www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tínhsố học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞGIÁODỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞGIÁODỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tínhsố học sinh của UBND TINH NINT{ EiNH so crAoluc vA oAo rao sa, iATeD-scDDT CQNG HOA XA HQI CHU NGHIA VIET NAM DOc l4p - TU - Hanh phric Ninh Binh, ngdy "2'6 thdng I0 ndm 2017 rhinh r{p rd.ttfYi}lll#fltem tra cdng nhgn Trulng Ti6u hgc Gia Lffm, truyQn Nho Quan d?t chuin br6; gia mri,c d6 z GrAM Doc so crAo DVC vA EAo r4o NrNH siNH Cdn cri' Th6ng tu s6 5\/2012/TT-BGDDT ngdy 28lI2l2OI2 ctn 86 truong Bo GDDT vd viQc Ban hhnh Quv.dinh vAti€u chu6nd6nh gi6, cdngnhpn trucrn! ti6u hgc dpt muc chAt luqng tai tni6", ti"*g iio" rrn CIii"i r'ar'q*a gi", 96n cir Quytit clinh s6 2212015/QD-UBND ngdy 271712015 cria UBND tinh vd vi€c ban hdnh quy dinh chri'c ndng, nhi€m UBND TỈNHNINHBÌNHSỞGIÁODỤC VÀ ĐÀO TẠO Số: 257/QĐ-SGDĐT CỘNG HOÀ XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập - Tự - Hạnh phúc Ninh Bình, ngày 28 tháng năm 2017 QUYẾT ĐỊNH Về việc khen thưởng cho học sinh giáo viên có học sinh đạt giải kỳ thi chọn học sinh giỏi cấp tỉnh năm học 2016-2017 GIÁM ĐỐC SỞGIÁODỤC VÀ ĐÀO TẠO NINHBÌNH Căn Luật Thi đua, khen thưởng năm 2003; Luật sửa đổi, bổ sung số điều Luật Thi đua, khen thưởng năm 2005, năm 2013; Căn Quyết định số 22/2015/QĐ-UBND ngày 27/7/2015 UBND tỉnhNinhBình ban hành Quy định chức năng, nhiệm vụ, quyền hạn cấu tổ chức Sở GD&ĐT tỉnhNinh Bình; Căn kết Kỳ thi chọn học sinh giỏi lớp 9; Kỳ thi chọn học sinh giỏi, học viên giỏi lớp 12 cấp tỉnh, năm học 2016-2017; Xét đề nghị Thường trực Hội đồng Thi đua, Khen thưởng ngành, QUYẾT ĐỊNH: Điều a) Tặng Giấy khen cho 1.030 học sinh đạt giải (trong có: 367 học sinh lớp 9; 639 học sinh THPT 24 học viên Trung tâm GDTX); kèm theo số tiền thưởng 85.100.000 đồng (Tám mươi lăm triệu trăm nghìn đồng) cho 683 học sinh, học viên đạt giải Nhất, Nhì, Ba kỳ thi chọn học sinh giỏi lớp 9, kỳ thi chọn học sinh giỏi, học viên giỏi lớp 12 cấp tỉnh, năm học 2016-2017 - có danh sách kèm theo, mức tiền thưởng cụ thể sau: 30 giải Nhất x 200.000 đồng/1 giải = 6.000.000 đồng 276 giải Nhì x 150.000 đồng/1 giải = 41.400.000 đồng 377 giải Ba x 100.000 đồng/1 giải = 37.700.000 đồng b) Giáo viên có học sinh đạt giải Nhất, Nhì, Ba thưởng tương đương với mức thưởng cho học sinh đạt giải Tổng số tiền thưởng cho học sinh giáo viên 170.200.000 đồng (Một trăm bẩy mươi triệu hai trăm nghìn đồng) Điều Tiền thưởng trích từ kinh phí nghiệp giáodục Điều Thường trực Hội đồng Thi đua, Khen thưởng ngành; Trưởng phòng Kế hoạch tài chính; Thủ trưởng đơn vị cá nhân có tên Điều chịu trách nhiệm thi hành Quyết định này./ Nơi nhận: - Như điều (qua website Sở GD&ĐT); - Các phòng: GDTrH, GDTX, KTKĐCLGD (qua iOffice); - Lưu: VT, TĐ THI/3 GIÁM ĐỐC (Đã ký) Vũ Văn Kiểm www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tínhsố học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞGIÁODỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞGIÁODỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tínhsố học sinh của UBND riNH NrNH eiNH so crAo DUC vA DAo rAo CQNG HOA XA HQI CHU NGHIA VIET NAM DQc lSp - Tq - H4nh phrfc so:53 /KH-scDEr Ninh Binh, ,gdy2/l thdnsl7 ndm 2017 KB HOACH Tri6n khai thrpc hiQn "Ngiry Phfp lu$t nu6c CIilGICN ViQt Nam" ngirnh gi6o dlrc tinhNinhBinh nim 2$17 I(nh gtti: - Phdng GD&DT c6c huy6n, thdnh ph6; - Cdc don vi truc thu6c 56: Thgc hiQn Cdng vdn sO Z+lISIP-PBGDPL ngdy I3l7l20I7 crta So Tu ph6p tinhNinhBinh vd vi6c hu6ng d6n thUc hiQn Ngdy ph6p luft nim 2017; Vdn b6n s6 4} LIBGDDT-PC ngey Bl9l20l7 ciaBQ GiSo duc vd Ddo tpo vC tO chric thuc hi6n "Ngd,y Ph5p lu{t nu6c CQng hoa xd hQi www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tínhsố học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞGIÁODỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞGIÁODỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tínhsố học sinh của GDDl UBND riNH NrNH siNH so crAo DUC vA DAo rAo 36:42W /SGDDT-GDTH CQNG HOA XA Ugr CHU NGHIA VrpT NAM DQc l$p - Tg - H4nh phric Ninh Binh, ngdy&6thdng I0 ndm 2017 V/v PhOi hgrp churin bicho fiQi ttri gi6o vi€n day gi6i c6p Titiu hqc hn thf IX, ndm hqc20l7-2018 Kinh grii: - HuyQn try Gia Vi6n; - Uy ban nhan d6n huyQn Gia Vi6n; - Phdng Gi6o duc vi Ddo tpo huypn Gia Vi6n .fg?V 0911012017, S& Gi6o dsc.vi Ddo t4o ban hdnh KC ho4ch HOi thi gi6o vi6n gi6i cdp Ti€u hgc tinhNinhBinh lan thf IX HOi thi dugc tO chric tai S& Gi6o dgc vd Dio t4o, ciic trudng ti€u hgc: Gia phri, Gia Lfp, Gia Tdn- Huypn Gia Vi6n Thoi gian: Tir ngdy www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tínhsố học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞGIÁODỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞGIÁODỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tínhsố học sinh của so crAo DUc vA EAo rAo nrc cnr cAu l6xc cAx nO crl(o vrtn, r.luAx vltrv xcAnu incor rirur NrNrr ninn lAx rnirxrr- xArrzorz s6'/t&73 /cv Brc cgNc uoA xA HOr cHU rqcnh vr$r NAM DQc tgp - Tg - Hgnh phfc Ninh Binh, ngartdtlutng I0 ndm 2017 V/v triQu t$p gi6o vi6n Th6 dgc, c6n bQ y t0 tham gia lim nhi€m vU tei giai Ciu l6ng CB, GV, NV nginh GD&DT tinhNinh Btnh Dn thf XII n6m 2017 Kinh gui: - Phdng Gi6o dpc vd Ddo t4o c6c huyQn, thfurh ph6; - C6c don v!gi6o dpc tryc thuQc S& Thuc hiQn Quy€r dinh so so+lqo-scDDT ngey wg/20t7 cria s& GD&DT vo viQc ban hanh DiAu lg gi6i Cdu ldng c6n bQ, gi6o vi6n, nhen vi€n nganh GD&DT tinhNinh www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tínhsố học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞGIÁODỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞGIÁODỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tínhsố học sinh của -":UBND riNH NrNH siNH sd crAo DUC vA oAo rAo CQNG HOA XA i ,' ngr cHtr NGHIA VrET NAM DQc lflp - sorl&V4 rcGDDT-GDrrH V/v ct6ng y thay d6i hgc sinh dQi tuy6n Sinh hgc tham dp -:- Tq - Hgnh phfc Ninh Binh, ngdy/^9 thdngl| ndm 2017 HSG qu6c gia ndm 2018 Kinh gui: HiQu truong truong TT{PT chuy6n Lucrng Vdn Tpy So Gi6o dpc vd Ddo tpo c16 nhQn dugc I9ll0l20I7 ctn Truong THPT chuy6n td trinh so gont-LVT ngey Lucrng Vdn Tpy, vd viQc thay th6 hgc sinh dQi tuytin Sinh hgc dU thi hoc sinh gi6i Qudc'gia ndm 2018; So Gi6o dr,rc vd Ddo tpo d6ng y voi phucrng 6n dO xu6t cria Trucrng THPT chuy€n Lucrng Vdn Tpy cu th6: - cho ph6p hgc sinh Hodng ThiQuj'nh