Chapter 10 - Kỹ thuật thông tin vô tuyến

15 376 3
Chapter 10 - Kỹ thuật thông tin vô tuyến

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

Kỹ thuật thông tin vô tuyến

Chapter 10 (a) (AAH )T = (AH )T AT T = (AT ) AT = AAH ∴ (AAH )H For AAH , = AAH λ = λ, i.e eigen-values are real AAH = QΛQH (b) X H AAH X = (X H A)(X H A)H = X H A ≥ ∴ AAH is positive semidefinite (c) IM + AAH = IM + QΛQH = Q(I + Λ)QH AH positive semidefinite ⇒ λi ≥ 0∀i ∴ + λi > 0∀i ∴ IM + AAH positive definite (d) det[IM + AAH ] = det[IM + QΛQH ] = det[Q(IM + ΛM )QH ] = det[IM + ΛM ] Rank(A) = Πi=1 (1 + λi ) det[IN + AH A] = det[IN + QΛQH ] = det[Q(IN + ΛN )QH ] = det[IN + ΛN ] Rank(A) = Πi=1 (1 + λi ) AAH and AH A have the same eigen-value ∴ det[IM + AAH ] = det[IN + AH A] H = U ΣV T  −0.4793 0.8685 −0.1298 U =  −0.5896 −0.4272 −0.6855  −0.6508 −0.2513 0.7164    1.7034 0 0.7152  Σ= 0 0.1302   −0.3458 0.6849 0.4263  −0.5708 0.2191 0.0708   V =  −0.7116 −0.6109 0.0145  −0.2198 0.3311 −0.9017 H = U ΣV T Let   U =  0   V =  0 Σ= 0   0 ∴H=  0 Check the rank of each matrix rank(HI ) = ∴ multiplexing gain = rank(H2 ) = ∴ multiplexing gain = RH C= log2 + i=1 Constraint Vi = ρ λi ρ Mt λi = constant ∴ ∂C ρ 1 ρ = − =0 λi ρ ∂λi Mt ln (1 + ) Mt ln (1 + λi ρ ) Mt Mt ⇒ λi = λj ∴ when all RH singular values are equal, this capacity is maximized (a) Any method to  13 08 .05 09 D= 23 13 show H ≈ U ΛV is acceptable For example:  11 H −H 14 where : dij = ij ij × 100 H 10 (b) precoding filter M = V −1 shaping filter F = U −1   −.5195 −.3460 −.7813 F = −.0251 −.9078 4188  −.8540 2373 4629   −.2407 −.8894 3887 M = −.4727 −.2423 −.8473 −.8478 3876 3622 Thus Y = F(H)MX + FN = U ∗ U ΛVV ∗ X + U ∗ N = ΛX + U ∗ N (c) Pi P 1 1 γo − γi for γi > γo , P γi = λio B = 94.5 for i = 1, N Assume γ2 > γ0 > γ3 since = else 6.86 for i = 2, 68 for i = γ3 = 68 is clearly too small for data transmission Pi P 1 = ⇒ γ0 − γ1 − γ2 = ⇒ γ0 = 1.73 P1 P2 P = 5676 P = 4324 C = B log2 + γ1 P1 + log2 + γ2 P2 P P = 775.9 kbps (d) With equal weight beamforming, the beamforming vector is given by c = √1 [1 1] The SNR (3) is then given by: cH H H Hc = (.78)(100) = 78 N0 B SN R = (1) This gives a capacity of 630.35 kbps The SNR achieved with beamforming is smaller than the best channel in part (c) If we had chosen c to equal the eigenvector corresponding to the best eigenvalue, then the SNR with beamforming would be equal to the largest SNR in part(c) The beamforming SNR for the given c is greater than the two smallest eigenvalues in part(c) because the channel matrix has one large eigenvalue and two very small eigenvalues C = max B log2 det[IM γ + HRX H H ] RX : Tγ (RX ) = ρ If the channel is known to the transmitter, it will perform an SVD decomposition of H as H = U ΣV HRX H H = (U ΣV )RX (U ΣV )H n×n By Hadamard’s inequality we have that for A ∈ det(A) ≤ Πn Aii i=1 with equality iff A is diagonal We choose RX to be diagonal, say = Ω then det(IM R + HRX H H ) = det(I + ΩΣ2 ) ∴ C = max Bσi log2 (1 + λi ρi ) i √ where λi are the singular values ρi ≤ρ The capacity of the channel is found by the decomposition of the channel into RH parallel channels, where RH is the rank of the channel matric H C= ρi : max i ρi ≤ρ B log2 (1 + λi ρi ) i √ where λi are the RH non-zero singular values of the channel matrix H and ρ is the SNR constraint γi = λi ρ Then the optimal power allocation is given as Pi = P γ0 − γi γi ≥ γ0 γi < γ for some cut-off value γ0 The resulting capacity is given as C= B log2 (γi /γ0 ) i:γi ≥γ0 (2) For   H=  1  −1 1 −1 −1   1  1 −1 RH = 3, γ1 = 80, γ2 = 40, γ3 = 40 We first assume that γ0 is less than the minimum γi which is 40 γ0 = 1+ i=1 γi which gives γ0 = 2.8236 < mini γi , hence the assumption was correct C = 12.4732 bits/sec/Hz B For  1 −1  1 −1   H=  −1 1  −1 −1 −1  RH = 4, γ1 = 40, γ2 = 40, γ3 = 40, γ4 = 40 We first assume that γ0 is less than the minimum γi which is 40 γ0 = 1 + γi i=1 which gives γ0 = 3.6780 < mini γi , hence the assumption was correct C = 13.7720 bits/sec/Hz B  h11   H =    hMr  h1Mt      hMr Mt M r ×Mt Denote G = HH T  Gii = lim Mt →∞ Mt =   lim [hi1 hiMt ]   Mt →∞ Mt  Mt →∞ Mt       Mt lim = Ej hij hi1 hiMt hij j=1 = σ2 = ∀i lim Mt →∞,i=j Gij Mt    = lim [hi1 hiMt ]   Mt →∞ Mt  = lim Mt →∞ Mt hj1 hjMt       Mt hik hjk k=1 = Ek hik hjk = Ek (hik )Ek (hjk ) = ∀i, j, i = j HH T M ρ HH T + M ∴ lim M →∞ ∴ lim B log2 det IM M →∞ = IM = B log2 det [IM + ρIM ] = B log2 [1 + ρ] det IM = M B log2 [1 + ρ] 10 We find the capacity by randomly generating 103 channel instantiations and then averaging over it We assume that distribution is uniform over the instantiations MATLAB CODE clear; clc; Mt = 1; Mr = 1; rho_dB = [0:25]; rho = 10.^(rho_dB/10); for k = 1:length(rho) for i = 1:100 H = wgn(Mr,Mt,0,’dBW’,’complex’); [F, L, M] = svd(H); for j = 1:min(Mt,Mr) sigma(j) = L(j,j); end sigma_used = sigma(1:rank(H)); gamma = rho(k)*sigma_used; %% Now we water filling\ gammatemp = gamma; gammatemp1 = gammatemp; gamma0 = 1e3; while gamma0 > gammatemp1(length(gammatemp1)); gammatemp1 = gammatemp; gamma0 = length(gammatemp1)/(1+sum(1./gammatemp1)); gammatemp = gammatemp(1:length(gammatemp)-1); end C(i) = sum(log2(gammatemp1./gamma0)); end Cergodic(k) = mean(C); end 25 Mt = Mr = Mt = Mr =3 Mt = Mr = Mt = Mr =1 Mt = Mr = 20 Cergodic 15 10 0 10 15 20 25 ρ (dB) Figure 1: Problem 10 11 We find the capacity by randomly generating 104 channel instantiations and then averaging over it We assume that distribution is uniform over the instantiations MATLAB CODE clear; clc; Mt = 1; Mr = 1; rho_dB = [0:30]; rho = 10.^(rho_dB/10); for k = 1:length(rho) for i = 1:1000 H = wgn(Mr,Mt,0,’dBW’,’complex’); [F, L, M] = svd(H); for j = 1:min(Mt,Mr) sigma(j) = L(j,j); end sigma_used = sigma(1:rank(H)); gamma = rho(k)*sigma_used; C(i) = sum(log2(1+gamma/Mt)); end Cout(k) = mean(C); pout = sum(C 01 Cout(k) = Cout(k)-.1; pout = sum(C

Ngày đăng: 22/07/2013, 17:18

Từ khóa liên quan

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan