THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 34 |
Dung lượng | 497,63 KB |
Nội dung
Ngày đăng: 12/12/2017, 11:58
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
[19] D. D ˜ ung, Some approximative characteristics of the classes of smooth functions of several variables in the metric of L 2 , Uspekhi Mat. Nauk 34 (1979) 189–190 | Sách, tạp chí |
|
||
[20] D. D ˜ ung, Mean ε -dimension of the functional class B G , p , Mat. Zametki 28 (1980) 727–736 | Sách, tạp chí |
|
||
[31] M. Griebel, H. Harbrecht, A note on the construction of L-fold sparse tensor product spaces, Constr. Approx. 38 (2) (2013) 235–251 | Sách, tạp chí |
|
||
[59] G. Wasilkowski, Liberating the dimension for L 2 -approximation, J. Complexity 28 (2012) 304–319 | Sách, tạp chí |
|
||
[9] A. Chernov, D. D ˜ ung, New explicit-in-dimension estimates for the cardinality of high-dimensional hyperbolic crosses and approximation of functions having mixed smoothness, J. Complexity (2015) http://dx.doi.org/10.1016/j.jco.2015.09.001 | Link | |||
[23] D. D ˜ ung, Sampling and cubature on sparse grids based on a B-spline quasi-interpolation, Found. Comput. Math. (2015) http://dx.doi.org/10.1007/s10208-015-9274-8 | Link | |||
[41] T. Kühn, W. Sickel, T. Ullrich, Approximation of mixed order Sobolev functions on the d-torus - asymptotics, preasymptotics and d-dependence, Constr. Approx. (2015) http://dx.doi.org/10.1007/s00365-015-9299-x | Link | |||
[1] K. Babenko, On the approximation of a certain class of periodic functions of several variables by trigonometric polynomials, Dokl. Akad. Nauk SSSR 132 (1960) 247–250. English transl. in Soviet Math. Dokl., 1, (1960) | Khác | |||
[2] I. Babuska, F. Nobile, R. Tempone, A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal. 45 (2007) 1005–1034 | Khác | |||
[3] J. Baldeaux, M. Gnewuch, Optimal randomized multilevel algorithms for infinite-dimensional integration on function spaces with ANOVA-type decomposition, SIAM J. Numer. Anal. 52 (3) (2014) 1128–1155 | Khác | |||
[4] J. Beck, F. Nobile, L. Tamellini, R. Tempone, On the optimal polynomial approximation of stochastic PDEs by Galerkin and collocation methods, Math. Models Methods Appl. Sci. 22 (9) (2012) 1250023 | Khác | |||
[5] J. Beck, F. Nobile, L. Tamellini, R. Tempone, Convergence of quasi-optimal stochastic Galerkin methods for a class of PDEs with random coefficients, Comput. Math. Appl. 67 (4) (2014) 732–751 | Khác | |||
[6] A. Beged-Dov, Lower and upper bounds for the number of lattice points in a simplex, SIAM J. Appl. Math. 22 (1) (1972) 106–108 | Khác | |||
[7] O. Bratteli, D. Robinson, Operator Algebras and Quantum Statistical Mechanics, Vol. 1, Springer-Verlag, 2002 | Khác | |||
[10] A. Chkifa, Sparse polynomial methods in high dimension. Application to parametric PDE (PhD-Thesis), Laboratoire Jacques Louis Lions, Université Pierre et Marie Curie, Paris, 2014 | Khác | |||
[11] A. Chkifa, A. Cohen, R. DeVore, C. Schwab, Sparse adaptive Taylor approximation algorithms for parametric and stochastic elliptic PDEs, ESAIM Math. Model. Numer. Anal. 47 (1) (2013) 253–280 | Khác | |||
[12] A. Chkifa, A. Cohen, C. Schwab, High-dimensional adaptive sparse polynomial interpolation and applications to parametric PDEs, Found. Comput. Math. 14 (4) (2014) 601–633 | Khác | |||
[13] A. Cohen, R. DeVore, C. Schwab, Convergence rates of best N-term Galerkin approximations for a class of elliptic sPDEs, Found. Comput. Math. 10 (6) (2010) 615–646 | Khác | |||
[14] A. Cohen, R. DeVore, C. Schwab, Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs, Anal. Appl. 9 (1) (2011) 11–47 | Khác | |||
[15] J. Creutzig, S. Dereich, T. Müller-Gronbach, K. Ritter, Infinite-dimensional quadrature and approximation of distributions, Found. Comput. Math. 9 (2009) 391–429 | Khác |
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN