1. Trang chủ
  2. » Thể loại khác

47 ThongTinTiengAnh NguyenDucVinh 2011.pdf

5 78 0

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 5
Dung lượng 84,87 KB

Nội dung

INFORMATION ON MASTER’THESIS Full name: Nguyen Duc Vinh Sex: Male Date of birth: 07.02.1978 Place of birth: Thai Nguyen Decision to recognize students of :2714QĐ-CTSV on May 18/12/2008 The changes in the training process: No Title of dissertation: "To the pair Squark Susy-QCD in e+e- processes with complex parameters," Major: Theoretical Physics and Mathematical Physics Code: 60.44.01 10 Scientific staff guide: TS Pham Thuc Tuyen - Physical Sciences - University of Natural Sciences 11 Summary results of the thesis: Interaction Lagrangian and Feynman rules in the MSSM To obtain the mass spectrum of particles in a physical theory we have carried out standard procedures symmetry breaking with the average value of the Higgs vacuum I will choose the vacuum average of the two Higgs multi-line as follows: to satisfy the equation : H  1   , 0  H2  0    2  1,2 to satisfy the equation  e2 2 2  8sin  cos  1     mH1   1    S    e2 2 2   8sin  cos  1     mH       S1   Charge e of the particles related to the coefficients related g1,2 through a parameter  called the Weinberg angle e  g1 cos   g sin  Lagrangian interaction between the quark and the gauge field photon (  ), wion, Zion and gluon (g): Lqq  eeq q  qA LqqZ    g q  cos W  I qL   eq sin  W  PL  eq sin  W PR qZ  g q   CqL PL  CqR PR  q cos W CqL,R  I qL , R  eq sin  W g W t   PLb  Wb   PLt     g sTrsaGa qr  qs LqqW   Lqqg Interaction between the super-partner of the quark (scalar quark) with the standard They are: - Squark-squark-photon   Lqq   ieeq q L*   q L  q R*   q R A     ieeq A  Riq1 R qj1  Riq2 R qj2  q *j   qi   ieeq ij A q *j   qi Squark-squark- Z LqqZ   -   Squark-squark- W  Lqq W  -    ig ig Z  CqL q *L  q L  CqR q R*   q R  cij Z  q *j   qi cos W cos W     ig ig W tL*  bL  W bR*   tR  Riq1 R qj1W tj*  bi  Riq2 R qj2Wb *j   ti 2     Squark-squark-gluon    a a *  * a a *       Lqqg  ig T G q  q  q  q  ig T  G q  qis  s rs  Lr Ls Rr Rs s rs ij  jr   The interaction between the quark with the five Higgs field in: LqqH  s1q h0 qq  s2q H qq  s3q A0 q 5q  H  t  s4t PL  s4b PR  b  H  b  s4b PL  s4t PR  t Interaction between the squark and Higgs boson can be written in general as follows: LqqH     *  * ˆ  qL    H k  qL , qR  Gk      Gk  H k q j * qi ij  q   R Quark-squark-chargino Lqq    gt  U1 j PR  YtV2 j PL   j bL  gt YbV2 j PR   j bR  gb  V1 j PR  YbU j PL   j c tL  gb YtV2 j PR   j c tR  g  j  U1 j PL  YtV2 j PR  tbL*  g  j YbV2 j PL  tbR*  g  j c  V1 j PL  YbU j PR  btL*  g  j c YtV2 j PL  btR*  gt lijb PR  kij PL  j bL  gt YbV2 j PR   j bR     gb  V1 j PR  YbU j PL   j c tL  gb YtV2 j PR   j c tR  g  j  U1 j PL  YtV2 j PR  tbL*  g  j YbV2 j PL  tbR*  g  j c  V1 j PL  YbU j PR  btL*  g  j c YtV2 j PL  btR* Quark-squark-neutralino q q Lqq   gq  f Lkq PR  hLk PL   k0 q L  gq  hRk PR  f Rkq PL   k0 q R  H c  gq  aikq PR  bikq PL   k0 qi  g  k0  aikq PL  bikq PR  qqi* - Quark-squark-gluino a * *   a q Ls  qr PR g a q Rs    g a PL qr q Ls Lqqg  g a PL qr q Rs      g s Trs   qr PR g   g sTrsa  qr  Riq1 PR  Riq2 PL  g a qis  g a  Riq1 PL  Riq2 PR  qr qis*  - Gluon-gluino-gluino Lggg   ig s f abc Ga g b  g c Squark-squark-gauge boson-gauge boson 2   L* q L  q R* q R   e eq2 ij A A  q *j qi Lqq    e eq A A  q LqqZZ   g2 2 Z  Z   C qL q L* q L  C qR q R* q R  cos  W  g2 2 Z  Z   C qL Riq1 R qj1  C qR Riq2 R qj2  q *j q i cos  W  g2 zij Z  Z  q *j q i cos  W Four squark interactions a a   Lqqqq g s TmnTrs  Ri1 R j1  Ri2 R j  q jm* qin  Rk1 Rl1  Rk2 Rl2  qkr * qls     a   g s2Tmn Trsa Sij S kl q jm* qin q kr * qls KEY ADDITION FOR CARRYING SQUARK QCD WITH COMPLEX PARAMETER The mix of boxer's arm moves and squark Then, the partial width of decay qi ( qi  ti , bi ) into final state fermions are   qi  q   k0     a q  b q ik  ik  m qi  g  mq2i , mq2 , m2 k 16 m qi    mq2  m2  Re  aikq*bikq  mq m  k k   and   qi  q   k0     a q  b q ik  ik  m qi  g  mq2i , mq2 , m2 k 16 m qi    mq2  m2  Re  aikq*bikq  mq m  k k   Partial width of decay qi ( qi  ti , bi ) of the final state boson (gauge and Higgs) would be:   qi  W  qk    W qi q j g A  m qi , mW2 , mq2j  g B21Z  mq22 , mZ2 , mq21 Z 16 m m   qi  H   q j    q2  g CqHj qi  mq2i , mH2  , mq2j 16 m †  qi g C  q H i q     qi  H i  q1    16 mW2 mq3i   qi  Z  q1   2 m q , mH2 i , mq21  16 mq32 We have the following comments received on the results above The process e  e   qi q j occurs via s-channel transmission with a photon and Z  boson particle 12 Applicability in practice: The estimated number may be partially verifiable credibility of the results obtained using experimental results from LEP, LEP2 13 The following research: Results of calculation for all possible schema can conclude about the complexity of the parameters in the MSSM 14 All works published related essays: No December 20, 2011 Signature: Nguyen Duc Vinh

Ngày đăng: 18/10/2017, 22:16

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w