Sở giáo dục tỉnh Ninh Bình TB so 119 tài liệu, giáo án, bài giảng , luận văn, luận án, đồ án, bài tập lớn về tất cả các...
www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tính số học sinh của UBND TINH NINT{ EiNH so crAoluc vA oAo rao sa, iATeD-scDDT CQNG HOA XA HQI CHU NGHIA VIET NAM DOc l4p - TU - Hanh phric Ninh Binh, ngdy "2'6 thdng I0 ndm 2017 rhinh r{p rd.ttfYi}lll#fltem tra cdng nhgn Trulng Ti6u hgc Gia Lffm, truyQn Nho Quan d?t chuin br6; gia mri,c d6 z GrAM Doc so crAo DVC vA EAo r4o NrNH siNH Cdn cri' Th6ng tu s6 5\/2012/TT-BGDDT ngdy 28lI2l2OI2 ctn 86 truong Bo GDDT vd viQc Ban hhnh Quv.dinh vAti€u chu6nd6nh gi6, cdngnhpn trucrn! ti6u hgc dpt muc chAt luqng tai tni6", ti"*g iio" rrn CIii"i r'ar'q*a gi", 96n cir Quytit clinh s6 2212015/QD-UBND ngdy 271712015 cria UBND tinh vd vi€c ban hdnh quy dinh chri'c ndng, nhi€m UBND TỈNH NINH BÌNH SỞ GIÁO DỤC VÀ ĐÀO TẠO CỘNG HÒA XÃ HỘI CHỦ NGHĨA VIỆT NAM Độc lập – Tự – Hạnh phúc Số: 119/TB-SGDĐT Ninh Bình, ngày 08 tháng năm 2017 THÔNG BÁO Kết Kỳ thi chọn học sinh giỏi THPT cấp tỉnh năm 2017 Kính gửi: Hiệu trưởng trường THPT Kỳ thi chọn học sinh giỏi THPT cấp tỉnh năm 2017 tiến hành kế hoạch lịch trình; kỳ thi diễn an toàn, nghiêm túc, quy chế Sở Giáo dục Đào tạo thông báo đến đơn vị kết kỳ thi sau: I TỔNG HỢP CHUNG Tổng số thí sinh đăng ký dự thi: 752 thí sinh 22 trường THPT cơng lập Tổng số thí sinh dự thi: 751 thí sinh Số mơn thi: 10 mơn (Tốn, Vật lí, Hoá học, Sinh học, Tin học, Ngữ văn, Lịch sử, Địa lí, Tiếng Anh Tiếng Pháp) Số thí sinh đoạt giải: 278 chiếm tỉ lệ 36,33%, đó: giải Nhất: 10; giải Nhì: 56; giải Ba: 111; giải Khuyến khích: 101 Số giải cá nhân theo môn thi TT Môn Thống kê số lượng giải Nhất Nhì Ba Khuyến Khích Tổng số giải Tốn 13 13 34 Vật lí 11 26 Hóa học 15 11 33 Sinh học 13 28 Tin học 9 22 Ngữ văn 10 14 11 36 Lịch sử 10 10 25 Địa lí 11 24 Tiếng Anh 13 13 35 10 Tiếng Pháp 6 15 10 56 111 101 278 Tổng chung Kết xếp hạng trường THPT công lập T T 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Trường THPT Nho Quan A Nho Quan B Nho Quan C Dân tộc nội trú Gia Viễn A Gia Viễn B Gia Viễn C Hoa Lư A Hệ không chuyên Lương Văn Tụy Đinh Tiên Hoàng Trần Hưng Đạo Ninh Bình - Bạc Liêu Yên Khánh A Yên Khánh B Vũ Duy Thanh Kim Sơn A Kim Sơn B Kim Sơn C Bình Minh n Mơ A n Mơ B Tạ Un Nguyễn Huệ Ngơ Thì Nhậm Tổng Số giải kỳ thi chọn HSG THPT cấp tỉnh năm 2017 Nhất Nhì Ba KK 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11 0 6 2 0 30 2 4 1 30 Điểm giải Điểm KK đội có giải 16 0 28 16 60 40 44 96 132 100 112 24 40 8 64 Điểm tính 02 kỳ thi chọn HSG năm học 2016-2017 Tổng số điểm Số HS tham gia tính điểm xếp hạng Điểm xếp hạng Xếp hạng 54 99 39 36 65 28 159 130 102 65 11 260 159 14 233 240 15 157 137 94 13 199 90 70 99 39 36 93 28 175 190 142 109 11 356 296 14 333 352 23 181 177 102 21 263 90 25 27 28 11 28 25 25 26 46 29 24 11 27 26 15 24 27 27 26 35 17 25 18 2,80 3,67 1,39 0,00 1,29 3,72 1,12 6,73 4,13 4,90 4,54 1,00 13,19 11,38 0,93 13,88 13,04 2,56 6,70 6,81 2,91 1,24 10,52 5,00 16 14 18 24 19 13 21 12 10 11 22 23 17 15 20 Ghi Không cử đội tuyển tham dự kỳ thi II DANH SÁCH THÍ SINH ĐOẠT GIẢI (xem bảng đính kèm) III MỘT SỐ VẤN ĐỀ CẦN CHÚ Ý Nhận xét chung kỳ thi - Kỳ thi tổ chức đảm bảo an toàn, nghiêm túc, quy chế, kế hoạch lịch trình Cơng tác làm đề thi đảm bảo an tồn, bí mật, khách quan, nguồn đề thi đề xuất tiếp tục mở rộng; đề thi xây dựng theo hướng tiếp cận với đề thi chọn học sinh giỏi cấp quốc gia THPT yêu cầu đổi giáo dục theo đạo Bộ GD&ĐT Đề thi đánh giá chương trình, xác, phân loại trình độ thí sinh, đảm bảo tính giáo dục - Cơng tác chấm thi tiếp tục đổi mới, đảm bảo tính khách quan, cụ thể: ▪ Tất thi 02 ngày thi photocopy Giám khảo chấm điểm thi photocopy trước, sau vào điểm thi thức ▪ Giám khảo khơng chấm thi học sinh trường ▪ Mỗi thi đảm bảo tối thiểu có 02 lần chấm độc lập Riêng phần viết luận môn thi Tiếng Anh ngày thi thứ giám khảo chấm độc lập với phần thi khác thi Phần thi kỹ nói giám khảo chấm chung, điểm cuối phần thi kỹ nói điểm trung bình giám khảo ▪ Việc phân công giám khảo chấm lần thực theo phương án Chủ tịch Hội đồng chấm thi sau kết thúc chấm lần ▪ 20 thi có điểm cao ngày thi theo môn thi, trước khớp phách, vào điểm theo mã phách, tổ trưởng tổ chấm thi rút thi để tổ chức chấm chung, thi chấm chung giám khảo cho điểm vào phiếu chấm cá nhân, điểm cuối thi điểm trung bình chung tất giám khảo ▪ Ngoài cặp giám khảo chấm thi có giám khảo chấm kiểm tra Các giám khảo chấm kiểm tra chấm 20% tổng số thi, tập trung vào thi đạt điểm cao - Kỳ thi năm có 16/22 đơn vị tham dự có học sinh đoạt giải Các đơn vị đạt thành tích tốt THPT Kim Sơn A, Yên Khánh A, Kim Sơn B, Yên Khánh B, Nguyễn Huệ Các công việc khác Để công tác bồi dưỡng học sinh giỏi thật nhiệm vụ trọng tâm đơn vị, Sở GD&ĐT yêu cầu: - Tổ chức rút kinh nghiệm công tác tuyển chọn, bồi dưỡng học sinh giỏi Phân tích kết điểm thi học sinh đơn vị để rút học công tác đạo, quản lý, tuyển chọn học sinh dự thi, đặc biệt công tác giảng dạy học tập - Hiệu trưởng đạo lập kế hoạch dài hạn việc phát nhân tố, tuyển chọn, bồi dưỡng học sinh giỏi để tham dự kỳ thi chọn học sinh giỏi cấp tỉnh Đặc biệt trọng việc phát học sinh có tư chất tốt, bồi dưỡng đủ kiến thức, rèn luyện kỹ làm cho học sinh - Đối với đơn vị có học sinh sơ chọn vào đội tuyển tỉnh để tập huấn tham gia thi chọn đội tuyển thức dự kỳ thi chọn HSG quốc gia THPT năm 2018 cần quan tâm, động viên em học sinh để em có sức khỏe tốt, kiến thức, tâm lý vững vàng thời gian tập huấn Tổ chức đưa, đón học sinh thi trở an tồn Căn thông báo Sở GD&ĐT, đơn vị kịp thời động viên, khen thưởng em học sinh, thầy giáo, giáo đạt thành tích tốt; rút kinh nghiệm cho công tác tuyển chọn, bồi dưỡng học sinh giỏi năm học sau để đạt kết tốt hơn./ Nơi nhận: - Như kính gửi; - Tỉnh ủy; để - Ban Tuyên giáo tỉnh uỷ; báo - Đ/c Tống Quang Thìn cáo Phó chủ tịch UBND tỉnh; - VP6-UBND tỉnh; - Các Đ/c Phó Giám đốc ... www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tính số học sinh của UBND riNH NrNH eiNH so crAo DUC vA DAo rAo CQNG HOA XA HQI CHU NGHIA VIET NAM DQc lSp - Tq - H4nh phrfc so:53 /KH-scDEr Ninh Binh, ,gdy2/l thdnsl7 ndm 2017 KB HOACH Tri6n khai thrpc hiQn "Ngiry Phfp lu$t nu6c CIilGICN ViQt Nam" ngirnh gi6o dlrc tinh Ninh Binh nim 2$17 I(nh gtti: - Phdng GD&DT c6c huy6n, thdnh ph6; - Cdc don vi truc thu6c 56: Thgc hiQn Cdng vdn sO Z+lISIP-PBGDPL ngdy I3l7l20I7 crta So Tu ph6p tinh Ninh Binh vd vi6c hu6ng d6n thUc hiQn Ngdy ph6p luft nim 2017; Vdn b6n s6 4} LIBGDDT-PC ngey Bl9l20l7 ciaBQ GiSo duc vd Ddo tpo vC tO chric thuc hi6n "Ngd,y Ph5p lu{t nu6c CQng hoa xd hQi www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tính số học sinh của GDDl UBND riNH NrNH siNH so crAo DUC vA DAo rAo 36:42W /SGDDT-GDTH CQNG HOA XA Ugr CHU NGHIA VrpT NAM DQc l$p - Tg - H4nh phric Ninh Binh, ngdy&6thdng I0 ndm 2017 V/v PhOi hgrp churin bicho fiQi ttri gi6o vi€n day gi6i c6p Titiu hqc hn thf IX, ndm hqc20l7-2018 Kinh grii: - HuyQn try Gia Vi6n; - Uy ban nhan d6n huyQn Gia Vi6n; - Phdng Gi6o duc vi Ddo tpo huypn Gia Vi6n .fg?V 0911012017, S& Gi6o dsc.vi Ddo t4o ban hdnh KC ho4ch HOi thi gi6o vi6n gi6i cdp Ti€u hgc tinh Ninh Binh lan thf IX HOi thi dugc tO chric tai S& Gi6o dgc vd Dio t4o, ciic trudng ti€u hgc: Gia phri, Gia Lfp, Gia Tdn- Huypn Gia Vi6n Thoi gian: Tir ngdy www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tính số học sinh của so crAo DUc vA EAo rAo nrc cnr cAu l6xc cAx nO crl(o vrtn, r.luAx vltrv xcAnu incor rirur NrNrr ninn lAx rnirxrr- xArrzorz s6'/t&73 /cv Brc cgNc uoA xA HOr cHU rqcnh vr$r NAM DQc tgp - Tg - Hgnh phfc Ninh Binh, ngartdtlutng I0 ndm 2017 V/v triQu t$p gi6o vi6n Th6 dgc, c6n bQ y t0 tham gia lim nhi€m vU tei giai Ciu l6ng CB, GV, NV nginh GD&DT tinh Ninh Btnh Dn thf XII n6m 2017 Kinh gui: - Phdng Gi6o dpc vd Ddo t4o c6c huyQn, thfurh ph6; - C6c don v!gi6o dpc tryc thuQc S& Thuc hiQn Quy€r dinh so so+lqo-scDDT ngey wg/20t7 cria s& GD&DT vo viQc ban hanh DiAu lg gi6i Cdu ldng c6n bQ, gi6o vi6n, nhen vi€n nganh GD&DT tinh Ninh www.VNMATH.com Câu 1 (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức: 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2 (2,0 điểm) 1. Cho parabol (P): 2 1 2 y x và đường thẳng (d): 1y x . a) Vẽ parabol (P) và đường thẳng (d) trên cùng một hệ trục tọa độ. b) Viết phương trình đường thẳng ( ) song song với đường thẳng (d) và cắt trục tung tại điểm có tung độ bằng 3. 2. Không sử dụng máy tính, giải hệ phương trình: 2 3 40 3 47 x y x y Câu 3 (2,5 điểm) 1. Cho phương trình: 2 2 2( 1) 3 0, (1)x m x m m với m là tham số. a) Giải phương trình (1) khi m = 0. b) Tìm giá trị của m để phương trình (1) có hai nghiệm 1 2 ,x x thỏa mãn điều kiện: 1 2 4x x . 2. Hưởng ứng chiến dịch mùa hè xanh tình nguyện năm 2013, lớp 9A của trường THCS Nguyễn Văn Trỗi được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn phải đi làm việc khác nên mỗi bạn có mặt phải trồng thêm 3 cây nữa mới xong. Tính số học sinh của lớp 9A. Câu 4 (1,0 điểm) Cho tam giác ABC vuông tại A có cạnh AB = 10cm, đường cao AH = 5cm. Hãy tính các góc và diện tích của tam giác ABC. Câu 5 (2,5 điểm) Cho đường tròn (O; R) đường kính BC. Điểm A ở bên ngoài đường tròn với OA = 2R. Vẽ hai tiếp tuyến AD, AE với đường tròn (O; R) trong đó D, E là các tiếp điểm. 1. Chứng minh tứ giác ADOE nội tiếp và xác định tâm I của đường tròn ngoại tiếp tứ giác ADOE. 2. Chứng minh rằng tam giác ADE đều. 3. Vẽ DH vuông góc với CE với H CE . Gọi P là trung điểm của DH, CP cắt đường tròn (O) tại điểm Q khác điểm C, AQ cắt đường tròn (O) tại điểm M khác điểm Q. Chứng minh: 2 . 3 .AQ AM R 4. Chứng minh đường thẳng AO là tiếp tuyến của đường tròn ngoại tiếp tam giác ADQ. Hết SỞ GIÁO DỤC & ĐÀO TẠO BÌNH PHƯỚC KỲ THI TUYỂN SINH LỚP 10 THPT Năm học: 2013-2014 ĐỀ CHÍNH THỨC (Đề thi gồm có 01 trang) Đề thi môn: TOÁN (chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút www.VNMATH.com www.VNMATH.com SỞ GIÁO DỤC VÀ ĐÀO TẠO BÌNH PHƯỚC ---------- ĐỀ CHÍNH THỨC (Đề thi gồm 1 trang ) KỲ THI TUYỂN SINH VÀO LỚP 10 THPT Năm học 2013-2014 ---------- Đè thi môn : TOÁN (Chung) Ngày thi: 29/6/2013 Thời gian làm bài: 120 phút Câu 1: (2,0 điểm) 1. Tính giá trị các biểu thức sau: 25 121 V 1 1 2 3 2 3 L 2. Cho biểu thức 6 9 4 3 2 x x x T x x . Tìm x để T có nghĩa và rút gọn T. Câu 2:(2,0 điểm) 1. Cho Parabol (P): 2 1 2 y x và đường thẳng 1y x a) Vẽ parabol (P) và đường thẳng d trên cùng một hệ trục tọa độ b) Viết phương trình đường thẳng song song với đường thẳng d và cắt trục tung tại điểm có tung độ bằng 3 2. Không sử dụng máy tính, giải hệ phương trình : 2 3 40 3 47 x y x y Câu 3:(2,5 điểm) 1. Cho phương trình 2 2 2( 1) 3 0x m x m m (1), m là tham số. a) Giải phương trình (1) khi m=0 b) Tìm giá trị của m để phương trình (1) có 2 nghiệm x 1 ,x 2 thỏa mãn : 1 2 4x x 2. Lớp 9A được giao trồng 480 cây xanh, lớp dự định chia đều số cây phải trồng cho mỗi bạn trong lớp. Đến buổi lao động có 8 bạn đi làm việc khác nên mỗi bạn phải trông thêm 3 cây nữa mới xong. Tính số học sinh của -":UBND riNH NrNH siNH sd crAo DUC vA oAo rAo CQNG HOA XA i ,' ngr cHtr NGHIA VrET NAM DQc lflp - sorl&V4 rcGDDT-GDrrH V/v ct6ng y thay d6i hgc sinh dQi tuy6n Sinh hgc tham dp -:- Tq - Hgnh phfc Ninh Binh, ngdy/^9 thdngl| ndm 2017 HSG qu6c gia ndm 2018 Kinh gui: HiQu truong truong TT{PT chuy6n Lucrng Vdn Tpy So Gi6o dpc vd Ddo tpo c16 nhQn dugc I9ll0l20I7 ctn Truong THPT chuy6n td trinh so gont-LVT ngey Lucrng Vdn Tpy, vd viQc thay th6 hgc sinh dQi tuytin Sinh hgc dU thi hoc sinh gi6i Qudc'gia ndm 2018; So Gi6o dr,rc vd Ddo tpo d6ng y voi phucrng 6n dO xu6t cria Trucrng THPT chuy€n Lucrng Vdn Tpy cu th6: - cho ph6p hgc sinh Hodng ThiQuj'nh ... hơn./ Nơi nhận: - Như kính gửi; - Tỉnh ủy; để - Ban Tuyên giáo tỉnh uỷ; báo - Đ/c Tống Quang Thìn cáo Phó chủ tịch UBND tỉnh; - VP6-UBND tỉnh; - Các Đ/c Phó Giám đốc Sở; - Các phòng: GDTrH, KHTC,... học sinh giỏi cấp quốc gia THPT yêu cầu đổi giáo dục theo đạo Bộ GD&ĐT Đề thi đánh giá chương trình, xác, phân loại trình độ thí sinh, đảm bảo tính giáo dục - Cơng tác chấm thi tiếp tục đổi mới,... Hưng Đạo Ninh Bình - Bạc Liêu Yên Khánh A Yên Khánh B Vũ Duy Thanh Kim Sơn A Kim Sơn B Kim Sơn C Bình Minh n Mơ A n Mơ B Tạ Un Nguyễn Huệ Ngơ Thì Nhậm Tổng Số giải kỳ thi chọn HSG THPT cấp tỉnh năm