DSpace at VNU: Non-commutative chern characters of the c -algebras of the sphers

11 121 0
DSpace at VNU: Non-commutative chern characters of the c -algebras of the sphers

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DSpace at VNU: Non-commutative chern characters of the c -algebras of the sphers tài liệu, giáo án, bài giảng , luận văn...

VNT.J Journal o f Scicnce, M athem atics - Physics 25 (2009) 249-259 Non-commutative chern characters o f the c*-algebras o f the sphers N gu vcn Quoc Tho* Ị'yeparỊmení o f M athem aiics, Vinh Universilv, Ĩ Le Duan, ih ĩh d lv, iĩcínưnĩ ReccÌNcd Septem ber 2009 A b s tra c t We p rop ose in this paper the construcion o f non-com m utalive Chcrn characters o f i he C ' —a l g e b r a s o f s p h e r e s a n d q u a n t u m s p h e r e s T h e Hnal c o m p u t a t i o n gi ve s us c i e a r r e l a t i o n With t he o r d i n a r y Z / ( ) - g r a d c d C h c r n c h r a c t e r s o f t o r s i o n o r t h e i r n o r m a l i z c r s Kc}^v()rks: C haracters o f ĩhe c * —algebras I n tr o d u c tio n For coinpacl Lie groups the C hem character cfi : /v * ( G ) ® Q — ^ Ỉ I p Ị ị { C ; Q ) were construcled in [4|-f5] wc com puted the non-conimutativc Clicrn characters o f compact Lie goup c * —algebras and o f compact quantum ụroups, which are also honiomorphisiiis from quantum A '- g r o u p s into entire currciu periodic cyclic h o m o lo g y o f group c * - a l g e b r a s (resp., o f C * - a ! u c b r a q u a n tu m groups), (7/(- : K J ( ' * ( C ) ) — - / / A \ ( C * ( G ) ) ) , (resp., chc* : A \ ( C ; ( C ) ) — ^ / / / s \ ( c ; ( ) ) ) We obtained viiiiO ilic icspuiKliii '4 ali;cl)iaic ihfiig '■ h * { ( J * ( U ) j — Ỉ Í J\ [L' * [Li) ))^ which coincidcs with the l-cdosov-C'unt/- Ọuillcii formiila for C l ie r n characters [5] W hen A - C*{G) wc first com puted tlie / v - u r o u p s o f c * (G ) and the / / L \{ C ^ {G) )' T hereafter we com puted the Clicrn charactcr r ile - : h \ { C U ( > ) - Ỉ Ỉ E ^ { C * { G ) ) ) as an isomorphism modulo torsions Usinir tiie results from [4|-[5], in this paper vvc com pute llic non-com m ulative Chern characters ^ : A ^ ( /l) the — > / / / : > ( / ! ) , for two eases = c * ( “ )), tlic C * - a l u c b r a o f spheres and “ - a l g e b r a s o f quantum spheres character CỈI : K * { S " ) For com pact t»roups G (){ii f 1), the C hem Q — » I ỉ pỊ ị { S^ ^ \ Q) o f llic sphere ” - { n f i ) / { i ) is an isomorphism (sc f 15]) In the paper, w e describe two Chern character hoiiiomorphisms and chc- : A',(C';(5")) — Ỉ^ÍÌKÚI: ihonguNcnquoc Í/ gm ail.co m 219 //E (c;(5")) N Q Tho / V N V Journal o fS cicn c e, Síaihcm ưíics - f^hvsics 25 (2009) 249 -2 250 Finally, \vc show that there is a coinmiitvative diagram A'.(C(AVJ) //E.(C(AVJ) (Similarly, for -4 = c * ( ” ), we have an analogous com m utalivc diagram with i r \v X X s ’ o f place o f " ) , from which we deduce that c lic - is an isomorphism modulo torsions We now briefly review he structure o f the paper In scclion 1, we com pute the C h e m chracter o f the c * - a l g e b r a s o f spheres 'I'lie computation o f C h em character o f is based on two crucial points: i) Because the sphere S " - ( ) { n f \ ) / { i ) is a homogeneous space and C " - a l g e b r a o f 9^ is (he transformation group c * - a l g e b r a , follwing J.Parker [10], we have: ii) U sing the stability property theorem and I I in [5], we rcduce it to the com putation o f c * - a lg e b r a s o f subgroup 0{ n) in (n I- 1) group In section 2, we com pute the Chern characlcr o f c * - a l g e b r a s o f quantum spheres For quantum sphere ^ , w e define the com pact quantum c * - a l g e b r a s where t is a positive real n u m b e r Thcreafier, we prove thát: where is the elemenlar>' algebra o f compact operators in a separable infinite dim ensional Hilbert space i and w is ihe Weyl o f a maximal tom s T „ in S O { n ) , Similar to Section 1, vve first com pute the h \ { C * { S ' ^ ) and Ị Ị E ^ { C * { S ' ' ) , and we prove that die- : /ú (c;(5 ”)) — Iỉh\{c:isn) is a isomorphism modulo torsion N otes on N o ta tio n : For any compact spacc -V, we write /v*(A ’') for the Z / ( ) - graded topo­ logical A ^-theo ry o f X We use S w a n ’s theorem to identify /v*(A ') with Z / { ) - graded /v*(C (-Y )) For any involution Banach algebra A , K ^ { A ) , H E ^ { A ) and I Ỉ P ^ { A ) are Z / ( ) - graded algebraic or topological A '- g r o u p s o f A , cnire cyclic lioinology, and periodic cyclic homology o f A , respectively If T is a maximal torus o f a compact group G , wilh the corresponding Wcyl group w , write C ( T ) for the algebra o f com plex valued functions on T We use the standard notation from the root theory such as p , for the positive highest weights, etc, We denote by A / t the norm alizer o f T in Ơ , by N the set o f natural num bers, R the fied o f real numbers and the standard c the field o f com plex num bers, i ^ ( N ) space o f square integrable sequences o f elem ents from A , and finally by C* { G ) we denote the com pact quantum algebras, C* { G ) the c * - a l g e b r a o f G N O TĨU) / VNU J o u n u d o f S d c n c e , M a them atics - Physics 25 (2009) 249-259 N o n -com m u lativ e Chern characters of c * 251 algebras o f spheres In this section, we com pute non-commutativc C h c m characters o f c * - a l g e b r a s o f spheres Let A be an involution [^anach alucbra We construct the non-com m utative Chern characters chc* ■ K ^ ( A ) — ►I I E J A ) s and show in [4] that ỉbr c * - a l g e b r a C * { G ) o f com pact Lie groups G , the Ciiern charactcr cìì('* is aii isomorphism P ro p o sitio n 2.1 ( |5 |, Tlìcorciìì 2.6) Lei / / he a sep a b le liilh e r t sp a ce a n d B cm arb itra ry Banach space where Wehave K (tcựỉ)) ^ 7v\(C); /V \(Ỡ /C (//)) ^ K Ụ Ì) //£ \(A C (//)) ^ //£ (€ ); ỈIE.{B®KựI)) ^ HE { D) , K ( H) is the clem en ííỉỉy algebra o f com pact o p era to rs in a sep a b le ifijim te d im e m io n a l ỉỉỉlb e rt sp a ce II P ro p o sitio n 2.2 ([5], Theorem 3.1) Lei be cm involution B anach algebra with unity There is a ('hern ch a cter hom om orphism chc- ; h \ { A ) — ^ IIE { A) P ro p o sitio n 2.3 (Ị5), rheoreni 3.2) Let G be an com pact Stroup a m i T a fix e d ìììaxim al torus o f (Ĩ \viih Weyl i r A ' t / T Then the Chern character rh(^^ : / \ * ( C * ( G ) ) ^ isoìnorpỉìism m odulo lorsiofis i.e rhr- : h \ { C * { G ) ) C / / E ( C * ( G ) ) is cm ///i.(C * (G )), vvhiJi CUN be iiicntijicd wiih ific cIu.sMcai Chern charactcr c h r- : A ' ( C ( A t ) ) — / / / • : ( C ( A ^ t) ) , ỊỈìiỉỉ is also an ìsoỉììorphic m odulo torsion, i.e rh : A \(A /'t)Cs^C Now, for ” - (){ìL I l ) / ( / i ) , where { i i ) , { n f 1) are the orthogonal matrix groups We detDlc by T „ a fixed maximal torus o f ( ; ỉ ) and A^Xn the normalizer o f T „ in ( n ) Following [Proposition 1.2, there a natural C h em character chc* : / Ú ( C ( ' ' ) ) — ^ I Ỉ E ^ { C { S ^ ) ) , Now, we pute first k \ { C ( S ' ' ) ) and then H E ^ { C { S ' ^ ) ) o f C * - a l g c b r a o f the sphere i*ruposition 2.4 H E , ( C { S ’')) H]],ẶTn)) Pro ự We have ///:.( C '( " ) ) - / / £ \ ( C ( ( n - f ) / ( h ))) //E (C * (ơ (n )) ® Kl{L^{0{n + l)/ơ (ri)))) 252 A ' Thu / I 'M J Jou rna l o / S c i e m v Mưihcniưiics - P hysics 25 (2009) 249-259 (in virtue of, llie K { ỉ ? { { ì ì \ ) / ( r ỉ ) ) ) ) is a c * - a lg c l.r a com pact operators in a separable 1lilhcrt spacc I ? { ( ) { n + l ) / ( n ) ) ) ỈIE,{C{(){n))) (by I>n)Ị)().sition 1.1) IỈE.{C{Mr'^) - (s e e Ịõ Ị) Thus, we have H E , { C ^ { S ’‘)) ~ / / £ ' * ( C ( V t J ) A p a r t f r om t t, b e c a u s e C ( A ' t ) is tlicn c o m i m i t a t i v c c * —a l i ỉ c b r a b y a C i i n t z - Q u i l l e n ’s r e s u l t [I], \vc have an isomotpliisni //n (C ((A 'T „ ))S ^ //ô » (A /'T j) Moreover, by a result o f Klialkhali [8],[9], we have ///> (C ((.V t „ )) = / / / % ( C ( ( A ' t J ) W'c liave, hence ỈỈE,{C"{Sn) ~ // £ '* ( C ( A /'t J ) = / / P ( C ( ( A ' t J ) R e m a r k Bccause ỈỊ]jỊị{AÍT ) is the dc Rham coliomology o f T n , invariant under the action o f the Weyl group \ \ \ following Watanabe [15], we have a canonical isom orphism ỉ ỉ p ] ị { T n ) ~ I Ỉ * { S O n ) l — A (X3 ,X , ,a- z+3 ), where X2 x+ = cr*(Pi) € / / ^ " ^ ^ ( ( n ) ) and rr* i r { B S O { n ) , R) — ► H * { S O { n ) , R ) for a com m utative ring /{ with a unit G 1Ì, and Pi — t ị , l ị ) e / / + (/iT n Z ) the P onlrjagin classes Thus, we have Proposition 2.5 / v ( C ( " ) ) - / v *(7í t J ) Proof \Vc have / Ú ( C ( ” )) h\{C {(){nil)/0{u))) - h\{C*{0{n))® iC{L\0{n i l)/0{n)))) ^ A ', ( C * ( ( tí))) ~ A \(A /t ) (see [10]) (by I ’r o p o s iti o n 1.1) (l->y L o i i i i n a , f r o m [5]) Thus, A \ ( C ( 5^0 ) = / w ( A t J R e m a r k Following Lem m a 4.2 from [5], w e have /v (A /tJ where (3 : R { S O { n ) ) — > /v = ỈC{SO{n \ l))/Tor = A ( / ( A i ) , / J ( A „ _ , £„4-1), ( ( n ) ) be the homomorphism o f Abelian groups assigning to each rep­ resentation p : S O { n ) — » U { n - \ - 1) the homotopic class ị3{p) = [inp] G [ ( n ) , t / | = K ~ ^ { S O { n ) ) , where i „ ; [/(71 + 1) — * Ư is the canonical one, U { n + 1) and Ư b y the n - groups respectively and € A '“ ^ (5 Ơ (7 + 1)) We have, finally A'*(C*(5")) s A (/3(Ai), ,/y(A,._3,en+i) t h and in fin ite unitary N ọ Tho / I'N U J o u r n a l of Scwnce, M ath em a tics - Physics 25 (2009) 249-259 253 M(ircovcr, the Chern charactcr OỈ S U ( n i 1) was compiilcd in [14], for all ì i ỳ \ Let us rccall the rc.suli Define a function ộ : N x N x n — ^z, uivcii bv k ^ ^ ,1 J'heoreiii 2.6 Ỉ.CÍ T n he a fix e d maximal iorus o f { n ) a m i T the fix e d m axim al torus of S ( ) [ n ) , with Wcyl ị:,n)ups i r A t / T , th e C hern characier o f C"‘[S'^) rhc^ : h \ { c * { s n ) //£' *(C *(5”)) I.s Ufi ỉsíììtiorphism, ịỉìven by rhc-ifW ) - ^ ( ( - l ) ' - ' / ( i - l)!ự.(2,i f , ẳ ; , x h i rhc.{€„.,^) - ^ ” ^ ( ( - l ) ' “ ' / ( i - l ) ! ) ( ( ^ ^ ( u + ,A :,2 x ,,h 1=^1 ( k = 1, n-1); 1=1 Proof By IVoposilion 1.5, we have A-.(C*(5")) ^ K , ( C { M r J ) = and //E ( C * ( '') ) ^ / / E ( C ( ^ / J ) ^ H h n W r J (l>y P r o p o s i tio n l.-l) Now consider the com m u tative diagram K.{C"{S")) Ị ỉ i : , { C ' { S ’')) h -{M r„ ) ỉỉhui^-in))- Moreover, by the results o f W atanabe [15], the Chcrn cliaractcr c/i : A '* ( A t „ ) © C — ' ỉỉ])ii{ -^ T „ )) is an isom orphism Thus, c/ic* : A ', ( C * ( " ) ) — > Ỉ I E { C ' { S " ) ) is an isomorphic (Proposition 1.4 and 1.5), given by chc-{P{\k)) = f ^ ( ( - l ) - ' 2/ ( 2i - I ) ! ) ộ ( 2a + 1, ^ - , 20X 2,+1 ( k = l , 1-1 1:^1 i= l n - 1); N.Q Tho / VNU Jo u rn a l o f Science, M athem atics - /Vỉv.v/c‘.v 25 (2009} 249-259 254 where H E , { C ^ S ' ‘)) 5^ A (j'3,X 7, ,X 2,4 3) N on-com m utative C hern charactcrs o f c * - a l g e b r a s o f quantum spheres In this section, w e at first recall definition and main properties o f com pact quantum spheres and their representations M ore precisely, for S'\ we define c* ( " ) , the spheres as the C * - c o m p le ti o n o f the ’ - a l g e b r a C” - a lg e b r a s o f compact quantum with respcct to the ” - n o r m , where is the quantized H o p f subalgebra o f the Mopf algebra, dual to the quantized universal enveloping algebra Ư{Ợ), generated by matrix elements o f the U{C/) modules o f type l ( s e e [3]) We prove that where fC{Hyj t) is the elementary algebra o f compact operators in a separable infinite dimensional Hilbert space and Ỉ Ỉ ' is the Weyl group o f " with respect to a maxim al loriis T A fter that,we first com pute the / ^ - g r o u p s A ',(C * (S '* )) and the I I E ! , { C * { S ' ' ) ) , respectively Thereafter we define the Chern character o f c * - a l g e b r a s q'lanlum spheres, as a homom orphism from A ' , ( Q ( " ) ) to H E \ { C * { S ' ‘)), and wc prove that d i e - ■ A ' ( C ; ( '" ) ) isomorphism modulo lorsioii / / / Ỉ , ( Q ( S ’'‘)) is an Let G be a com plex algebraic group with Lie algebra Q = L icG ' and £ is real number £• :/ - D efin ition 3.1 ([3], Definition 13.1) The qu a n tized fu n ctio n alg eb T e { G ) is the subal'^ehra o f the H o p f algebra d u a l to Ue{G), g en era ted by the m a trix elem ents o f the fin itc -d im o isio n u l U r(G )—m odules o f type For compact quantum groups the unitar>' representations o f T ^ { G ) arc param etcri/cd b \ pairs (w, t), where t is an elem ent o f a fixed maximal torus o f the compact real (brin o f c and u.' is a element o f the Weyl group w o f T in G Let A G be the irreducible i/ £ ( i / ) - m o d u l e o f type w ith the lii«hcst wciuht A Then K ( A ) admits a positive definite hcrmitian form' such that X V \ , V ) = V\ , V n £^(N) denoted bv TTs , where Si appears ir the reduced decom position UJ = ,s,,, s, , M o r e precisely, TTa : T e { G ) — » £(ế'^(N )) is o f class CCR(see [11]),i.e its image is dense in the ideal con.pact operators £ ( i ^ ( N ) ) t N.Q Tho / V N U Jo u r n a l of Science M a th em atics - Physics 25 (2009) 249-259 255 Then representation Tị is onc-dimcnsional and is o f the form Tt{Ci^s4L.r) ổr„,() ị ^ r íí n, Oĩì íh c l ĩ i l h c r í s p a c e íc ìĩs o r p r o d u c t / -^('^1) ■ / c give by P r Á - l ) { ( ' k , ® : í I V, Ạ r (1 - ‘ ẽ:‘ ♦‘ +' > ) s = a H + ® f'A-,,2 ® if s < r ® ® PAv i f s- - r if ,s > r The representation fh)Ị is eqiiivalenỉ /() the restriction o f th e representation Ti o f !F ^(S Ln-\\\ C )) (cf.2.3); a n d or ì' > (ì, f)j-1 is equivaìent to ihe restriction o f TTs^ y %- From Theorem 2.6, we have kcr/)^,/ -= {()}, (*',i)eiV'x7- i.e the representation ©;^eu I'f is faithful and f if u; (’ (liin () t ' ' \ We recall now ihc definition o f compact quanlum o f spheres D efinition 3.3 *—algebra c* — algebra The c * —algebraic com pact quantum sp h ere c * ( “ ) is he c * —com plciion oj the with respect to the C * ~ n o rm ll/ll-sup i|M/)ll, p where p runs through the*— representations o f (cf Theorem 6) a n d ihe norm on the riglii- hcmd sid e is (he operator It sufTcies to show that ll/ll is finite for all / € for it is d e a r that ||.|| is a C * - ii o r n i, i-C- ll/-/*ll — \ \ f\\ ^‘ We now prove that ibllowing result abo ut he structure o f compact quantum C * - a l g c b r a o f sphere S ' \ I 'h e o r c m 3,5 ỉilíh Pìion as above, vt't' have c ; ( " ) ^ c ( ') 0 r where C ( * ) is (he alịiehra o f com plex valued co n tin u o u s fim c tio tis on a n d K \ ỉ l ) ideal o f com paci operators in a separable m ih e r t space // Proof Let UJ — be a rcduccd decom position o f the elem ent Ú,’ G i r into a product o f reflections Then by Proposition 2.6, for r > o, the representation t is equivalent to the restriction Í 7T.,^ ® ®7T5^ ® T t, w here 1ĨSX is the composition o f the hom om orph ism o f T'e(G) onto / ’ê ( /.2 ( C ) ) and the representation 7T_1 o f J^ị:{SL ‘2{C)) in the iỉilb c rt sp ace and the family o f onc- dimensional representations T(, given by 7Ị(a) - T; (0) - 7Ị(c) - 0, ĩ(ư ) - where t G 5^ and a j j , c , d are give by: A lgebraJT £(5L 2(C )) is generated by the matrix elements o f type [ ỵc ^ uy Hence, by construction the representation T , : C ; ( S ' ‘) ►c ; ( S L , ( ) Í = TTg ’ *Ỉ ®7ĨS £ (ế'^(N )S ^) ® 7i- T hus, vvc have *k N ọ Tho / V N U Jo u r n a l o fS c ic n c c M ath em atics - Physics 25 (2009) 249-259 257 Now, TTs is CCR (see, 111Ị) and so, w e have 7rs,(C'*(5") ~ /C(//^,() M oreover Tt{C*{S'^)) —c I Icncc /-,(C (^ " )) = (7T,._ ' v 7T,.^0 ; ) ( Q ( S " ) = rr,., (c;(S")) ® s 7t,./(c;(S'‘)) T((c;(5 '*)) I C{ I L, t ) , - where n ^ j = //ô, â H s, ® c p ^ A C : { S ’')) = K ụ U t ) T hus, 1Icncc, r(D /*0 Now, recall a result o f s Sakai from [11]: Let -4 be a com m utative c * - a l g e b r a and B be a Then, c* -a lg e b B ) ~ ,4 Cv /i, where ÍÌ is the spectrum spacc o f A A pplying this result, lor B — AC(7 /^ / ) ^ /C and A — C ( U ' x ^ ) be a com mutative c * - a l g e b r a * I'hus we liave c Now, vve first com pute the A \ ( C * ( ” )) and llic I I E ^ { C * { S ' ' ) ) o f c * - a l g e b r a o f quantum sphere 5'^ P ro p o sitio n 3.6 / / A \ ( c ; ( S ' - ) ) ^ / / ; „ , ( U ' x ố ’') Proof Wc have Ỉ Ỉ E A C : ( S ’'}) r = // E ,( C ( ') © = / / £ ( C ( S ’' ) © / / E ( — H E { C { \ V X ‘) / C ^ / / / T ( C ( i r X 5*)) ! C{n^^t )dt ) r IC{ỈUt)dt)) (b y P r o p o s i tio n 1.1) Since C (U '' X s ' ) is a com m utative ’ - a l g e b r a , by F’roposition 1.5 §1, we have / / E ( C ; ( S " ) ) ^ H E , { C { \ V X ‘ )) ^ H h n i ^ V X 5*))' Proposition 3.7 K,{C*{S’')) ^ IC(\V X 5^) N.Q TỊìo / VN U Jo u rn a l o f Science M ưíhcmưỉics - Physics 25 (2009) 249-259 258 Proof Wc have A\(c;(S'‘)) = A\(C(S‘)Q riC{U^^t)df) U' ' ^ ) dt ) ) ^ K,{C{\V x S ^ ) @I C ^ A '.( C ( ir X S ') ) (1)V P r o p o s i t i o n 1.1) In result o f Proposition 1.5, §1, we have h \iC { \V X ') ) K { \ v X ‘ ) Theorem 3.8, IFiih rwiaiion above, the Chern chanicỉer o f C * —algebra o f quantum sphere chc- : A \ ( C (S") — ỉỉi:.{C c (S") ( ”)) is an isom orphism Proof By Proposition 2.9 and 2.10, we have H E , { C ; { S ' ^ ) ) ^ H E , { C { \ V X ‘ )) ^ i / ; j / i ( i r X ' ) ) , / : ( c ; ( " ) ) ^ A '.( C ( ir X ‘ )) ^ I C { \ V X * )) Now, consider the com mutative diagram /c * (c ;(5 " )) ỈỈE.{C:{S^^)) K J C ( \ V y s^)) Í Ỉ E J C ( \ V X S' )) A '*(U ’ X ‘) ^ M o re o v e r, follvving W a ta n a b c [ ] , the e ll : A ' * ( i r X ‘ ) :-; C — » X * ) is an is o m o r p h is m Thus, chc* : h \ { C *£ (5'*) — » H E ^ { C (5'” )) 'S an isomorphism A c k n o w le d g m e n t T he author would like to thank Professor Do Ngoc D iep for his guidance anti encouragement during this paper References |1] |2J [3] [4| |5 | [6| J Cunlz, Hntice cvclic cohoniolog\ of Banach algebra and characl^T of “ Suiĩimablo i-rcdhoni tìKxlulcs K-'rhcai'y., (1998) 519 J Cunl/, I) Quillen, The X coinplcx Í IỈ1C unuvcrsai cxtci.iions ỉ^irpm nt i\ỉatfi Inst Vni U tidtlbtg, (1993) V Chari, A PrcsslcN A guide to quantum (j7X}ups, Cai.ibriJgc Uni Press, (1995) D.N Diep, A.o Kuku N.Q Tho, Non-coininulativc Chcm ciiaractcr Í compact Lie group c*-algeb ras K- 'rỉieory 17(2) (1999) 195 O.N Dicp, A.o Kuku N.Q Tho, Non-comniutative Chcm characlcr of compact quantum group, K- Thcor'y, 17(2) (1999), 178 D.N Dicp, N.v Thu lloniotopy ivariancc of entire cumt cyclic homology, Vielĩiarn J o f Math, 25(3) (1997) 21! N Ọ Tho / V N U J o u rn a l o f Science, M aihcm atics - Physics 25 (2009) 49-259 |7| |8| 110| |H{ [I2| |13| 114| I li>| 259 Ị) N, Dicp, N.v Thu I jitirc homology of non-commulativc dc.Rhani curcnts, ỈC T P , ỊC /9 /2 I4 , (1996), 23pp; to appirar in ỉ^iiblicaíioĩi o f C FC A, H anoi C ity V ietnam N ational Iniversily {\991) M Klialkhali On the inlive c>c!ic coh(>!iiolog\ of Hanach algebras: Moita invariancc M athem atisches Inst Uni Ilv.idclbcry., 54 (1992) 24 M Khalkhali On ihe intivc c>c!ic cohomology of iianach algebras: II Honiotopy invariancc, M a t h e T n a t i s c h e s Inst I 11 Ucidelbf rg 54 (1992) 18 J i*:.ctkcr Translormation group C’*~a!gcbra: A scicctivc sur\c\ C ontem porary M athem atics., Volume 167 (1994) S akai, ( " —algebras and w * —algebras, Sprincr-Vcrlag Berlin Heidelberg New York, (1971) N A' Thu, Morila invarianc’c of entire curronl cyclic homology, V ietnam J M ath., 26:2 (1998) 177 NA' ĩhu, líxaciness ol cnũrc current cyclic honiloiỉỴ A cta M ath Vic-lnamica (to appear) T Waianabc C'hem charactcr iin compact l.ic groups of low rank Osuka J M ath., (1985) 463 'I' Waianahc, On the Cilcm characicr of s\mmctric space related o S U (n ), J Math K yoto Uni, 34 (1994) 149 ... this section, we com pute non-commutativc C h c m characters o f c * - a l g e b r a s o f spheres Let A be an involution [^anach alucbra We construct the non-com m utative Chern characters chc*... curronl cyclic homology, V ietnam J M ath., 26:2 (1998) 177 NA' ĩhu, líxaciness ol cnũrc current cyclic honiloiỉỴ A cta M ath Vic-lnamica (to appear) T Waianabc C' hem charactcr iin compact l.ic groups... a l of Scwnce, M ath em a tics - Physics 25 (2009) 249-259 253 M(ircovcr, the Chern charactcr OỈ S U ( n i 1) was compiilcd in [14], for all ì i ỳ Let us rccall the rc.suli Define a function

Ngày đăng: 14/12/2017, 14:34

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan