DSpace at VNU: Some remarks on the finite-time behavior of Wiener paths

13 151 0
DSpace at VNU: Some remarks on the finite-time behavior of Wiener paths

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

DSpace at VNU: Some remarks on the finite-time behavior of Wiener paths tài liệu, giáo án, bài giảng , luận văn, luận án...

VNU JOURNAL OF SCIENCE, M athem atics - Physics T X V III, N()3 - 2002 SO M E R EM A R K S ON B E H A V IO R THE F IN IT E -T IM E O F W IE N E R PA TH S D ang P h u o c H uy D e p a rtm e n t o f M a th e m a tic s, U n iv ersity o f I)a L a t A b s tr a c t W e establish, so m e pro p erties o f the fin ite -tim e behavior o f W iener paths S o m e applications o f these results are also given Keywords: W iener’s measure, stopping-tim e, W iener scaling invariance I n tr o d u c tio n T hroughout this note, by 93(R;V) we shall denote the Polish space of all continuous paths $ : [0 ,oo) — > R*v , and let M i(© (R iV)) be the space of Borel probability m easures on 23(IR'V)( see, for example, (1, Section 1]) Define, for each X £ R ‘v , the transform ation Tx :® ( R * ) — >) = r y *W(rf«&) \ l ) /(« (O jw ïïi# ) [ /(ybi(A,)( y - x - z ) d y , this completes the proof □ We need the following well known notions Define, for each Í € [0,oo), the coordinate projections 7Tt : S8 (R /V) — >• R'v by 7rt $ = * (t), (2.8) S o m e r e m a r k s ori the f i n i t e - t i m e b e h a vio r of 21 and let, = < *{*3 • s € [0 , i]), t € [0 ,oo) (2.9) be the ơ-algebra over Í8 (R'V) generated by all m aps 7TS, s € Ị(M] Given a {© fr : £ £ [0 , oo)}-stopping tim e T, we will use the notation = {.4 ầ đ (R 'V) : A n { r < t } [0, +oo] is a 33^ m easurable fu n c tio n T hen, f o r each f € J3(IRjV; /{), X € R A? a n d h € C (R ^ ;R ^ ) , we have (H ere we use i '( r ) in place o f ÿ ( r ( i ' ) ) ) Proof Define, from the above assum ptions, the function I I : Q3(R/V) X *B(RiV) — » R by / / ( $ , # ) = Z|0.o o)(t(*)) -IỊ0.OO) (*?(*)) • F (< J> )/(*(r,()) + /1 ( < % ( $ ) ) ) ) , where I A denotes the characteristic function of a set A T hen H is 93^ X 93(d¥) Ĩ B Ị $ ( i ( í ) ) j w ỉ [ i )w j w < w)( '» ) Corollary 2.4 is thus completely proved □ C o ro lla ry 2.5 L et R b e a n y o rth o g o n a l m a tr ix o f order /V, d e fin e th e tra n sfo rm a tio n h : R'v — »by /i(y) — R (y — R y ) U nder th e a ssu m p tio n s o f T h e o re m 2.3, we have F { ) J [ # ( t + 7/) + R t Ơ ( t ) - đ (r ) ) W X { N ) {( M) [ J ( tị< oo ) V / = / 7(r, It is easy to see (see (2.8)) th a t 7rt~ l (fí/v(a; r)) = { í G QÍ(Rn ) : I # ( - a |< r} e by Identify 'ĩ' € 53(K'V) ■( * ! ,• • • , N ) e ( » ( « ) ) w *(«) = ( # 1(s ), - ,< M « ) ) r , s G [0,oo), (see, for e x a m p le , [l, p 16], [2, P-179Ị) T h e n , for e a c h X = (x*i, • • • , T/v)7 £ s a tis f y in g condition rii= i ^ 7^ 0> putting r = \ / n for any £ > 0, by the independence of the coordinates under W x%' (see [2, Exercise 3.3.28]) we have, for any fixed t € [0,oo), W jW f { * € ® (R'V) : I 4»(0 |< y /V e } ^ > W ^ N) ^ { * « ( R * ) : I ỵ ' j ( i ) | < e; f o r I < j =n < N}^J ({*€*(/*): I 0(0 |< t}) Next, taking a , = x ” 2, < i < N , use (2.4) and (2.5) to see th at f j W Xj ( V € © (* ) : I 4>(t) |< c} j = n w ssni< ( { ậ € ® (/ỉ) : I ự.(x,-2í) = n Wi(V € |< 11 r }) : I xô^*r20 1^ el) ã Hence, we obtain the following inequality v \4 " > ( { * e © ( R w ) : I * ( | < n/7 v e } ^ > f ] w , ({ G * ( / ỉ ) : I X, ự>(x,-2 í) |< t } ) , for any c > 0, ỉ G [0,oo), and X is given in the above R e m a rk If p u ttin g Ai = { ộ € 33(/ỉ) : I Xj ộ ( x ~ 2t) |< e}, < i < Ny then (see (1.3)) ííw c * > -< v (íụ ) t=l \= = < } ,1)T( { * € ®(R/V) : Ix**/°r ^ i ^ A'})Thus, we have W r } , e © (R * ) (3.2) T hen is a {®;v : t € [0, oo)}-stopping time In this example, we will show th a t the W iener p ath s satisfy the following properties (a ) F or each X € B \ ( o ; r ) (see the n o ta tio n (3 )) a n d T > 0, then - ị ) + to r) Jio) O O B ^ Ĩ - ị ) + far) (3.3) and j 0) cos^ "*■ = e- ^ I*\irther, ( b) f o r a n y c > a n d X € #/v(0; c os ^ ■~ + > (3-4) /o r e v e ry f c ỗ Z w * v :} > T ) then > e" ^ ^ cos" - ) ) ( -5 ) and (4 ^ > T) > e -^ ^ c o s w^ i ệ l ) (3.6) In order to prove these assertions,we proceed in several steps Step L Using T h e same techniques of the proof of Theorem 7.2.4 in [2] with respect to the function / ( i , x ) = e ^T 'r* cos^7T ^- ” ) + w2 t f TT X resp ỡ(£,:r) = c * cosi e [0’°°) x Æ \ n )' ^ [0>°°) x ft we see th a t, th e assertion (3.3) [resp (3.4)1 is obtained from the fact th a t /( iA r > r\ 7T resp #(£ A T>r\ 7rtA e - £ ^ Ỵ ị c o s ^ — S te p Next, for any fixed X (E #/v (0; p u ttin g y = ••• I Then, there exists a R otation Ĩ Ỉ (relative to R ) on 23 (R ^ ) in which the orthogonal m atrix R satisfied D ang Phuoc H u y 32 the condition R y = X T hus, by (2.5), we conclude from (3.11) th a t = n * W yV) ( j i v W i N) = W ịN) > : T ^ i n v ) > T } ' JS = w W { * rrg0^ ) > r} i > e- i ' ^ c o s ^ l i i - ì ) ) Finally, by the sam e argum ent as above, we also obtain (3.6) and this exam ple is completely established R e m a r k We use E F [ X , A ] to denote the expected value under p of X over the set A Taking X = I in (3.3) and thereby obtain L „ T) “ » ( * ( ^ - i ) + fe rjW j(i® ) = ( - l ) V Í i Thus, E w * COS ^7T + kTr'j , r ị lJ > T = ( —l ) fc C0S^7T^~ ~ ) + COS ^7T ^ ~ ) + ^c7r) ’ > for any r > 0, 7’ > 0, k £ z and X € # i( ;r ) Similarly, by (3.4) (w ith Ew COS X f I •— + = 0), we have ẮC7T j , r l lJ > T = ( - l ) fc° ° s f ■“ + fc7r) £'VV co's ( for any r > T > 0, k £ z an d X ~ + fc7r) ’ T- r‘ > T € íỉi( ;r ) R e m a r k One could define th e sub sets of Ổ ạt(0; ^7= ) under w hich we will obtain the b e tte r estim ates than the inequalities of (3.5) and (3.6) Namely, letting X Ç ft/v (0; for each e > , then S o m e r e m a r k s o n th e f i n i t e - t i m e b e h a v io r o f 33 This implies th at, *(*(& x g M 2) ) - - l > ^ r ;^ ) X e ỉ f ij v ( ; §), (3.12) I N = 1, 2, where ổtì/v(0; I ) is the boundary of /í/V (0; I ) and Co s ( f M ) = l, , , « ISO (3.13) Then, it shows from (3.5)(3.12) th a t W V) / g o > > e~ * ị for TV = 1,2,3; € > 0, T > and X € Ó/Ỉ/V (0; I ) Similarly, by (3.6)(3.13), we o b tain the certain result of T heorem 7.2.4 in [2], yy(N) ^ r (W) > > e - - JS£ L t t > , T > E x a m p le 3.3 Let us consider two {23^ : t € [0,0 )} -stopping tim es as follows ơ(>ỉ) = inf { s > : I 'P(.s) |< ^ } (3.14) £t and r ( ^ ) = iiif1 > : I #(.v) |> r} , for each r > and every í* E Q3(R;V) 77 : ( r < + 00 ) — > [0, + 00 ] by Let t € (0 , 00 ) (3.15) be fixed an d X G Byv(0;r) Define 7/($) = ( t - r ( i ) ) v (3.16) Then 77 is a © ^-m easure function Furtherm ore, taking ;4 = ( r < £), it is obvious th a t A c (r] < 00 ) T he following n otations will be used: R tì = { R y : y G Ỡ } and /3 + z = { y -f z : y G / ĩ } , z € R 'v , B € ©RAT In this exam ple, we shall prove th a t the W iener p a th s satisfy th e following properties (a) F or a n y orthogonal m a tr ix R be g iv e n , a n d every B G w w € ® ( R W) : r(vt') < t, f(T)) + $ ( r ) |) , J / (3.17) D ang Phuoc H u y 34 € « ( R * ) : r { < b ) < t , I { t ) |< < w* )^r - ^ (d * ) Som e rem arks on the fin ite -tim e b e h a v io r o f 35 Using Lemma 2.2, the above relation becomes W

Ngày đăng: 11/12/2017, 22:09

Tài liệu cùng người dùng

Tài liệu liên quan