Pigments, Inorganic Hans G Völz, Krefeld, Federal Republic of Germany Jürgen Kischkewitz, Bayer AG, Krefeld, Federal Republic of Germany Peter Woditsch, Bayer AG, Krefeld, Federal Republic of Germany Axel Westerhaus, Bayer AG, Krefeld, Federal Republic of Germany Wolf-Dieter Griebler, Sachtleben Chemie GmbH, Duisburg, Federal Republic of Germany Marcel De Liedekerke, Zinkwit Nederland bv, Eijsden, The Netherlands Gunter Buxbaum, Bayer AG, Leverkusen, Federal Republic of Germany Helmut Printzen, Bayer AG, Krefeld, Federal Republic of Germany Manfred Mansmann, Bayer AG, Krefeld, Federal Republic of Germany Dieter Räde, Bayer AG, Krefeld, Federal Republic of Germany Gerhard Trenczek, Bayer AG, Krefeld, Federal Republic of Germany Volker Wilhelm, Bayer AG, Krefeld, Federal Republic of Germany Stefanie Schwarz, BASF AG, Ludwigshafen, Federal Republic of Germany Henning Wienand, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany Jörg Adel, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic o f Germany Gerhard Adrian, Langelsheim, Federal Republic of Germany Karl Brandt, Dr Hans Heubach GmbH & Co KG, Langelsheim, Federal Republic of Germany William B Cork, Reckitt's Colours Ltd., Hull, United Kingdom Heinrich Winkeler, Degussa AG, Hanau, Federal Republic of Germany Wielfried Mayer, Degussa AG, Hanau, Federal Republic of Germany Klaus Schneider, Degussa AG, Frankfurt/Main, Federal Republic of Germany Lutz Leitner, Bayer AG, Krefeld, Federal Republic of Germany Hendrik Kathrein, Bayer AG, Krefeld, Federal Republic of Germany Ekkehard Schwab, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany Helmut Jakusch, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany Manfred Ohlinger, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany Ronald Veitch, BASF Aktiengesellschaft, Ludwigshafen, Federal Republic of Germany Günter Etzrodt, BASF Lacke+Farben AG, Besigheim, Federal Republic of Germany Gerhard Pfaff, E Merck KGaA, Darmstadt, Federal Republic of Germany Klaus-Dieter Franz, E Merck KGaA, Darmstadt, Federal Republic of Germany Ralf Emmert, E M Industries, Hawthorne, New York, United States Katsuhisa Nitta, Merck Japan, 970/04 Onahama, Japan Robert Besold, Eckart-Werke, Fürth, Federal Republic of Germany Harald Gaedcke, BASF Lacke+Farben AG, Stuttgart, Federal Republic of Germany Ullmann's Encyclopedia of Industrial Chemistry Copyright © 2002 by Wiley-VCH Verlag GmbH & Co KGaA All rights reserved DOI: 10.1002/14356007.a20_243 Article Online Posting Date: June 15, 2000 The article contains sections titled: 1.1 1.2 1.2.1 1.2.2 1.3 1.3.1 Introduction General Aspects General Chemical and Physical Properties Fundamental Aspects Methods of Determination Color Properties Fundamental Aspects 1.3.2 1.3.3 1.3.4 1.4 1.4.1 1.4.2 1.4.2.1 1.4.2.2 1.4.2.3 1.4.2.4 1.5 1.5.1 1.5.2 1.5.2.1 1.5.2.2 1.5.2.3 2.1 2.1.1 2.1.2 2.1.2.1 2.1.2.2 2.1.3 2.1.3.1 2.1.3.2 2.1.3.3 2.1.3.4 2.1.3.5 2.1.4 2.1.5 2.1.6 2.1.7 2.1.8 2.1.9 2.2 2.2.1 2.2.2 2.2.3 Color Measurement Tinting Strength, Lightening Power, and Scattering Power Hiding Power and Transparency Stability Towards Light, Weather, Heat, and Chemicals Fundamental Aspects Test Methods Light Stability Weather Resistance Heat Stability Fastness to Chemicals Behavior of Pigments in Binders Fundamental Aspects Test Methods Pigment - Binder Interaction Dispersing Behavior in Paint Systems Miscellaneous Pigment - Binder Systems White Pigments Titanium Dioxide Properties Raw Materials Natural Raw Materials Synthetic Raw Materials Production Sulfate Method The Chloride Process Pigment Quality Aftertreatment Problems with Aqueous and Gaseous Waste Economic Aspects Pigment Properties Analysis Uses of Pigmentary TiO Uses of Nonpigmentary TiO Toxicology Zinc Sulfide Pigments Properties Production Commercial Products 2.2.4 2.2.5 2.2.6 2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7 3.1 3.1.1 3.1.1.1 3.1.1.2 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.6 3.1.2 3.1.2.1 3.1.2.2 3.1.2.3 3.1.2.4 3.1.2.5 3.1.2.6 3.1.2.7 3.1.3 3.1.3.1 3.1.3.2 3.1.3.3 3.1.3.4 3.1.3.5 3.1.3.6 3.1.3.7 3.1.3.8 3.2 Uses Economic Aspects Toxicology Zinc Oxide (Zinc White) Introduction Properties Production Quality Specifications Uses Economic Aspects Toxicology and Occupational Health Colored Pigments Oxides and Hydroxides Iron Oxide Pigments Natural Iron Oxide Pigments Synthetic Iron Oxide Pigments Toxicology and Environmental Aspects Quality Uses Economic Aspects Chromium Oxide Pigments Properties Production Quality Specifications and Analysis Storage and Transportation Uses Economic Aspects Toxicology and Occupational Health Mixed Metal Oxide Pigments Properties Production Quality Specifications and Analysis Storage and Transportation Legal Aspects Uses Economic Aspects Toxicology and Occupational Health Cadmium Pigments 3.2.1 3.2.2 3.2.3 3.2.4 3.2.5 3.2.6 3.2.7 3.2.8 3.3 3.3.1 3.3.2 3.3.3 3.3.4 3.4 3.4.1 3.4.2 3.4.3 3.4.4 3.4.5 3.5 3.5.1 3.5.2 3.5.3 3.5.4 3.5.5 3.5.6 3.6 3.6.1 3.6.2 3.6.3 3.6.4 3.6.5 4.1 4.1.1 4.1.2 4.1.3 4.1.4 Cadmium Sulfide Cadmium Yellow Cadmium Sulfoselenide (Cadmium Red) Cadmium Mercury Sulfide (Cadmium Cinnabar) Properties and Uses Quality Specifications Economic Aspects Toxicology and Environmental Protection Bismuth Pigments Properties Production Uses Toxicology Chromate Pigments Chrome Yellow Molybdate Red and Molybdate Orange Chrome Orange Chrome Green and Fast Chrome Green Toxicology and Occupational Health Ultramarine Pigments Chemical Structure Properties Production Uses Toxicity and Environmental Aspects Economic Aspects Iron Blue Pigments Structure Production Properties Uses Toxicology and Environmental Aspects Specialty Pigments Magnetic Pigments Iron Oxide Pigments Cobalt-Containing Iron Oxide Pigments Chromium Dioxide Metallic Iron Pigments 4.1.5 Barium Ferrite Pigments 4.2 Anticorrosive Pigments 4.2.1 Principles 4.2.2 Phosphate Pigments 4.2.2.1 Zinc Phosphate 4.2.2.2 Aluminum Phosphate 4.2.2.3 Chromium Phosphate 4.2.2.4 New Pigments Based on Metal Phosphates 4.2.2.5 Multiphase Phosphate Pigments 4.2.3 Other Phosphorus-Containing Pigments 4.2.4 Borosilicate Pigments 4.2.5 Borate Pigments 4.2.6 Chromate Pigments 4.2.7 Molybdate Pigments 4.2.8 Lead and Zinc Cyanamides 4.2.9 Ion-Exchange Pigments 4.2.10 Metal Oxide Pigments 4.2.10.1 Red Lead 4.2.10.2 Calcium Plumbate 4.2.10.3 Zinc and Calcium Ferrites 4.2.10.4 Zinc Oxide 4.2.11 Powdered Metal Pigments 4.2.11.1 Zinc Dust 4.2.11.2 Lead Powder 4.2.12 Flake Pigments 4.2.13 Organic Pigments 4.2.14 Toxicology 4.3 Luster Pigments 4.3.1 Nacreous and Interference Pigments 4.3.1.1 Optical Principles 4.3.1.2 Natural Pearl Essence 4.3.1.3 Basic Lead Carbonate 4.3.1.4 Bismuth Oxychloride 4.3.1.5 Metal Oxide - Mica Pigments 4.3.1.6 New Developments 4.3.1.7 Uses 4.3.2 Metal Effect Pigments 4.4 Transparent Pigments 4.4.1 4.4.2 4.4.3 4.4.4 4.4.5 Transparent Transparent Transparent Transparent Transparent Iron Oxides Iron Blue Cobalt Blue and Green Titanium Dioxide Zinc Oxide Pigments, Inorganic Hans G Völz, Krefeld, Federal Republic of Germany Ullmann's Encyclopedia of Industrial Chemistry Copyright © 2002 by Wiley-VCH Verlag GmbH & Co KGaA All rights reserved DOI: 10.1002/14356007.a20_243 Article Online Posting Date: June 15, 2000 Introduction 1.1 General Aspects Definition The word ―pigment‖ is of Latin origin (pigmentum) and originally denoted a color in the sense of a coloring matter, but was later extended to indicate colored decoration (e.g., makeup) In the late Middle Ages, the word was also used for all kinds of plant and vegetable extracts, especially those used for coloring The word pigment is still used in this sense in biological terminology; it is taken to mean dyestuffs of plant or animal organisms that occur as very small grains inside the cells or cell membranes, as deposits in tissues, or suspended in body fluids The modern meaning associated with the word pigment originated in this century According to accepted standards (Table 1, ―Coloring materials: Terms and definitions‖), the word pigment means a substance consisting of small particles that is practically insoluble in the applied medium and is used on account of its coloring, protective, or magnetic properties Both pigments and dyes are included in the general term ―coloring materials‖, which denotes all materials used for their coloring properties The characteristic that distinguishes pigments from soluble organic dyes is their low solubility in solvents and binders Pigments can be characterized by their chemical composition, and by their optical or technical properties In this introductory chapter, only inorganic pigments used as coloring materials are discussed Table Listing of standards for pigments Keywords ISO EN ASTM DIN Acidity/alkalinity 787–4 ISO 787–4 D 1208 EN ISO 787–4 Aluminum pigments and pastes: D 480 55 923 Sampling and testing Specifications 1247 D 962 55 923 Barium chromate pigments: Specification Bleeding Carbon black pigments (see also lampblack): 2068 787–22 D 279 53 775–3 Ash Content 53 586 Black value 55 979 Solvent-extractable material D 305 55 968 Specification D 561 55 968 Cadmium pigments: Specification 4620 Chalking degree: Adhesive tape method 4628–6 53 223 KEMPF method D 4214 53 159 Photographic method D 659 Change in strength (see ease of dispersion and PVC) Chemical resistance 2812–1 ISO 2812– EN ISO 2812–1 Chlorides, water-soluble (see matter soluble) Chromium oxide pigments: 4621 D 263 ISO 4261 Specification Climates: 50 017 Containing evaporated water Standardized 554 50 014 50 019 -1 Open air SO2 atmosphere 6988 ISO 6988 EN ISO 6988 Coating materials: Terms and definitions 4618–1 971–1 to -4 55 945 EN ISO 4618–2 to -4 EN 971–1 53235–1 to Color depth Color differences: 7724–3 D 1729 6174 CIE94 7724–6 D 2244 E 308 CMC 7724–4 Conditions/evaluation of measurements 7724–2 CIELAB 53 236 55 600 Significance Color in full-shade systems Black pigments 787–25 D 3022 55 985–2 Colored pigments 787–25 D 3022 55 985 White pigments 787–25 D 2805 55 983 Coloration of building materials Colorimetry 53 237 7724–1 to E 259 5033–1 – E 308 6174 Coloring materials: 55 944 Classification Terms and definitions 4618–1 971–1 55 943 EN 971–1 Corrosion testing: NaCl 9227 B 117 50 021 SO2 6988 ISO 6988 EN ISO 6988 Density of pigments: Centrifuge method Pyknometer method 787–23 ISO 787– 23 787–10 ISO 787– D 153 10 EN ISO 787–23 EN ISO 787 10 Dispersion, ease of: Alkyd resin and alkyd melamine system: 55 238–30 Drying by oxidation: 55 238–33 Stoving type 55 238–31 Automatic muller 8780–5 Bead mill 8780–4 Change in gloss 8781–3 Change in tinting strength 8781–1 55 238–32 ISO 8780– D 387 EN ISO 8780–5 ISO 8780– EN ISO 8780–4 ISO 8781– EN ISO 8781–3 ISO 8781– EN ISO 8781–1 Fineness of grind (see below) High speed impeller mill Introduction Oscillatory shaking machine 8780–3 ISO 8780– 8780–1 ISO 8780– 8780–2 ISO 8780– EN ISO 8780–3 EN ISO 8780–1 EN ISO 8780–2 8780–6 ISO 8780– EN ISO 8780–6 Fineness of grind 1524 D 1210 EN 21524 8781–2 ISO 8781– EN ISO 8781–2 Gloss, measurement 2813 ISO 2813 D 523 67 530 D 5307 EN ISO 2813 Heat stability (see also PVC) 787–21 D 2485 53 774–5 Triple roll mill Hiding power: Color difference method 6504–4 Contrast ratio 6504–3 General introduction 6504–0 Pigmented media 6504–1 D 2805 55 987 Wedge-shaped layer 6504–5 55 601 D 2805 55 984 White and light gray media Hue of near white specimens Hue relative of near white 7724–5 specimens Iron blue pigments: 2495 Methods of analysis 55 980 55 981 D 1135 2495 D 261 55 906 Methods of analyis 1248 D 50 Natural, specification 1248 D 3722 ISO 1248 Siena, specification 1248 D 765 ISO 1248 Umber, specification 1248 D 763 ISO 1248 Black, specification 1248 D 769 ISO 1248 Brown, specification 1248 D 3722 ISO 1248 Specification Iron, manganese oxide pigments: ISO 1248 Iron oxide pigments: D 3724 D 3872 FeO content Methods of analysis Red, specification Yellow, specification 1248 D 50 55 913–2 1248 ISO 1248 D 3721 55 913–1 1248 ISO 1248 D 768 ISO 1248 Lampblack pigments: Specification Lead chromate pigments: 10 D 209 55 968 275 Link 476 G Sziklai, J Szucs, Hung J Ind Chem 10 (1982) 215 – 221 Link 477 P J Gardner, I W McArn, V Barton, G M Seydt, J Oil Colour Chem Assoc 73 (1990) no 1, 16 Link 478 G Rasack, Farbe + Lack 84 (1978) no 7, 497–500 Link 479 G Adrian, A Bittner, J Coat Technol 58 (1986) 59 – 65 Link 480 P Kresse, Farbe + Lack 83 (1977) no 2, 85–95 Link 481 P Reichle, W Funke, Farbe + Lack 93 (1987) no 7, 537 – 538 Link 482 M Svoboda, Farbe + Lack 92 (1986) no 8, 701–703 Link 483 Goslarer Farbenwerke Dr Hans Heubach, DE 046 698, 1980 (W Haacke et al.) 484 Bayer, DE-OS 656 779, 1976 (F Hund, P Kresse) 485 Herberts GmbH, DE-OS 720 779, 1989 (H Becker, F Sadowski, W Stephan) 486 Hoechst AG, DE-OS 849 712, 1978 (G Mietens et al.); Hoechst AG, EP 028 290, 1980 (K Hestermann et al.) 487 Hoechst AG, DE-OS 916 029, 1979 (A Maurer et al.) 488 Goslarer Farbenwerke Dr Hans Heubach, EP 308 884, 1988 (A Bittner); DEOS 731 737, 1987 (A Bittner) 489 Mizusawa Kagaku Koayo K.K., DE 159 342, 1971 (Y Sugahara et al.) 490 Pfizer & Co., US 443 977, 1969 (L M Bennetch) 491 Teikoku Kako, JP 55 160–059, 1980 (M Kinugasa) 492 Int Standard Electric Corp., DE-OS 042 630, 1980 (C F Drake et al.) 493 Toy Soda, EP 35–798, 1981 (H Minamide) 494 Nippon Paint Co, EP 259 748, 1987 (T Okal et al.) 495 Colores Hispania, ES 605–015, 1985 496 Hooker Chemicals & Plastics Corp.: Ferrophos, company information, Niagara Falls, N.Y., and D E de Jong bv Apeldoorn, Holland, 1976 497 Goslarer Farbenwerke Dr Hans Heubach, DE 532 806.1, 1985 (M Gawol, G Adrian) 498 PPG Industries, US 837 253, 1989 (J D Mansell et al.) 499 H Kossmann, Farbe + Lack 91 (1985) no 7, 588–594 Link 500 S Hellbordt, Farbe + Lack 85 (1979) no 6, 485 Link 501 J D'Ans, V Groope, Dtsch Farben-Z 15 (1961) 51, 69 Link 502 U R Evans, J Chem Soc 1927, 1020 Link 503 J E D Mayne, J Chem Soc 1948, 1932 Link 504 J L Rosenfeld, Lakokras Mater Ikh Primen 1961, 50 Link 505 H H Uhlig, Chem Eng News 24 (1946) 3154 Link 506 G H Cartledge, Corrosion (Houston) 18 (1962) 316 Link 507 J Ruf: Korrosionsschutz durch Lacke und Pigmente, A W Colomb, H Heenemann GmbH, Stuttgart – Berlin 1972 237 508 J Ruf, Farbe + Lack 75 (1969) no 10, 943 Link 509 GeffStoffV, TRgA 602, part 2, 1987 510 Verordnung über gefährliche Arbeitsstoffe (Arbeitsstoffverordnung – ArbStoffV) Feb 11, 1982 (BGBl I, 144) 511 Nippon Paint KK, JP 1276–861, 1985 512 G Lincke, O Schroers, K D Nowak, Farbe + Lack 82 (1976) no 11, 1003 Link 513 G Meyer, DEFAZET Dtsch Farben Z (1963) 201 – 205 Link 514 W J Banke, Mod Paint Coat 70 (1980) Febr., 45–47 Link 515 American Metal Climax, CH 602 899, 1973 (D R Robitaille et al.); DE 334 541, 1973 (D R Robitaille et al.) 516 Noranda Miners Ltd., US 132 667, 1977 (D Kerfoot); DE 814 454, 1978 (D Kerfoot) 517 J Ruf, Farbe + Lack 79 (1973) no 1, 22 – 27 Link 518 BASF AG, Ludwigshafen, company information, 1990 519 Horst Michaud et al., Chem Ztg 112 (1988) 287–294 Link 520 Amer Cyanamide Co., US 213 440, 1939; US 213 441, 1939 521 Duisburger Kupferhütte, DT 956 219, 1956 522 I G Farbenind., DT 651 684, 1934 523 N Lowicki, Z Erzbergbau Metallhüttenwes (1949) 282, 283 Link 524 S A Miller, B Bann, J Appl Chem (1956) 89–93 Link 525 V Kontnik, V Novak, Chem Prum (1959) 18–22 Link 526 Süddeutsche Kalkstickstoffwerke, DT 803 351, 1949 527 Lab Chim G Guainazzi, IT 428 147, 1947 528 Admin Des Mines Bouxwiller, FR 966 349, 1948 529 E Stock, H Blum, Dtsch Farben-Z (1951) 317–321 Link 530 Th Goldschmidt, DT 940 291, 1952 531 Duisburger Kupferhütte, DT 819 689, 1949 532 BASF AG, Ludwigshafen, Company information, 1990 533 Techn Jahresbericht 1957 der Berufsgenossenschaft der chem Industrie der Bundesrepublik Deutschland 534 Int Minerals and Chem Corp., US 738 720, 1986 (P Eckler, L Ferrara) 535 The British Petroleum Company, EP 316 066, 1988 (T E Fletcher) 536 Grace & Co., London, company information, 1986 537 B P F Goldie, J Oil Colour Chem Assoc 71 (1988) no 9, 257 – 270 Link 538 Grace & Co., Polym Paint Colour J 177 (1987) no 4189, 260 Link 539 A F Wells: Structural Inorganic Chemistry, Clarendon Press, Oxford 1962 540 J D'Ans, W Breckheimer, H J Schuster, Werkst Korros (1957) 677 Link J D'Ans, H J Schuster, Farbe + Lack 61 (1955) no 10, 453 J E O Mayne, Farbe + Lack, 76 (1970) no 3, 243 238 541 G Lincke, Farbe + Lack 77 (1971) no 5, 443 Link G Lincke, Congr FATIPEC 12th 563 542 H Berger, Farbe + Lack 88 (1982) no 3, 180–182 Link 543 P N Martini, A Bianchini, J Appl Chem 19 (1969) 147 Link 544 J F H van Eijnsbergen, Farbe + Lack 71 (1965) no 10, 1005 Link G Meyer, Dtsch Farben-Z 16 (1962) 347 545 Bayer AG, DE 642 049, 1976 (F Hund et al.) Bayer AG, DE 625 401, 1976 (F Hund et al.) 546 Tada Kogyo, US 904 421, 1975 (S Shimizu et al.) 547 P Kresse, Farbe + Lack 84 (1978) no 3, 156–159 Link 548 M Svoboda, Farbe + Lack 96 (1990) no 7, 506–508 Link 549 Bayer: Anticor 70, product information, Leverkusen 1989 550 Lindgens, Köln-Mülheim, company information 1991 551 M Leclercq, Farbe + Lack 97 (1991) no 3, 207–210 Link 552 T Szauer, A Miszczyk, ACS Symp Ser 322 (1986) 229 – 233 Link 553 K M Oesterle, R Oberholzer, Dtsch Farben-Z 18 (1964) 151 Link 554 J D'Ans, H J Schuster, Farbe + Lack 63 (1957) no 9, 430 Link 555 G Grillo, Tech Rundsch 60 (1968) 19 Link 556 A Laberenz, Farbe + Lack 68 (1962) no 7, 765 Link 557 E V Schmid, Farbe + Lack 84 (1978) no 1, 16–19 Link 558 M A Newnham, Paint Technol 42 (1968) 16 Link 559 R Hawner, Farbe + Lack 69 (1963) no 6, 611 Link 560 Kärntner Montanindustrie GmbH, company information, 1991 561 E Carter, Paint Resin 55 (1985) 4, 30 Link 562 E V Schmid, Farbe + Lack 90 (1984) no 9, 759–765 Link 563 N Wamser, Farbe + Lack 96 (1990) no 6, 435–441 Link 564 R D Athey, J Water Borne Coat (1985) 1, –10 23674 565 W Grass, H D Merzbach, D Skudelny, Farbe + Lack 94 (1988) no 11, 895 – 897 Link 566 N Wamser, E Urbano, Farbe + Lack 95 (1989) no 2, 109, 110 Link 567 R D Athey, J Water Borne Coat (1985) 2, 10 – 20 Link 568 Eckhard, Fürth, company information, 1989 569 G Cinti, A Papo, G Torriano, J Oil Colour Chem Assoc 68 (1985) 29 – 34 Link 570 C H Hare, M G Fernald, Mod Paint Coat 74 (1984) no 10, 138 – 146 Link 571 R Besold, Farbe + Lack 89 (1983) no 3, 166–173 Link 572 W Funke, Farbe + Lack 87 (1981) no 9, 787, 788 Link 573 BASF Lacke+Farben AG, DE 502 781, 1975 574 R Pantzer, Dtsch Farben-Z 19 (1975) 13 Link R Pantzer, Oberfläche-Surf 17 (1976) 181 239 575 J Ruf, Congr FATIPEC 12th (1974) 571 Link 576 Ciba-Geigy AG, EP 128 862, 1984 (G Berner et al.) 577 Ciba-Geigy, Basel, company information, 1986 578 Henkel KGaA, DE 824 508, 1979 (H Eschwey et al.) 579 Henkel KGaA, Düsseldorf, company information, 1983 580 BASF Lacke+Farben AG, DE 616 721, 1986; EP 246 570, 1987 (E Liedek, G Hägele) 581 Laboratorium für Pharmakologie und Toxikologie, Hamburg-Hausbruch 1972 582 Institut für Toxikologie, Bayer AG, Wuppertal 1972 583 L M Greenstein in T C Patton (ed.): Pigment Handbook, 2nd ed., vol 1, Wiley & Sons, New York 1988, p 829 584 W Bäumer, Farbe + Lack 79 (1973) 747 Link 585 K D Franz, R Emmert, K Nitta, Kontakte (Darmstadt) 1992, no 2, Link 586 K D Franz, H Härtner, R Emmert, K Nitta, in Ullmann, 5th ed vol A20, pp 347 – 355 587 R Glausch, M Kieser, R Maisch, G Pfaff, J Weitzel: Perlglanzpigmente, Curt R Vincentz Verlag, Hannover, 1996 G Pfaff, Chem unserer Zeit 31 (1997) Link 588 H Simon: The Splendor of Iridescence, Dodd, Mead and Co., New York 1971 589 H F Taylor, Drugs, Oils, Paints (1937) 106 Link 590 A H Pfund, J Franklin Inst 183 (1917) no 4, 453 Link 591 A v Unruh, Kunststoffe (1918) no 5, 49 Link 592 S J Williamson, H Z Cummins: Light and Color in Nature and Art, J Wiley & Sons, New York 1983 593 K Nassau: The Physics and Chemistry of Color, J Wiley & Sons, New York 1983 594 Du Pont, US 087 828, 1963 (H R Linton) Du Pont, US 087 829, 1963 (H R Linton) Mearl, US 437 515, 1969 (C A Quinn, G J Rieger, R A Bolomey) E Merck, US 553 001, 1971 (H Kohlschütter et al.) 595 W Ostertag, Nachr Chem Tech Lab 42 (1994) 849 Link 596 O S Heavens: Optical Properties of Thin Solid Films, Dover Publ., New York 1965 597 S Hachisu, S Okamoto, Sci Light 11 (1962) no 3, 157 Link 598 H Becker, H Rechmann, F Rosendahl, Farbe + Lack 73 (1967) 17 Link 599 C Schmidt, M Fritz, Kontakte (Darmstadt) 1992, no 2, 15 Link 600 F Hofmeister, Eur Coat J (1987) no 4, 400 Link 601 A M Gaudin, J Phys Chem 41 (1937) 811 Link 602 R Emmert, Cosm Toiletries 104 (1989) no 7, 57 Link 603 J A Dobrowolski, F C Ho, A Waldorf, Appl Opt 28 (1989) 2702 Link 604 S Teaney, I Denne, Kontakte (Darmstadt) 1992, no 2, 46 Link 605 S Hachisu, Sci Light (1957) no 1, 20 Link 606 L M Greenstein, Proc Sci Sect Toilet Goods Assoc 45 (1966) May, 20 Link 240 607 A J Krajkeman, Paint Manuf 22 (1952) no 10, 371 Link 608 T Marchmay, Sci Amer 185 (1921) 533 Link 609 P Alexander, Manuf Chem 57 (1986) June, 60 Link 610 Y Morita, J Chem Educ 62 (1985) 1072 Link 611 S Hachisu, Sci Light (1959) no 1, 19 and 26 Link S Hachisu, S Okamoto, Sci Light 11 (1962) no 3, 157 612 H A Miller, Bull Bismuth Inst (Brussels) 52 (1987) Link 613 K R Skulberg et al., Scan J Work Environ Health 11 (1985) 65 Link 614 B K Bernard et al., J Toxicol Environ Health 29 (1985) 65 Link 615 R Esselborn, K.-D Franz: XVII Congress AFTPV, Nice 1987, p 148 616 BASF, US 552 593, 1985 (W Ostertag) 617 S Roesch, Z Wiss Mikrosk Mikrosk Tech 64 (1959) 236and Link Z Wiss Mikrosk Mikrosk Tech 66 (1966) 136 618 H Kubota, Prog Opt (1961) 212 Link 619 G Pfaff, R Maisch, Farbe + Lack 101 (1995) 89 Link 620 W Ostertag, N Mronga, P Hauser, Farbe + Lack 93 (1987) 973 Link 621 G Gehrenkamper, F Hofmeister, R Maisch, Eur Coat J (1990) 80 Link 622 Merck KGaA, EP 307 747, 1989 (R Emmert, M Weigand) 623 Merck KGaA, WO 93/19131 (K D Franz, K Ambrosius, S Wilhelm, K Nitta) 624 Merck KGaA, EP 354 374, 1990 (K D Franz, K Ambrosius, C Prengel) 625 Merck KGaA, US 867 793, 1989 (K D Franz, K Ambrosius, A Knapp, D Brückner) 626 G Pfaff, P Reynders Chem Rundschau Jahrbuch (1993) 31 627 Merck KGaA, US 603 047, 1986 (T Watanabe, T Noguchi) 628 D Brückner, R Glausch, R Maisch, Farbe + Lack, 96 (1990) 411 Link 629 Merck KGaA/Hyplast, WO 94/ 05727, (T Daponte, P Verschaeren, M Kieser, G Edler) 630 Bayer, EP 14 382, 1982 (F Hund, G Franz) 631 E V Carter, R D Laundon, J Oil Colour Chem Assoc (1990) no 1, Link 632 BASF, EP 283 852, 1988 (W Ostertag, N Mronga) 633 W Ostertag, N Mronga, Macromol Symp 100 (1995) 163 Link 634 Optical Coating Laboratory, US 434 010, 1981 (G Ash) 635 R W Phillips, A F Bleikolm, Appl Opt 35 (1996) 5529 Link 636 R Glausch, G Pfaff, R Maisch, XXIst FATIPEC Congr., Amsterdam, Vol 2, 1992, p.33 637 Merck KGaA, WO 93/08237, G Bauer, K Osterried, C Schmidt, R Vogt, H Kniess, M Uhlig 638 W Ostertag, XIX FATIPEC Congr Book, vol 1, Aachen 1988, p 103 639 Ciba-Geigy, US 517 320, 1985 (F Bäbler, A Weissmüller) 241 640 Ciba-Geigy, EP 408 498, 1991 (P Bugnon, F Herren, B Medinger) 641 Mearl, EP 401 141, 1990 (B R Swallow) 642 P Eskelinen: Prepr IFSCCJ Congress, Yokohama, Vol 1, 1992, p 196 643 V P S Judin, Polym Paint Coat J 182 (1992) 4312 Link 644 BASF, US 753 829, 1988 (S Panush) 645 A P Philipse, J Mat Sci Lett (1989) 1371 Link 646 O Mayborodoff, Double Liaison-Chim Peint 308 (1981) p 36 Link 647 R Maisch, G Houseman, K D Franz, Polym Paint Colour J 178 (1988) 100 Link 648 K Dorfner, J Ohngemach, Plast Eng 43 (1987) Jan., 33 Link 649 G Houseman, J Oil Colour Chem Assoc (1987) no 11, 329 Link 650 S Panush, J Paint Technol 45 (1981) 39 Link S Panush, J Coat Technol 57 (1985) 67 651 Mearl, US 134 776, 1979 (C J Rieger, L Armanini) 652 E Merck, US 482 389, 1984 (K D Franz et al.) 653 E Merck, US 828 623, 1989 (K Nitta, T Watanabe, I Suzuki) 654 E Merck, US 022 923, 1991 (A Rau, K D Franz, K Ambrosius) 655 A Thurn-Müller, J Hollenberg, J Liston, Kontakte (Darmstadt) (1992) no 2, 35 Link 656 G Möschl, F K Soehngen, M Kieser, Seifen Öle Fette Wachse 106 (1980) 93; Link Seifen Öle Fette Wachse 111 (1985) 643; Seifen Öle Fette Wachse 112 (1986) 45 657 L Armanini, Cosm Toiletries 106 (1991) no 3, 53 Link 658 M L Schlossman, Cosm Toiletries 105 (1990) no 2, 53 Link 659 E Merck, EP 406 657, 1990 (A Thurn-Müller, J Dietz, C Prengel) 660 R Besold, R Reißer, E Roth, Farbe + Lack 97 (1991) 311 Link 661 W Ostertag, Congr FATIPEC XIX, vol II/103, 1988 662 US 558 302, 1951 (G C Marcot et al.) 663 US 558 304, 1951 (G C Marcot et al.) 664 Bayer, DE-OS 508 932, 1975 (F Hund, G Linde) 665 Bayer, DE 210 279, 1973 (F L Ebenhöch, K.-P Hansen, H Stark) 666 BASF, DE 344 196, 1973 (F L Ebenhöch, D Werner, G Bock) 667 BASF F+F AG, DE-OS 228 555, 1972 (H Gaedcke, R Bauer) 668 Magnetic Pigment Comp., US 424 635, 1922 (P Fireman) Reichard-Coulston Inc., US 574 459, 1947 (L H Bennetch) 669 F Finus, Farbe + Lack (1975) 604 – 607 Link 670 G Narvuglio, R F Sharrock, R J Kennedy, Oil J., Col Chem Assoc 61 (1978) 79 – 85 Link 671 BASF, DE 840 870, 1978 (A Seitz) 672 Tokyo Shibaura Denkikbushiki Kaisha EP 019 710, 1980 242 673 V P S Judin, V T Salonen, Seifen Oele Fette Wachse 119 (1993) 491 Link 674 D R Robertson, F Gaw, Congr Add '95, Paper 12 675 W H Kettler, G Richter, Farbe + Lack 98 (1992) no 2, 93 Link 676 BASF, US 932 741, 1986 (S Punush) 677 M A Vannice, R L Garten, J Catal 63 (1980) 255 Link 678 Huels, DE-OS 010 710, 1984 (K Neubold, K D Gollner) 679 Mitsubishi Materials, JP 07 062 326 680 Degussa, EP 609 533, 1994 (W Hartmann, D Kerner) 681 Nippon Shokubai, JP 07 232 919, 1994 682 L Brüggermann, DE 900 243, 1993 (G Walde, A Rudy) [Top of page] [A to Z] [Authors] [Subjects] [Search] [HitList] © 2004 by Wiley-VCH Verlag GmbH & Co KGaA All rights reserved Pigments, Inorganic Figures Figure Primary particles, agglomerates, and aggregates [Full View] Figure Standard deviation ellipses of a logarithmic normal distribution (yellow iron oxide pigment) z, z = median of L, B [Full View] Figure Spectral reflectance curves of some inorganic pigments in paints a) Manganese blue; b) CdS; c) Fe2 O3 [Full View] -FeOOH; d) -Cr2 O3 ; e) Figure The relationships between the optical properties of pigments and their theoretical basis [Full View] 243 - Figure Absorption coefficient K for diffuse illumination as a function of the pigment volume concentration for three red iron oxide pigments [Full View] Figure Scattering coefficients as a function of pigment volume concentration [Full View] Figure Scattering of white pigments as a function of particle size ( = 550 nm) a) Rutile; b) Anatase; c) Zinc sulfide; d) Zinc oxide; e) White lead; f) Barium sulfate [Full View] Figure Absorption as a function of particle size [Full View] Figure CIELAB color differences between two yellow iron oxide pigments [Full View] Figure 10 Undertone of two nearly white samples (TiO2 pigments) [Full View] Figure 11 Determination of the hiding power of a yellow iron oxide pigment [Full View] Figure 12 Spectral energy distribution of daylight phase D65 with permitted range of deviation (shading) [Full View] 244 Figure 13 Change in tinting strength as a function of dispersing time [Full View] Figure 14 The processing of heavy mineral sands a) Dredger; b) Sieve; c) Bunker; d) Reichert cones; e) Spirals; f) Magnetic separator; g) Dryer; h) Electrostatic separator; i) Shaking table; j) Dry magnetic separator; k) Vertical belt conveyer; l) Electrostatic separator [Full View] Figure 15 Production of TiO2 by the sulfate process a) Ball mill/dryer; b) Screen; c) Magnetic separator; d) Cyclone; e) Silo; f) Digestion vessel; g) Thickener; h) Rotary filter; i) Filter press; j) Crystallizer; k) Centrifuge; l) Vacuum evaporator; m) Preheater; n) Stirred tank for hydrolysis; o) Cooler; p) Moore filters; q) Stirred tank for bleaching; r) Stirred tank for doping; s) Rotary filter for dewatering; t) Rotary kiln; u) Cooler [Full View] Figure 16 Flow diagram of TiO2 production by the chloride process a) Mill; b) Silo; c) Fluidized-bed reactor; d) Cooling tower; e) Separation of metal chlorides; f) TiCl4 condensation; g) Tank; h) Cooler; i) Vanadium reduction; j) Distillation; k) Evaporator; l) TiCl4 superheater; m) O2 superheater; n) Burner; o) Cooling coil; p) Filter; q) TiO2 purification; r) Silo; s) Gas purification; t) Waste-gas cleaning; u) Cl2 liquefaction [Full View] Figure 17 Weak acid recovery plant used by Sachtleben Chemie (based on know-how of Bayer AG) a) Heat exchanger; b) Evaporator; c) Injection condenser; d) Stirred salt maturing vessels; e) Filter press; f) Bunker for pyrites; g) Coal silo; h) Bunker; i) Mixing screw unit; j) Covered store for mixed filter cake; k) Calcination furnace; l) Waste-heat boiler; m) Cyclone; n) Electrostatic precipitator; o) Stirred tank; p) Storage tank; q) Pump; r) Cooler [Full View] Figure 18 Waste heat recovery and sulfuric acid recycling during weak acid treatment (Bayer AG) [Full View] 245 Figure 19 Spectral reflectance curves of barium sulfate and zinc sulfide a) Barium sulfate; b) Zinc sulfide (Co-doped) [Full View] Figure 20 Flow diagram for lithopone production a) Precipitation vessel; b) Rotary filter; c) Turbo dryer; d) Rotary kiln; e) Chilling vessel; f) Rake classifier; g) Thickener; h) Grinder; i) Silo [Full View] Figure 21 Scanning electron micrograph of lithopone The larger particles are barium sulfate (mean size 1.0 µm) and the smaller particles are zinc sulfide (mean size 0.3 µm) [Full View] Figure 22 Production of copperas red a) Dryer; b) Rotary kiln (dewatering); c) Rotary kiln; d) Tank; e) Thickener; f) Filter [Full View] Figure 23 Production of yellow iron oxide by the precipitation (A) and Penniman (B) processes a) Tank; b) Pigment reactor; c) Seed reactor; d) Pigment reactor with scrap basket; e) Filter; f) Dryer; g) Mill [Full View] Figure 24 Production of iron oxide pigment by the Laux process a) Reactor; b) Condenser; c) Classifier; d) Thickener; e) Filter; f) Dryer; g) Mill; h) Rotary kiln [Full View] Figure 25 Dependence of the reflectance of chromium oxide on the wavelength a) Regular pigment; b) Special product with larger particle size and high IR reflectance [Full View] Figure 26 Structure of spinel showing two octants of the unit cell Two oxygen ions of neighboring octants are included (dashed circles) to show the arrangement of oxygen around the octahedral sites 246 a) Oxygen; b) Cations occupying octahedral sites; c) Cations occupying tetrahedral sites [Full View] Figure 27 Crystal lattice of cadmium pigments (wurtzite structure) a) Sulfur (selenium); b) Cadmium (zinc, mercury) [Full View] Figure 28 Reflectance curves of cadmium pigments (pigment volume concentration 10 %) a) Cadmium yellow; b) Cadmium golden yellow; c) Cadmium red (bordeaux) [Full View] Figure 29 Reflectance curves of yellow pigments a) BiVO4 ; b) CdS; c) (Ti,Ni,Sb)O2 ; d) PbCrO4 – PbSO4 ; e) FeOOH [Full View] Figure 30 Particle size after precipitation (A) and subsequent heating (B) (magnification×6000) [Full View] Figure 31 Flow diagram for the production of bismuth vanadate pigment a) Reaction vessel; b) Filter; c) Dryer; d) Furnace treatment [Full View] Figure 32 Schematic drawing of the basic structure of standard ultramarine showing the available sites for sulfur and sodium [Full View] 247 Figure 33 Spectral reflectance distribution of blue ultramarine [Full View] Figure 34 Spectral reflectance distribution of violet ultramarine [Full View] Figure 35 Spectral reflectance distribution of pink ultramarine [Full View] Figure 36 Electron micrograph of blue ultramarine with a mean particle size of 1.0 µm (magnification×5 800) [Full View] Figure 37 Crystal structure of iron blue [354] [Full View] Figure 38 Electron micrograph of an iron blue pigment of small particle size (Manox Blue 460 D) [Full View] 248 Figure 39 Electron micrograph of an iron blue pigment of normal particle size (Vossen Blau 705) [Full View] Figure 40 Cumulative particle size distribution curve of a normal (705) and a micronized (705 LS) iron blue pigment of equal primary particle size LS = Luftstrahlmühle (air jet mill) [Full View] Figure 41 Residual gloss and E* ab values for isocyanate-crosslinked polyacrylate resins that contain 15 wt % Vossen Blau 2000 relative to the binder and 15 wt % TiO2 (rutile) relative to the iron blue pigment after 1000 h fast exposure to UV [367] a) Without clearcoat; b) With clearcoat but without UV protection; c) With clearcoat and UV protection Vossen Blau 2000 is an older pigment type that has been replaced by Manox Blue 460 D [Full View] Figure 42 Color coordinates of black gravure inks with various toners [Full View] Figure 43 Color coordinates of black offset printing inks with various toners [Full View] Figure 44 Schematic representation of the physical anticorrosion effects of flake pigments [Full View] Figure 45 Passivation of iron by zinc phosphate [473] [Full View] 249 Figure 46 Passivation of iron by chromate pigments [507], [508] [Full View] Figure 47 Optical principles of conventional and luster pigments A) Conventional pigment that absorbs and scatters light; B) Metal effect pigment with complete regular reflection; C) Natural pearl composed of alternating layers of protein and CaCO3 ; D) Nacreous pigment: the pearl is simulated by parallel orientation of the pigment platelets [Full View] Figure 48 Simplified diagram showing nearly normal incidence of a beam of light (L1 ) from an optical medium with refractive index n through a thin solid film of thickness d with refractive index n L and L are regular reflections from phase boundaries P and P2 L3 represents diffuse scattered reflection from the transmitted light [Full View] Figure 49 Simplified scheme of light reflection at the phase boundaries of a metal oxide – mica pigment [Full View] Figure 50 Colorimetric determination of nacreous pigments The platelet particles are incorporated in a lacquer of defined thickness on a standard black and white drawdown card The card is mounted on a rotatable sample holder and measured under (A) 0°/45° (diffuse reflection) and (B) 22.5°/22.5° (regular reflection, luster) [Full View] Figure 51 Upper half of metal oxide – mica pigments Increasing layer thickness of metal oxide causes different interference colors in reflection Combination with absorption colorants (e.g., Fe O3 ) produces metallic effects A) Interference colors; B) Combination pigments; C) Metallic colors [Full View] Figure 52 Combination pigment consisting of TiO2 – mica coated with an additional layer of an absorption colorant Under regular conditions (A), a brilliant color effect dominated by thin film reflection is visible All other viewing angles (B) show the color of the transparent absorption colorant (Section Transparent Pigments) [Full View] 250 Figure 53 Electron micrograph of a transparent red iron oxide pigment (Sicotrans Red 2815) [Full View] Ullmann's Encyclopedia of Industrial Chemistry Published by Wiley-VCH Verlag GmbH & Co KGaA 251 ... White Pigments, colored pigments in Chapter Colored Pigments, and specialty pigments in Chapter Specialty Pigments For black pigments, see Carbon – Carbon Black Table Classification of inorganic. .. supplied more than 40 % of the world consumption of inorganic colored pigments, including about 50 % of the iron oxides Estimated world consumption of inorganic pigments in 2000 can be broken down... Transparent Transparent Iron Oxides Iron Blue Cobalt Blue and Green Titanium Dioxide Zinc Oxide Pigments, Inorganic Hans G Völz, Krefeld, Federal Republic of Germany Ullmann's Encyclopedia of Industrial