Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 46 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
46
Dung lượng
2,61 MB
Nội dung
SYSTEM DYNAMICS & CONTROL CHAPTER SYSTEM STABILITYEXPLORATIONMETHODS Dr Vo Tuong Quan HCMUT - 2011 StabilityExplorationMethods Definitions A stable system is a system with a bounded response to a bounded input 2011 – Vo Tuong Quan StabilityExplorationMethods Examples 2011 – Vo Tuong Quan StabilityExplorationMethods Poles and Zeros Method 2011 – Vo Tuong Quan StabilityExplorationMethods Poles and Zeros Method Zeros and Poles plot: a graph which represents the position of poles and zeros in the complex s-plane 2011 – Vo Tuong Quan StabilityExplorationMethods Poles and Zeros Method The stability of a system depends on the locations of Its poles: - If all the poles of the system lie in the left-half s-plan then the system is stable - If any of the poles of the systems lie in the right-half s-plane then the system is unstable - If some of the poles of the system lie in the imaginary axis and the others lie in the left-half s-plane then the system is at the stability boundary 2011 – Vo Tuong Quan StabilityExplorationMethods Routh Method 2011 – Vo Tuong Quan StabilityExplorationMethods Routh Method 2011 – Vo Tuong Quan StabilityExplorationMethods Routh Method The necessary and sufficient condition for a system to be stable is that all the coefficients of the characteristic equation are positive and all parameters in the first column of the Routh table have positive signs The number of sign changes in the first column of the Routh table is equal the number of roots lying in the right-half s-plane 2011 – Vo Tuong Quan StabilityExplorationMethods Routh Method The system is stable because all the parameters in the first column are positive 10 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Example 32 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Example 33 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Example 34 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example Consider the negative feedback system shown in Figure Plot root locus 35 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example clc; clear all; a=[1 0]; b=[1 16]; c=conv(a,b); den=c; num=[1 3]; rlocus(num,den) v=[-6 -6 6]; axis('square') grid on; 36 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example Root Locus 6 0.64 0.5 0.38 0.24 0.12 0.78 4 0.88 2 Imaginary Axis 0.97 1 0.97 -2 0.88 -4 0.78 0.64 -6 -6 -5 0.5 -4 0.38 -3 0.24 -2 Real Axis 2011 – Vo Tuong Quan 0.12 -1 60 37 StabilityExplorationMethods Roots Locus Method – Using Matlab - Example K G s H s s s s2 0.6s 10 38 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example num=[1]; a=[1 0]; b=[1 0.5]; den1=conv(a,b); c=[1 0.6 10]; den=conv(den1,c); r=roots(den); r=rlocus(num,den) plot(r,'+') v=[-6 -6 6]; axis(v); axis('square') grid; 39 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example Root-Locus Plot of G(s) = K/[s(s + 0.5)(s + 0.6s + 10)] Imag Axis -2 -4 -6 -6 2011 – Vo Tuong Quan -4 -2 Real Axis 40 StabilityExplorationMethods Roots Locus Method – Using Matlab - Example num=[1]; a=[1 0]; b=[1 0.5]; den1=conv(a,b); c=[1 0.6 10]; den=conv(den1,c); r=roots(den); K1=0:0.2:20; K2=20:0.1:30; K3=30:5:1000; K=[K1 K2 K3]; r=rlocus(num,den,K) plot(r,'+') v=[-6 -6 6]; axis(v); axis('square') grid; 2011 – Vo Tuong Quan 41 StabilityExplorationMethods Root-Locus Plot of G(s) = K/[s(s + 0.5)(s + 0.6s + 10)] Roots Locus Method – Using Matlab - Example Imag Axis -2 -4 -6 -6 -4 -2 Real Axis 42 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example Consider the negative feedback system shown in Figure Plot root locus 43 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example num = [1 4]; den = conv(conv([1 0],[1 6]), [1 1.4 1]); rlocus(num, den) v = [-7 -5 5]; axis(v); axis('square') grid title('Root-Locus Plot of G(s) = K(s^2 + 2s + 4)/[s(s + 4)(s + 6)(s^2 + 1.4s + 1)]') text(1.0, 0.55,'K = 12') text(1.0,3.0,'K = 73') text(1.0,4.15,'K = 154') 44 2011 – Vo Tuong Quan StabilityExplorationMethods Roots Locus Method – Using Matlab - Example Root-Locus Plot of G(s) = K(s + 2s + 4)/[s(s + 4)(s + 6)(s + 1.4s + 1)] 0.76 0.64 0.5 0.34 0.16 0.86 K = 154 K = 73 0.94 Imaginary Axis 0.985 -1 K = 12 0.985 -2 0.94 -3 -4 0.86 0.76 -5 -7 -6 0.64 -5 -4 0.5 -3 0.34 -2 Real Axis 2011 – Vo Tuong Quan 0.16 -1 45 StabilityExplorationMethods Roots Locus Method: Types 46 2011 – Vo Tuong Quan ... – Vo Tuong Quan Stability Exploration Methods Routh Method 14 2011 – Vo Tuong Quan Stability Exploration Methods Routh Method 15 2011 – Vo Tuong Quan Stability Exploration Methods Routh Method... in the left-half s-plane then the system is at the stability boundary 2011 – Vo Tuong Quan Stability Exploration Methods Routh Method 2011 – Vo Tuong Quan Stability Exploration Methods Routh... Tuong Quan Stability Exploration Methods Roots Locus Method 17 2011 – Vo Tuong Quan Stability Exploration Methods Roots Locus Method 18 2011 – Vo Tuong Quan Stability Exploration Methods 19