GGSZ [51] New Bs0 → Ds∓ K ± Ds+ → h+ h− π + TD [52] As before Table List of the LHCb measurements used in the combinations content of the D → K + K − π (D → π + π − π ) decay mode is given by the parameter FKKπ0 (Fπππ0 ), as described in section The observables are defined in analogy to eqs (1.3)–(1.7) • B + → DK + , D → KS0 h+ h− The inputs from the model-independent GGSZ analysis of B + → DK + , D → KS0 h+ h− decays [46] are the same as those used in the previous combination [28] The variables, defined in analogy to eqs (1.11)– (1.12), are obtained from a simultaneous fit to the Dalitz plots of D → KS0 π + π − and D → KS0 K + K − decays Inputs from a model-dependent GGSZ analysis of the same decay [55] using data corresponding to fb−1 are not included due to the overlap of the datasets • B + → DK + , D → KS0 K − π + The inputs from the GLS analysis of B + → DK + , D → KS0 K − π + decays [47] are the same as those included in the last combination [28] The observables are defined in analogy to eqs (1.5)–(1.7) The negligible statistical and systematic correlations are not taken into account • B + → Dh+ π − π + , D → h+ h− The inputs from the LHCb GLW/ADS analysis of B + → Dh+ π − π + , D0 → h+ h− decays [48] are included in the combination for the first time The observables are defined in analogy to eqs (1.3)–(1.4), (1.7)–(1.9) KK ππ The only non-negligible correlations are statistical, ρ(ADKππ, , ADKππ, ) = 0.20 CP CP Dπππ, KK Dπππ, ππ and ρ(ACP , ACP ) = 0.08 • B → DK ∗0 , D → K + π − The inputs from the ADS analysis of B → D0 K ∗ (892)0 , D0 → K ± π ∓ decays [49] are included as they were in the previous combination [28] However, the GLW part of this analysis (with D0 → K + K − and –7– JHEP12(2016)087 B decay D0 → π + π − ) has been superseded by the Dalitz plot analysis The ADS observables are defined in analogy to eqs (1.7)–(1.9) • B → DK ∗0 , D → KS0 π + π − Inputs from the model-dependent GGSZ analysis of B → DK ∗0 (892), D → KS0 π + π − decays [51] are included in the combination for the first time The observables, defined in analogy to eqs (1.11)–(1.12), are measured by fitting the D → KS0 π + π − Dalitz plot using a model developed by the BaBar collaboration [56] A model-independent GGSZ analysis [57] is also performed by LHCb on the same data sample Currently, the model-dependent analysis has the best sensitivity to the parameters x± and y± Therefore the model-dependent results are used in the combination The numerical results of the combination change insignificantly if the model-independent results are used instead • Bs0 → Ds∓ K ± The inputs used from the time-dependent analysis of Bs0 → Ds∓ K ± decays using data corresponding to fb−1 [52] are identical to those used in ref [28] Note however that a different sign convention is used here, as defined in eqs (1.13)– (1.14) and appendix A Auxiliary inputs The external inputs are briefly described below and summarised in table These measurements provide constraints on unknown parameters and result in better precision on γ The values and uncertainties of the observables are provided in appendix D and the correlations are given in appendix E • Input from global fit to charm data The GLW/ADS measurements need input to constrain the charm system in three areas: the ratio and strong phase difference Kπ , δ Kπ ), charm mixing (x , y ) and for D0 → K − π + and D0 → π − K + decays (rD D D D dir ), taken from a recent HFAG direct CP violation in D0 → h+ h− decays (Adir , A ππ KK charm fit [22] These not include the latest results on ∆ACP from LHCb [42] Kπ is but their impact has been checked and found to be negligible The value of δD ◦ shifted by 180 compared to the HFAG result in order to match the phase convention Kπ is related to the amplitude ratio r Kπ adopted in this paper The parameter RD D Kπ ≡ (r Kπ )2 through RD D –8– JHEP12(2016)087 • B → DK + π − , D → h+ h− Information from the GLW-Dalitz analysis of B → DK + π − , D0 → h+ h− decays [50] is added to the combination for the first time The “Dalitz” label indicates the method used to determine information about CP violation in this mode The variables, defined in analogy to eqs (1.11)–(1.12), are determined from a simultaneous Dalitz plot fit to B → DK + π − with D0 → K − π + , D → K + K − and D → π + π − samples, as described in refs [20, 21] Note that the observables are those associated with the DK ∗ (892)0 amplitudes Constraints on hadronic parameters are also obtained in this analysis, as described in section Parameters Source Ref D0 –D0 -mixing x D , yD HFAG [22] D → K +π− Kπ , δ Kπ rD D HFAG [22] D → h+ h− dir Adir KK , Aππ HFAG [22] D → K ±π∓π+π− K3π , κK3π , r K3π δD D D CLEO+LHCb [58] D → π+π−π+π− Fππππ CLEO [59] D → K ±π∓π0 K2π , κK2π , r K2π δD D D CLEO+LHCb [58] D → h+ h− π Fπππ0 , FKKπ0 CLEO [59] D → KS0 K − π + KS Kπ KS Kπ S Kπ δD , κK , rD D CLEO [60] D → KS0 K − π + KS Kπ rD LHCb [61] B → DK ∗0 ∗0 ¯ DK ∗0 , ∆δ¯DK ∗0 κDK ,R B B B LHCb [50] Bs0 → Ds∓ K ± φs LHCb [62] Table List of the auxiliary inputs used in the combinations • Input for D → K ± π ∓ π and D → K ± π ∓ π + π − decays The ADS measurements with D0 → K ± π ∓ π and D0 → K ± π ∓ π + π − decays require knowledge of the hadronic parameters describing the D decays These are the ratio, strong phase K2π , δ K2π , κK2π , r K3π , δ K3π difference and coherence factors of the two decays: rD D D D D → K ± π ∓ π + π − decays has been performed and κK3π Recently an analysis of D D K3π , δ K3π and κK3π Furthermore, an updated by LHCb [63] that is sensitive to rD D D measurement has been performed using CLEO-c data, and the results have been combined with those from LHCb [58] to yield constraints and correlations of the six parameters These are included as Gaussian constraints in this combination, in line with the treatment of the other auxiliary inputs • CP content of D → h+ h− π and D → π + π − π + π − decays For both the three-body D → h+ h− π and four-body D → π + π − π + π − quasi-GLW measurements the fractional CP -even content of the decays, FKKπ0 , Fπππ0 and Fππππ , are used as inputs These parameters were measured by the CLEO collaboration [59] The uncertainty for the CP -even content of D → π + π − π + π − decays is increased from ±0.028 to ±0.032 to account for the non-uniform acceptance of the LHCb detector following the recommendation in ref [44] For the D → h+ h− π decay the LHCb efficiency is sufficiently uniform to avoid the need to increase the F+ uncertainty for these modes • Input for D → KS0 K − π + parameters The B + → DK + , D → KS0 K − π + KS Kπ KS Kπ GLS measurement needs inputs for the charm system parameters rD , δD , KS Kπ and κD Constraints from ref [60] on all three are included, along with an adKS Kπ ditional constraint on the branching fraction ratio RD from ref [61] The results –9– JHEP12(2016)087 Decay xDK − xDK − DK y− xDK + −0.247 DK y− −0.247 xDK + 0.038 −0.011 DK y+ −0.003 0.012 DK y+ 0.038 −0.003 −0.011 0.012 0.002 0.002 xDK − DK y− xDK + xDK − 0.005 DK y− 0.005 xDK + DK y+ DK y+ −0.025 0.070 0.009 −0.141 −0.025 0.009 0.008 0.070 −0.141 0.008 Table 16 Correlation matrix of the systematic uncertainties for the B + → DK + , D0 → KS0 h+ h− observables [46] ∗0 , Kπ A¯DK fav ¯ DK ∗0 , Kπ R + ¯ DK ∗0 , Kπ R − 0.083 ∗0 , Kπ A¯DK fav 0.091 ¯ DK ∗0 , Kπ R + 0.091 ¯ DK ∗0 , Kπ R − −0.083 −0.081 −0.081 Table 17 Correlation matrix of the statistical uncertainties for the B → DK ∗0 , D → K + π − observables [49] ∗0 , Kπ A¯DK fav DK ∗0 , Kπ ¯ R + DK ∗0 , Kπ ¯ R − ∗0 , Kπ A¯DK fav ¯ DK ∗0 , Kπ R + ¯ DK ∗0 , Kπ R − 0.008 0.008 0.008 0.997 0.008 0.997 Table 18 Correlation matrix of the systematic uncertainties for the B → DK ∗0 , D → K + π − observables [49] – 44 – JHEP12(2016)087 Table 15 Correlation matrix of the statistical uncertainties for the B + → DK + , D0 → KS0 h+ h− observables [46] xDK − xDK − ∗0 ∗0 DK y− ∗0 xDK + ∗0 DK y+ ∗0 0.341 0.104 0.130 DK ∗0 0.341 0.054 0.154 DK ∗0 0.104 0.054 0.501 0.130 0.154 0.501 y− x+ DK y+ ∗0 xDK − xDK − ∗0 DK y− ∗0 xDK + ∗0 DK ∗0 y+ ∗0 DK y− ∗0 xDK + ∗0 DK y+ ∗0 0.872 0.253 0.368 0.872 0.293 0.414 0.253 0.293 0.731 0.368 0.414 0.731 Table 20 Correlation matrix of the systematic uncertainties for B → D0 Kπ, D → h+ h− observables [50] x ¯DK − x ¯DK − ∗0 DK ∗0 y¯− x ¯DK + ∗0 DK y¯+ ∗0 ∗0 DK y¯− ∗0 x ¯DK + ∗0 DK y¯+ ∗0 0.143 0 0.143 0 0 0.143 0 0.143 Table 21 Correlation matrix of the statistical uncertainties for the B → DK ∗0 , D → KS0 π + π − observables [51] Cf Cf A∆Γ f A∆Γ f¯ Sf −0.084 −0.103 −0.008 0.045 Sf¯ A∆Γ f −0.084 0.544 0.117 −0.022 A∆Γ f¯ −0.103 0.544 0.067 −0.032 Sf −0.008 0.117 0.067 −0.002 Sf¯ 0.045 −0.022 −0.032 −0.002 Table 22 Correlation matrix of the statistical uncertainties for the Bs0 → Ds∓ K ± observables [52] – 45 – JHEP12(2016)087 Table 19 Correlation matrix of the statistical uncertainties for B → D0 Kπ, D → h+ h− observables [50] A∆Γ f A∆Γ f¯ Sf −0.22 −0.22 −0.04 0.03 A∆Γ f −0.22 0.96 0.17 −0.14 A∆Γ f¯ −0.22 0.96 0.17 −0.14 Sf −0.04 0.17 0.17 −0.09 Sf¯ 0.03 −0.14 −0.14 −0.09 Cf Cf Sf¯ D External constraint values and uncertainties Input from global fit to charm data ref [22] The observables are The values and uncertainties are taken from xD = 0.0037 ± 0.0016 , yD = 0.0066 ± 0.0009 , Kπ δD Kπ RD Adir ππ Adir KK = 3.35 ± 0.21 rad, = 0.00349 ± 0.00004 , = 0.0010 ± 0.0015 , = − 0.0015 ± 0.0014 Kπ has been shifted by π to comply with the phase convention used in Here the value of δD the combination The correlations of the charm parameters are given in table 24 Input for D → K ± π ∓ π + π − and D → K ± π ∓ π decays tainties are taken from ref [58] The values used are κK3π = D 0.43 ± 0.17 , K3π δD = 2.23 ± 0.49 rad, κK2π D K2π δD K3π rD K2π rD = 0.81 ± 0.06 , = 3.46 ± 0.26 rad, = 0.0549 ± 0.0006 , = 0.0447 ± 0.0012 The values and uncer- The correlation matrix is given in table 25 CP content of D → h+ h− π and D → π + π − π + π − decays uncertainties are taken from ref [59] The values used are Fπππ0 = 0.973 ± 0.017 , FKKπ0 = 0.732 ± 0.055 , Fππππ = 0.737 ± 0.032 – 46 – The values and JHEP12(2016)087 Table 23 Correlation matrix of the systematic uncertainties for the Bs0 → Ds∓ K ± observables [52] Input for D → KS0 K − π + parameters used: KS Kπ RD = The following constraints from ref [60] are 0.356 ± 0.034 ± 0.007 , KS Kπ δD = −0.29 ± 0.32 rad, S Kπ κK = D 0.94 ± 0.16 In addition the following contraint from ref [61] is used KS Kπ S Kπ The correlation between δD and κK is determined from the experimental likelihood D KS Kπ KS Kπ to be ρ(δD , κD ) = −0.60 Constraints on the B → DK ∗0 hadronic parameters ties are taken from ref [50] The values used are κDK B ∗0 = 0.958 ± 0.008 ± 0.024, DK ∗0 = 1.020 ± 0.020 ± 0.060, DK ∗0 = 0.020 ± 0.025 ± 0.110 rad, ¯ R B ∆δ¯B The values and uncertain- where the first uncertainty is statistical and the second systematic These are taken to be uncorrelated Constraint on φs The value used is taken from ref [62] as φs = −0.010 ± 0.039 rad – 47 – JHEP12(2016)087 KS Kπ RD = 0.370 ± 0.003 ± 0.012 E Uncertainty correlations for the external constraints xD xD yD Kπ δD Kπ RD Adir ππ Adir KK −0.361 −0.332 0.234 0.117 0.146 −0.361 0.941 0.234 −0.180 −0.221 Kπ δD −0.332 0.941 0.439 −0.200 −0.237 Kπ RD 0.234 0.234 0.439 −0.078 −0.067 Adir ππ 0.117 −0.180 −0.200 −0.078 0.726 Adir KK 0.146 −0.221 −0.237 −0.067 0.726 Table 24 Correlations of the HFAG charm parameters (CHARM 2015, “Fit 3”, CP violation allowed) [22] κK3π D κK3π D K3π δD κK2π D K2π δD K3π rD K2π rD −0.67 0.04 −0.05 −0.48 −0.04 K3π δD −0.67 0.02 0.15 0.12 0.08 κK2π D 0.04 0.02 0.23 −0.04 −0.04 K2π δD −0.05 0.15 0.23 −0.02 0.36 K3π rD −0.48 0.12 −0.04 −0.02 −0.03 K2π rD −0.04 0.08 −0.04 0.36 −0.03 Table 25 Correlations of the D0 → K ± π ∓ π + π − and D0 → K ± π ∓ π parameters from CLEO and LHCb [58] F Fit parameter correlations DK combination γ DK rB DK δB DK rB ∗0 DK δB ∗0 γ 0.54 0.44 0.21 -0.15 DK rB DK δB DK ∗0 rB DK ∗0 δB 0.54 0.39 0.11 -0.08 0.44 0.39 0.08 -0.05 0.21 0.11 0.08 -0.13 -0.15 -0.08 -0.05 -0.13 Table 26 Fit parameter correlations for the DK combination The fit results are given in table – 48 – JHEP12(2016)087 yD Dh combination γ DK rB DK δB DK rB ∗0 DK δB ∗0 Dπ δB -0.59 -0.22 0.19 0.23 0.10 DK rB 0.19 0.23 0.02 -0.20 0.02 DK δB DK ∗0 rB DK ∗0 δB Dπ rB Dπ δB 0.23 0.23 0.02 -0.09 0.42 0.10 0.02 0.02 -0.06 -0.03 0 0.04 0.03 -0.10 -0.10 -0.59 -0.20 -0.09 -0.06 0.04 -0.22 0.02 0.42 -0.03 0.03 0.45 0.45 Table 27 Fit parameter correlations for the Dh combination solution The fit results are given in table γ DK rB DK δB DK rB ∗0 DK δB ∗0 Dπ rB Dπ δB γ 0.52 0.51 0.22 -0.16 -0.12 0.01 DK rB DK δB DK ∗0 rB DK ∗0 δB Dπ rB Dπ δB 0.52 0.41 0.11 -0.08 0.03 0.10 0.51 0.41 0.11 -0.06 -0.19 -0.01 0.22 0.11 0.11 -0.13 -0.02 -0.16 -0.08 -0.06 -0.13 0.01 -0.12 0.03 -0.19 -0.02 0.01 0.10 -0.01 0.01 0.83 0.83 Table 28 Fit parameter correlations for the Dh combination solution The fit results are given in table Open Access This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited References [1] A.D Sakharov, Violation of CP invariance, c asymmetry and baryon asymmetry of the universe, Pisma Zh Eksp Teor Fiz (1967) 32 [JETP Lett (1967) 24] [Sov Phys Usp 34 (1991) 392] [Usp Fiz Nauk 161 (1991) 61] [INSPIRE] [2] N Cabibbo, Unitary symmetry and leptonic decays, Phys Rev Lett 10 (1963) 531 [INSPIRE] [3] M Kobayashi and T Maskawa, CP violation in the renormalizable theory of weak interaction, Prog Theor Phys 49 (1973) 652 [INSPIRE] [4] M.B Gavela, P Hern´andez, J Orloff and O Pene, Standard Model CP-violation and baryon asymmetry, Mod Phys Lett A (1994) 795 [hep-ph/9312215] [INSPIRE] – 49 – JHEP12(2016)087 γ -0.07 -0.07 Dπ rB [5] L Wolfenstein, Parametrization of the Kobayashi-Maskawa matrix, Phys Rev Lett 51 (1983) 1945 [INSPIRE] [6] L.-L Chau and W.-Y Keung, Comments on the parametrization of the Kobayashi-Maskawa matrix, Phys Rev Lett 53 (1984) 1802 [INSPIRE] [7] A.J Buras, M.E Lautenbacher and G Ostermaier, Waiting for the top quark mass, ¯s0 mixing and CP asymmetries in B decays, Phys Rev D 50 (1994) 3433 K + → π + ν ν¯, Bs0 -B [hep-ph/9403384] [INSPIRE] [8] M Gronau and D Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys Lett B 265 (1991) 172 [INSPIRE] [10] D Atwood, I Dunietz and A Soni, Enhanced CP-violation with B → KD0 D¯0 modes and extraction of the CKM angle γ, Phys Rev Lett 78 (1997) 3257 [hep-ph/9612433] [INSPIRE] [11] D Atwood, I Dunietz and A Soni, Improved methods for observing CP-violation in B ± → KD and measuring the CKM phase γ, Phys Rev D 63 (2001) 036005 [hep-ph/0008090] [INSPIRE] [12] J Brod, A Lenz, G Tetlalmatzi-Xolocotzi and M Wiebusch, New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ, Phys Rev D 92 (2015) 033002 [arXiv:1412.1446] [INSPIRE] [13] J Brod and J Zupan, The ultimate theoretical error on γ from B → DK decays, JHEP 01 (2014) 051 [arXiv:1308.5663] [INSPIRE] [14] A Bondar, Proceedings of BINP special analysis meeting on Dalitz analysis, unpublished, 24–26 September 2002 [15] A Giri, Y Grossman, A Soffer and J Zupan, Determining γ using B ± → DK ± with multibody D decays, Phys Rev D 68 (2003) 054018 [hep-ph/0303187] [INSPIRE] [16] Y Grossman, Z Ligeti and A Soffer, Measuring γ in B ± → K ± (KK ∗ )D decays, Phys Rev D 67 (2003) 071301 [hep-ph/0210433] [INSPIRE] [17] R Fleischer, New strategies to obtain insights into CP-violation through Bs → Ds± K ∓ , Ds∗± K ∓ , and Bd → D± π ∓ , D∗± π ∓ , decays, Nucl Phys B 671 (2003) 459 [hep-ph/0304027] [INSPIRE] [18] R Aleksan, I Dunietz and B Kayser, Determining the CP-violating phase γ, Z Phys C 54 (1992) 653 [INSPIRE] [19] I Dunietz and R.G Sachs, Asymmetry between inclusive charmed and anticharmed modes in ¯ decay as a measure of CP violation, Phys Rev D 37 (1988) 3186 [Erratum ibid D B0, B 39 (1989) 3515] [INSPIRE] [20] T Gershon, On the measurement of the unitarity triangle angle γ from B → DK ∗0 decays, Phys Rev D 79 (2009) 051301 [arXiv:0810.2706] [INSPIRE] [21] T Gershon and M Williams, Prospects for the measurement of the unitarity triangle angle γ from B → DK + π − decays, Phys Rev D 80 (2009) 092002 [arXiv:0909.1495] [INSPIRE] [22] Heavy Flavor Averaging Group (HFAG), Y Amhis et al., Averages of b-hadron, c-hadron and τ -lepton properties as of summer 2014, arXiv:1412.7515 [INSPIRE] – 50 – JHEP12(2016)087 [9] M Gronau and D London, How to determine all the angles of the unitarity triangle from Bd0 → DKs and Bs0 → Dφ , Phys Lett B 253 (1991) 483 [INSPIRE] Dπ [23] M Kenzie, M Martinelli and N Tuning, Estimating rB as an input to the determination of the CKM angle γ, Phys Rev D 94 (2016) 054021 [arXiv:1606.09129] [INSPIRE] [24] K De Bruyn, R Fleischer, R Knegjens, M Merk, M Schiller and N Tuning, Exploring (∗)± Bs → Ds K ∓ decays in the presence of a sizable width difference ∆Γs , Nucl Phys B 868 (2013) 351 [arXiv:1208.6463] [INSPIRE] [25] Particle Data Group, K.A Olive et al., Review of particle physics, Chin Phys C 38 (2014) 090001 [INSPIRE] [27] UTfit collaboration, M Bona et al., The 2004 UTfit collaboration report on the status of the unitarity triangle in the Standard Model, JHEP 07 (2005) 028 [hep-ph/0501199] [INSPIRE] [28] LHCb collaboration, Improved constraints on γ: CKM2014 update, LHCb-CONF-2014-004, CERN, Geneva Switzerland (2014) [29] LHCb collaboration, Improved constraints on γ from B ± → DK ± decays including first results on 2012 data, LHCb-CONF-2013-006, CERN, Geneva Switzerland (2013) [30] LHCb collaboration, Measurement of the CKM angle γ from a combination of B ± → Dh± analyses, Phys Lett B 726 (2013) 151 [arXiv:1305.2050] [INSPIRE] [31] LHCb collaboration, Measurement of the CKM angle γ from a combination of B → DK analyses, LHCb-CONF-2016-001, CERN, Geneva Switzerland (2016) [32] T Gershon and V.V Gligorov, CP violation in the B system, arXiv:1607.06746 [INSPIRE] [33] M Nayak et al., First determination of the CP content of D → π + π − π and D → K + K − π , Phys Lett B 740 (2015) [arXiv:1410.3964] [INSPIRE] [34] LHCb collaboration, Determination of the sign of the decay width difference in the Bs system, Phys Rev Lett 108 (2012) 241801 [arXiv:1202.4717] [INSPIRE] ¯ mixing through [35] C.C Meca and J.P Silva, Detecting new physics contributions to the D0 -D their effects on B decays, Phys Rev Lett 81 (1998) 1377 [hep-ph/9807320] [INSPIRE] ¯ mixing on the experimental determination of γ, [36] J.P Silva and A Soffer, Impact of D0 -D Phys Rev D 61 (2000) 112001 [hep-ph/9912242] [INSPIRE] ¯ mixing in the extraction of gamma with B − → D0 K − and [37] M Rama, Effect of D-D − − B → D π decays, Phys Rev D 89 (2014) 014021 [arXiv:1307.4384] [INSPIRE] [38] W Wang, CP violation effects on the measurement of the Cabibbo-Kobayashi-Maskawa angle γ from B → DK, Phys Rev Lett 110 (2013) 061802 [arXiv:1211.4539] [INSPIRE] [39] M Martone and J Zupan, B ± → DK ± with direct CP-violation in charm, Phys Rev D 87 (2013) 034005 [arXiv:1212.0165] [INSPIRE] [40] B Bhattacharya, D London, M Gronau and J.L Rosner, Shift in weak phase γ due to CP asymmetries in D decays to two pseudoscalar mesons, Phys Rev D 87 (2013) 074002 [arXiv:1301.5631] [INSPIRE] [41] A Bondar, A Dolgov, A Poluektov and V Vorobiev, Effect of direct CP-violation in charm on γ extraction from B → DK ± , D → KS0 π + π − Dalitz plot analysis, Eur Phys J C 73 (2013) 2476 [arXiv:1303.6305] [INSPIRE] – 51 – JHEP12(2016)087 [26] CKMfitter Group, J Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur Phys J C 41 (2005) [hep-ph/0406184] [INSPIRE] [42] LHCb collaboration, Measurement of the difference of time-integrated CP asymmetries in D0 → K − K + and D0 → π − π + decays, Phys Rev Lett 116 (2016) 191601 [arXiv:1602.03160] [INSPIRE] ¯ mixing on determining γ from B ± → DK ± , [43] Y Grossman and M Savastio, Effects of K -K JHEP 03 (2014) 008 [arXiv:1311.3575] [INSPIRE] [44] LHCb collaboration, Measurement of CP observables in B ± → DK ± and B ± → Dπ ± with two- and four-body D decays, Phys Lett B 760 (2016) 117 [arXiv:1603.08993] [INSPIRE] [46] LHCb collaboration, Measurement of the CKM angle γ using B ± → DK ± with D → KS0 π + π − , KS0 K + K − decays, JHEP 10 (2014) 097 [arXiv:1408.2748] [INSPIRE] [47] LHCb collaboration, A study of CP-violation in B ± → DK ± and B ± → Dπ ± decays with D → KS0 K ± π ∓ final states, Phys Lett B 733 (2014) 36 [arXiv:1402.2982] [INSPIRE] [48] LHCb collaboration, Study of B − → DK − π + π − and B − → Dπ − π + π − decays and determination of the CKM angle γ, Phys Rev D 92 (2015) 112005 [arXiv:1505.07044] [INSPIRE] [49] LHCb collaboration, Measurement of CP-violation parameters in B → DK ∗0 decays, Phys Rev D 90 (2014) 112002 [Erratum ibid D 94 (2016) 079902] [arXiv:1407.8136] [INSPIRE] [50] LHCb collaboration, Constraints on the unitarity triangle angle γ from Dalitz plot analysis of B → DK + π − decays, Phys Rev D 93 (2016) 112018 [arXiv:1602.03455] [INSPIRE] [51] LHCb collaboration, Measurement of the CKM angle γ using B → DK ∗0 with D → KS0 π + π − decays, JHEP 08 (2016) 137 [arXiv:1605.01082] [INSPIRE] [52] LHCb collaboration, Measurement of CP asymmetry in Bs0 → Ds∓ K ± decays, JHEP 11 (2014) 060 [arXiv:1407.6127] [INSPIRE] [53] LHCb collaboration, Observation of CP-violation in B ± → DK ± decays, Phys Lett B 712 (2012) 203 [Erratum ibid B 713 (2012) 351] [arXiv:1203.3662] [INSPIRE] [54] LHCb collaboration, Observation of the suppressed AdS modes B ± → [π ± K ∓ π + π − ]D K ± and B ± → [π ± K ∓ π + π − ]D π ± , Phys Lett B 723 (2013) 44 [arXiv:1303.4646] [INSPIRE] [55] LHCb collaboration, Measurement of CP violation and constraints on the CKM angle γ in B ± → DK ± with D → KS0 π + π − decays, Nucl Phys B 888 (2014) 169 [arXiv:1407.6211] [INSPIRE] ¯ mixing parameters [56] BaBar collaboration, P del Amo Sanchez et al., Measurement of D0 -D 0 + − 0 + − using D → KS π π and D → KS K K decays, Phys Rev Lett 105 (2010) 081803 [arXiv:1004.5053] [INSPIRE] [57] LHCb collaboration, Model-independent measurement of the CKM angle γ using B → DK ∗0 decays with D → KS0 π + π − and KS0 K + K − , JHEP 06 (2016) 131 [arXiv:1604.01525] [INSPIRE] [58] T Evans, S Harnew, J Libby, S Malde, J Rademacker and G Wilkinson, Improved determination of the D → K − π + π + π − coherence factor and associated hadronic parameters from a combination of e+ e− → ψ(3770) → c¯ c and pp → c¯ cX data, Phys Lett B 757 (2016) 520 [Erratum ibid B submitted] [arXiv:1602.07430] [INSPIRE] – 52 – JHEP12(2016)087 [45] LHCb collaboration, A study of CP violation in B ∓ → Dh∓ (h = K, π) with the modes D → K ∓ π ± π , D → π + π − π and D → K + K − π , Phys Rev D 91 (2015) 112014 [arXiv:1504.05442] [INSPIRE] [59] S Malde et al., First determination of the CP content of D → π + π − π + π − and updated determination of the CP contents of D → π + π − π and D → K + K − π , Phys Lett B 747 (2015) [arXiv:1504.05878] [INSPIRE] [60] CLEO collaboration, J Insler et al., Studies of the decays D0 → KS0 K − π + and D0 → KS0 K + π − , Phys Rev D 85 (2012) 092016 [Erratum ibid D 94 (2016) 099905] [arXiv:1203.3804] [INSPIRE] [61] LHCb collaboration, Studies of the resonance structure in D0 → KS0 K ± π ∓ decays, Phys Rev D 93 (2016) 052018 [arXiv:1509.06628] [INSPIRE] ¯ oscillations in D0 → K + π − π + π − decays [63] LHCb collaboration, First observation of D0 -D and measurement of the associated coherence parameters, Phys Rev Lett 116 (2016) 241801 [arXiv:1602.07224] [INSPIRE] [64] B Sen, M Walker and M Woodroofe, On the unified method with nuisance parameters, Statist Sinica 19 (2009) 301 [INSPIRE] – 53 – JHEP12(2016)087 [62] LHCb collaboration, Precision measurement of CP violation in Bs0 → J/ψK + K − decays, Phys Rev Lett 114 (2015) 041801 [arXiv:1411.3104] [INSPIRE] The LHCb collaboration – 54 – JHEP12(2016)087 R Aaij40 , B Adeva39 , M Adinolfi48 , Z Ajaltouni5 , S Akar6 , J Albrecht10 , F Alessio40 , M Alexander53 , S Ali43 , G Alkhazov31 , P Alvarez Cartelle55 , A.A Alves Jr59 , S Amato2 , S Amerio23 , Y Amhis7 , L An41 , L Anderlini18 , G Andreassi41 , M Andreotti17,g , J.E Andrews60 , R.B Appleby56 , F Archilli43 , P d’Argent12 , J Arnau Romeu6 , A Artamonov37 , M Artuso61 , E Aslanides6 , G Auriemma26 , M Baalouch5 , I Babuschkin56 , S Bachmann12 , J.J Back50 , A Badalov38 , C Baesso62 , S Baker55 , W Baldini17 , R.J Barlow56 , C Barschel40 , S Barsuk7 , W Barter40 , M Baszczyk27 , V Batozskaya29 , B Batsukh61 , V Battista41 , A Bay41 , L Beaucourt4 , J Beddow53 , F Bedeschi24 , I Bediaga1 , L.J Bel43 , V Bellee41 , N Belloli21,i , K Belous37 , I Belyaev32 , E Ben-Haim8 , G Bencivenni19 , S Benson43 , J Benton48 , A Berezhnoy33 , R Bernet42 , A Bertolin23 , F Betti15 , M.-O Bettler40 , M van Beuzekom43 , Ia Bezshyiko42 , S Bifani47 , P Billoir8 , T Bird56 , A Birnkraut10 , A Bitadze56 , A Bizzeti18,u , T Blake50 , F Blanc41 , J Blouw11,† , S Blusk61 , V Bocci26 , T Boettcher58 , A Bondar36,w , N Bondar31,40 , W Bonivento16 , A Borgheresi21,i , S Borghi56 , M Borisyak35 , M Borsato39 , F Bossu7 , M Boubdir9 , T.J.V Bowcock54 , E Bowen42 , C Bozzi17,40 , S Braun12 , M Britsch12 , T Britton61 , J Brodzicka56 , E Buchanan48 , C Burr56 , A Bursche2 , J Buytaert40 , S Cadeddu16 , R Calabrese17,g , M Calvi21,i , M Calvo Gomez38,m , A Camboni38 , P Campana19 , D Campora Perez40 , D.H Campora Perez40 , L Capriotti56 , A Carbone15,e , G Carboni25,j , R Cardinale20,h , A Cardini16 , P Carniti21,i , L Carson52 , K Carvalho Akiba2 , G Casse54 , L Cassina21,i , L Castillo Garcia41 , M Cattaneo40 , Ch Cauet10 , G Cavallero20 , R Cenci24,t , M Charles8 , Ph Charpentier40 , G Chatzikonstantinidis47 , M Chefdeville4 , S Chen56 , S.-F Cheung57 , V Chobanova39 , M Chrzaszcz42,27 , X Cid Vidal39 , G Ciezarek43 , P.E.L Clarke52 , M Clemencic40 , H.V Cliff49 , J Closier40 , V Coco59 , J Cogan6 , E Cogneras5 , V Cogoni16,40,f , L Cojocariu30 , G Collazuol23,o , P Collins40 , A Comerma-Montells12 , A Contu40 , A Cook48 , G Coombs40 , S Coquereau38 , G Corti40 , M Corvo17,g , C.M Costa Sobral50 , B Couturier40 , G.A Cowan52 , D.C Craik52 , A Crocombe50 , M Cruz Torres62 , S Cunliffe55 , R Currie55 , C D’Ambrosio40 , F Da Cunha Marinho2 , E Dall’Occo43 , J Dalseno48 , P.N.Y David43 , A Davis59 , O De Aguiar Francisco2 , K De Bruyn6 , S De Capua56 , M De Cian12 , J.M De Miranda1 , L De Paula2 , M De Serio14,d , P De Simone19 , C.-T Dean53 , D Decamp4 , M Deckenhoff10 , L Del Buono8 , M Demmer10 , D Derkach35 , O Deschamps5 , F Dettori40 , B Dey22 , A Di Canto40 , H Dijkstra40 , F Dordei40 , M Dorigo41 , A Dosil Su´arez39 , A Dovbnya45 , K Dreimanis54 , L Dufour43 , G Dujany56 , K Dungs40 , P Durante40 , R Dzhelyadin37 , A Dziurda40 , A Dzyuba31 , N D´el´eage4 , S Easo51 , M Ebert52 , U Egede55 , V Egorychev32 , S Eidelman36,w , S Eisenhardt52 , U Eitschberger10 , R Ekelhof10 , L Eklund53 , Ch Elsasser42 , S Ely61 , S Esen12 , H.M Evans49 , T Evans57 , A Falabella15 , N Farley47 , S Farry54 , R Fay54 , D Fazzini21,i , D Ferguson52 , V Fernandez Albor39 , A Fernandez Prieto39 , F Ferrari15,40 , F Ferreira Rodrigues1 , M Ferro-Luzzi40 , S Filippov34 , R.A Fini14 , M Fiore17,g , M Fiorini17,g , M Firlej28 , C Fitzpatrick41 , T Fiutowski28 , F Fleuret7,b , K Fohl40 , M Fontana16,40 , F Fontanelli20,h , D.C Forshaw61 , R Forty40 , V Franco Lima54 , M Frank40 , C Frei40 , J Fu22,q , E Furfaro25,j , C Fă arber40 , A Gallas Torreira39 , D Galli15,e , S Gallorini23 , S Gambetta52 , M Gandelman2 , P Gandini57 , Y Gao3 , L.M Garcia Martin68 , J Garc´ıa Pardi˜ nas39 , J Garra Tico49 , L Garrido38 , P.J Garsed49 , D Gascon38 , C Gaspar40 , L Gavardi10 , G Gazzoni5 , D Gerick12 , E Gersabeck12 , M Gersabeck56 , T Gershon50 , Ph Ghez4 , S Gian`ı41 , V Gibson49 , O.G Girard41 , L Giubega30 , K Gizdov52 , V.V Gligorov8 , D Golubkov32 , A Golutvin55,40 , A Gomes1,a , I.V Gorelov33 , C Gotti21,i , M Grabalosa G´andara5 , R Graciani Diaz38 , L.A Granado Cardoso40 , E Graug´es38 , E Graverini42 , G Graziani18 , A Grecu30 , P Griffith47 , L Grillo21,40,i , B.R Gruberg Cazon57 , – 55 JHEP12(2016)087 O Gră unberg66 , E Gushchin34 , Yu Guz37 , T Gys40 , C Găobel62 , T Hadavizadeh57 , C Hadjivasiliou5 , G Haefeli41 , C Haen40 , S.C Haines49 , S Hall55 , B Hamilton60 , X Han12 , S Hansmann-Menzemer12 , N Harnew57 , S.T Harnew48 , J Harrison56 , M Hatch40 , J He63 , T Head41 , A Heister9 , K Hennessy54 , P Henrard5 , L Henry8 , J.A Hernando Morata39 , E van Herwijnen40 , M Heß66 , A Hicheur2 , D Hill57 , C Hombach56 , H Hopchev41 , W Hulsbergen43 , T Humair55 , M Hushchyn35 , N Hussain57 , D Hutchcroft54 , M Idzik28 , P Ilten58 , R Jacobsson40 , A Jaeger12 , J Jalocha57 , E Jans43 , A Jawahery60 , F Jiang3 , M John57 , D Johnson40 , C.R Jones49 , C Joram40 , B Jost40 , N Jurik61 , S Kandybei45 , W Kanso6 , M Karacson40 , J.M Kariuki48 , S Karodia53 , M Kecke12 , M Kelsey61 , I.R Kenyon47 , M Kenzie49 , T Ketel44 , E Khairullin35 , B Khanji21,40,i , C Khurewathanakul41 , T Kirn9 , S Klaver56 , K Klimaszewski29 , S Koliiev46 , M Kolpin12 , I Komarov41 , R.F Koopman44 , P Koppenburg43 , A Kosmyntseva32 , A Kozachuk33 , M Kozeiha5 , L Kravchuk34 , K Kreplin12 , M Kreps50 , P Krokovny36,w , F Kruse10 , W Krzemien29 , W Kucewicz27,l , M Kucharczyk27 , V Kudryavtsev36,w , A.K Kuonen41 , K Kurek29 , T Kvaratskheliya32,40 , D Lacarrere40 , G Lafferty56 , A Lai16 , D Lambert52 , G Lanfranchi19 , C Langenbruch9 , T Latham50 , C Lazzeroni47 , R Le Gac6 , J van Leerdam43 , J.-P Lees4 , A Leflat33,40 , J Lefran¸cois7 , R Lef`evre5 , F Lemaitre40 , E Lemos Cid39 , O Leroy6 , T Lesiak27 , B Leverington12 , Y Li7 , T Likhomanenko35,67 , R Lindner40 , C Linn40 , F Lionetto42 , B Liu16 , X Liu3 , D Loh50 , I Longstaff53 , J.H Lopes2 , D Lucchesi23,o , M Lucio Martinez39 , H Luo52 , A Lupato23 , E Luppi17,g , O Lupton57 , A Lusiani24 , X Lyu63 , F Machefert7 , F Maciuc30 , O Maev31 , K Maguire56 , S Malde57 , A Malinin67 , T Maltsev36 , G Manca7 , G Mancinelli6 , P Manning61 , J Maratas5,v , J.F Marchand4 , U Marconi15 , C Marin Benito38 , P Marino24,t , J Marks12 , G Martellotti26 , M Martin6 , M Martinelli41 , D Martinez Santos39 , F Martinez Vidal68 , D Martins Tostes2 , L.M Massacrier7 , A Massafferri1 , R Matev40 , A Mathad50 , Z Mathe40 , C Matteuzzi21 , A Mauri42 , B Maurin41 , A Mazurov47 , M McCann55 , J McCarthy47 , A McNab56 , R McNulty13 , B Meadows59 , F Meier10 , M Meissner12 , D Melnychuk29 , M Merk43 , A Merli22,q , E Michielin23 , D.A Milanes65 , M.-N Minard4 , D.S Mitzel12 , A Mogini8 , J Molina Rodriguez62 , I.A Monroy65 , S Monteil5 , M Morandin23 , P Morawski28 , A Mord`a6 , M.J Morello24,t , J Moron28 , A.B Morris52 , R Mountain61 , F Muheim52 , M Mulder43 , M Mussini15 , D Mă uller56 , J Mă uller10 , K Mă uller42 , V Mă uller10 , 48 41 51 57 52 P Naik , T Nakada , R Nandakumar , A Nandi , I Nasteva , M Needham , N Neri22 , S Neubert12 , N Neufeld40 , M Neuner12 , A.D Nguyen41 , C Nguyen-Mau41,n , S Nieswand9 , R Niet10 , N Nikitin33 , T Nikodem12 , A Novoselov37 , D.P O’Hanlon50 , A Oblakowska-Mucha28 , V Obraztsov37 , S Ogilvy19 , R Oldeman49 , C.J.G Onderwater69 , J.M Otalora Goicochea2 , A Otto40 , P Owen42 , A Oyanguren68 , P.R Pais41 , A Palano14,d , F Palombo22,q , M Palutan19 , J Panman40 , A Papanestis51 , M Pappagallo14,d , L.L Pappalardo17,g , W Parker60 , C Parkes56 , G Passaleva18 , A Pastore14,d , G.D Patel54 , M Patel55 , C Patrignani15,e , A Pearce56,51 , A Pellegrino43 , G Penso26 , M Pepe Altarelli40 , S Perazzini40 , P Perret5 , L Pescatore47 , K Petridis48 , A Petrolini20,h , A Petrov67 , M Petruzzo22,q , E Picatoste Olloqui38 , B Pietrzyk4 , M Pikies27 , D Pinci26 , A Pistone20 , A Piucci12 , S Playfer52 , M Plo Casasus39 , T Poikela40 , F Polci8 , A Poluektov50,36 , I Polyakov61 , E Polycarpo2 , G.J Pomery48 , A Popov37 , D Popov11,40 , B Popovici30 , S Poslavskii37 , C Potterat2 , E Price48 , J.D Price54 , J Prisciandaro39 , A Pritchard54 , C Prouve48 , V Pugatch46 , A Puig Navarro41 , G Punzi24,p , W Qian57 , R Quagliani7,48 , B Rachwal27 , J.H Rademacker48 , M Rama24 , M Ramos Pernas39 , M.S Rangel2 , I Raniuk45 , G Raven44 , F Redi55 , S Reichert10 , A.C dos Reis1 , C Remon Alepuz68 , V Renaudin7 , S Ricciardi51 , S Richards48 , M Rihl40 , K Rinnert54 , V Rives Molina38 , P Robbe7,40 , A.B Rodrigues1 , E Rodrigues59 , J.A Rodriguez Lopez65 , P Rodriguez Perez56,† , A Rogozhnikov35 , S Roiser40 , A Rollings57 , V Romanovskiy37 , 10 11 12 13 14 15 16 17 Centro Brasileiro de Pesquisas F´ısicas (CBPF), Rio de Janeiro, Brazil Universidade Federal Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil Center for High Energy Physics, Tsinghua University, Beijing, China LAPP, Universit´e Savoie Mont-Blanc, CNRS/IN2P3, Annecy-Le-Vieux, France Clermont Universit´e, Universit´e Blaise Pascal, CNRS/IN2P3, LPC, Clermont-Ferrand, France CPPM, Aix-Marseille Universit´e, CNRS/IN2P3, Marseille, France LAL, Universit´e Paris-Sud, CNRS/IN2P3, Orsay, France LPNHE, Universit´e Pierre et Marie Curie, Universit´e Paris Diderot, CNRS/IN2P3, Paris, France I Physikalisches Institut, RWTH Aachen University, Aachen, Germany Fakultă at Physik, Technische Universită at Dortmund, Dortmund, Germany Max-Planck-Institut fă ur Kernphysik (MPIK), Heidelberg, Germany Physikalisches Institut, Ruprecht-Karls-Universită at Heidelberg, Heidelberg, Germany School of Physics, University College Dublin, Dublin, Ireland Sezione INFN di Bari, Bari, Italy Sezione INFN di Bologna, Bologna, Italy Sezione INFN di Cagliari, Cagliari, Italy Sezione INFN di Ferrara, Ferrara, Italy – 56 – JHEP12(2016)087 A Romero Vidal39 , J.W Ronayne13 , M Rotondo19 , M.S Rudolph61 , T Ruf40 , P Ruiz Valls68 , J.J Saborido Silva39 , E Sadykhov32 , N Sagidova31 , B Saitta16,f , V Salustino Guimaraes2 , C Sanchez Mayordomo68 , B Sanmartin Sedes39 , R Santacesaria26 , C Santamarina Rios39 , M Santimaria19 , E Santovetti25,j , A Sarti19,k , C Satriano26,s , A Satta25 , D.M Saunders48 , D Savrina32,33 , S Schael9 , M Schellenberg10 , M Schiller40 , H Schindler40 , M Schlupp10 , M Schmelling11 , T Schmelzer10 , B Schmidt40 , O Schneider41 , A Schopper40 , K Schubert10 , M Schubiger41 , M.-H Schune7 , R Schwemmer40 , B Sciascia19 , A Sciubba26,k , A Semennikov32 , A Sergi47 , N Serra42 , J Serrano6 , L Sestini23 , P Seyfert21 , M Shapkin37 , I Shapoval45 , Y Shcheglov31 , T Shears54 , L Shekhtman36,w , V Shevchenko67 , A Shires10 , B.G Siddi17,40 , R Silva Coutinho42 , L Silva de Oliveira2 , G Simi23,o , S Simone14,d , M Sirendi49 , N Skidmore48 , T Skwarnicki61 , E Smith55 , I.T Smith52 , J Smith49 , M Smith55 , H Snoek43 , M.D Sokoloff59 , F.J.P Soler53 , B Souza De Paula2 , B Spaan10 , P Spradlin53 , S Sridharan40 , F Stagni40 , M Stahl12 , S Stahl40 , P Stefko41 , S Stefkova55 , O Steinkamp42 , S Stemmle12 , O Stenyakin37 , S Stevenson57 , S Stoica30 , S Stone61 , B Storaci42 , S Stracka24,p , M Straticiuc30 , U Straumann42 , L Sun59 , W Sutcliffe55 , K Swientek28 , V Syropoulos44 , M Szczekowski29 , T Szumlak28 , S T’Jampens4 , A Tayduganov6 , T Tekampe10 , G Tellarini17,g , F Teubert40 , E Thomas40 , J van Tilburg43 , M.J Tilley55 , V Tisserand4 , M Tobin41 , S Tolk49 , L Tomassetti17,g , D Tonelli40 , S Topp-Joergensen57 , F Toriello61 , E Tournefier4 , S Tourneur41 , K Trabelsi41 , M Traill53 , M.T Tran41 , M Tresch42 , A Trisovic40 , A Tsaregorodtsev6 , P Tsopelas43 , A Tully49 , N Tuning43 , A Ukleja29 , A Ustyuzhanin35 , U Uwer12 , C Vacca16,f , V Vagnoni15,40 , A Valassi40 , S Valat40 , G Valenti15 , A Vallier7 , R Vazquez Gomez19 , P Vazquez Regueiro39 , S Vecchi17 , M van Veghel43 , J.J Velthuis48 , M Veltri18,r , G Veneziano41 , A Venkateswaran61 , M Vernet5 , M Vesterinen12 , B Viaud7 , D Vieira1 , M Vieites Diaz39 , X Vilasis-Cardona38,m , V Volkov33 , A Vollhardt42 , B Voneki40 , A Vorobyev31 , V Vorobyev36,w , C Voß66 , J.A de Vries43 , C V´azquez Sierra39 , R Waldi66 , C Wallace50 , R Wallace13 , J Walsh24 , J Wang61 , D.R Ward49 , H.M Wark54 , N.K Watson47 , D Websdale55 , A Weiden42 , M Whitehead40 , J Wicht50 , G Wilkinson57,40 , M Wilkinson61 , M Williams40 , M.P Williams47 , M Williams58 , T Williams47 , F.F Wilson51 , J Wimberley60 , J Wishahi10 , W Wislicki29 , M Witek27 , G Wormser7 , S.A Wotton49 , K Wraight53 , S Wright49 , K Wyllie40 , Y Xie64 , Z Xing61 , Z Xu41 , Z Yang3 , H Yin64 , J Yu64 , X Yuan36,w , O Yushchenko37 , K.A Zarebski47 , M Zavertyaev11,c , L Zhang3 , Y Zhang7 , Y Zhang63 , A Zhelezov12 , Y Zheng63 , A Zhokhov32 , X Zhu3 , V Zhukov9 and S Zucchelli15 18 19 20 21 22 23 24 25 26 27 28 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 – 57 – JHEP12(2016)087 29 Sezione INFN di Firenze, Firenze, Italy Laboratori Nazionali dell’INFN di Frascati, Frascati, Italy Sezione INFN di Genova, Genova, Italy Sezione INFN di Milano Bicocca, Milano, Italy Sezione INFN di Milano, Milano, Italy Sezione INFN di Padova, Padova, Italy Sezione INFN di Pisa, Pisa, Italy Sezione INFN di Roma Tor Vergata, Roma, Italy Sezione INFN di Roma La Sapienza, Roma, Italy Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences, Krak´ ow, Poland AGH - University of Science and Technology, Faculty of Physics and Applied Computer Science, Krak´ ow, Poland National Center for Nuclear Research (NCBJ), Warsaw, Poland Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania Petersburg Nuclear Physics Institute (PNPI), Gatchina, Russia Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Institute of Nuclear Physics, Moscow State University (SINP MSU), Moscow, Russia Institute for Nuclear Research of the Russian Academy of Sciences (INR RAN), Moscow, Russia Yandex School of Data Analysis, Moscow, Russia Budker Institute of Nuclear Physics (SB RAS), Novosibirsk, Russia Institute for High Energy Physics (IHEP), Protvino, Russia ICCUB, Universitat de Barcelona, Barcelona, Spain Universidad de Santiago de Compostela, Santiago de Compostela, Spain European Organization for Nuclear Research (CERN), Geneva, Switzerland Ecole Polytechnique F´ed´erale de Lausanne (EPFL), Lausanne, Switzerland Physik-Institut, Universită at Ză urich, Ză urich, Switzerland Nikhef National Institute for Subatomic Physics, Amsterdam, The Netherlands Nikhef National Institute for Subatomic Physics and VU University Amsterdam, Amsterdam, The Netherlands NSC Kharkiv Institute of Physics and Technology (NSC KIPT), Kharkiv, Ukraine Institute for Nuclear Research of the National Academy of Sciences (KINR), Kyiv, Ukraine University of Birmingham, Birmingham, United Kingdom H.H Wills Physics Laboratory, University of Bristol, Bristol, United Kingdom Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom Department of Physics, University of Warwick, Coventry, United Kingdom STFC Rutherford Appleton Laboratory, Didcot, United Kingdom School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom Oliver Lodge Laboratory, University of Liverpool, Liverpool, United Kingdom Imperial College London, London, United Kingdom School of Physics and Astronomy, University of Manchester, Manchester, United Kingdom Department of Physics, University of Oxford, Oxford, United Kingdom Massachusetts Institute of Technology, Cambridge, MA, United States University of Cincinnati, Cincinnati, OH, United States University of Maryland, College Park, MD, United States Syracuse University, Syracuse, NY, United States Pontif´ıcia Universidade Cat´ olica Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil, associated to University of Chinese Academy of Sciences, Beijing, China, associated to Institute of Particle Physics, Central China Normal University, Wuhan, Hubei, China, associated to 65 66 67 68 69 a b c d f g h i j k l m n o p q r s t u v w † Universidade Federal Triˆ angulo Mineiro (UFTM), Uberaba-MG, Brazil Laboratoire Leprince-Ringuet, Palaiseau, France P.N Lebedev Physical Institute, Russian Academy of Science (LPI RAS), Moscow, Russia Universit` a di Bari, Bari, Italy Universit` a di Bologna, Bologna, Italy Universit` a di Cagliari, Cagliari, Italy Universit` a di Ferrara, Ferrara, Italy Universit` a di Genova, Genova, Italy Universit` a di Milano Bicocca, Milano, Italy Universit` a di Roma Tor Vergata, Roma, Italy Universit` a di Roma La Sapienza, Roma, Italy AGH - University of Science and Technology, Faculty of Computer Science, Electronics and Telecommunications, Krak´ ow, Poland LIFAELS, La Salle, Universitat Ramon Llull, Barcelona, Spain Hanoi University of Science, Hanoi, Viet Nam Universit` a di Padova, Padova, Italy Universit` a di Pisa, Pisa, Italy Universit` a degli Studi di Milano, Milano, Italy Universit` a di Urbino, Urbino, Italy Universit` a della Basilicata, Potenza, Italy Scuola Normale Superiore, Pisa, Italy Universit` a di Modena e Reggio Emilia, Modena, Italy Iligan Institute of Technology (IIT), Iligan, Philippines Novosibirsk State University, Novosibirsk, Russia Deceased – 58 – JHEP12(2016)087 e Departamento de Fisica , Universidad Nacional de Colombia, Bogota, Colombia, associated to Institut fă ur Physik, Universită at Rostock, Rostock, Germany, associated to 12 National Research Centre Kurchatov Institute, Moscow, Russia, associated to 32 Instituto de Fisica Corpuscular (IFIC), Universitat de Valencia-CSIC, Valencia, Spain, associated to 38 Van Swinderen Institute, University of Groningen, Groningen, The Netherlands, associated to 43 ... JHEP12(2016)087 Statistical treatment Introduction Updated results and plots available at http://www.slac.stanford.edu/xorg/hfag/ See also 2015 update Updated results and plots available at: http://ckmfitter.in2p3.fr... charge-averaged rate and the partial-rate asymmetry For the charge-averaged rate, it is adequate to use a single ratio (normalised to the favoured D → f¯ decay) because the detection asymmetries cancel... checked that using the world average instead has a negligible impact on the results Statistical treatment The baseline results of the combinations are presented using a frequentist treatment, starting

Ngày đăng: 16/12/2017, 03:47