1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Factors associate with adherence to anti hypertensive treatment among essential hypertensive patients

115 158 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 115
Dung lượng 31,11 MB

Nội dung

THE MINISTRY OF EDUCATION AND TRAINING UNIVERSITY OF ECONOMICS HO CHI MINH CITY VIETNAM PHAN THI VAN FACTORS ASSOCIATE WITH ADHERENCE TO ANTI-HYPERTENSIVE TREATMENT AMONG ESSENTIAL HYPERTENSIVE PATIENTS The thesis submitted in partial fulfillment of the requirement for the degree of MASTER IN DEVELOPMENT ECONOMICS HO CHI MINH CITY, 2017 THE MINISTRY OF EDUCATION AND TRAINING UNIVERSITY OF ECONOMICS HO CHI MINH CITY VIETNAM PHAN THI VAN FACTORS ASSOCIATE WITH ADHERENCE TO ANTI-HYPERTENSIVE TREATMENT AMONG ESSENTIAL HYPERTENSIVE PATIENTS Health Economics and Management Code: 60310105 The thesis submitted in partial fulfillment of the requirement for the degree of MASTER IN DEVELOPMENT ECONOMICS Academic Supervision Dr TRUONG DANG THUY HO CHI MINH CITY, 2017 DECLARATION “I certify the content of this thesis entitled “Factors impact medication treatment adherence among essential hypertensive patients” has not already been submitted for any degree and is not being currently submitted for any other degrees I certify that, to be the best of my knowledge, any help received in preparing this thesis and all sources used, have been acknowledged in this dissertation” Signature Phan Thị Vân Date: May 3rd, 2017 TABLE OF CONTENTS COVER PAGE DECLARATION ACKNOWLEDGEMENT TABLE OF CONTENTS ABBREVIATION LIST OF TABLES LIST OF FIGURES ABTRACT CHAPTER 1: INTRODUCTION 1.1 Background information 1.2 Research objectives 1.3 Research methods and data 1.4 Structure of the thesis CHAPTER LITERATURE REVIEW 2.1 Theoretical literature 2.1.1 Hypertension and essential hypertension 2.1.2 Adherence .7 2.2 Experimental research reviews 2.2.1 Adherent measurement ACKNOWLEDGEMENT First and foremost, I would like to express my sincere thanks to my thesis academic supervisor Dr Truong Dang Thuy of Development Economics Faculty at the University of Economics Ho Chi Minh City Vietnam for his enthusiastic guidance, useful comments and continuous support during my thesis completion Besides my thesis academic supervisor, I also would like to gratefully thank the Board of Director, Scientific Committee and/or Ethics Committee of fours hospitals: Tam Duc Hospital, Ho Chi Minh Heart Hospital, Ho Chi Minh University Medical Center and District Hospital for their review and approval so that the research could be conducted at the hospitals The next sincere thanks, I would like to send to the doctors and nurses at Outpatient and/ or Inpatient Departments of Tam Duc Hospitals, Ho Chi Minh Heart Hospital, Ho Chi Minh University Medical Center and District Hospital, who had created good conditions so that the data of this research were effectively collected Next to the last, I would like to sincerely thank all patients who agreed to participate into an interview on their visit date at the hospitals Finally, I would like to thank my family members who unfailingly encourage and support me during the thesis process 2.2.2 Factors influence compliance .13 2.2.3 Methodology 17 CHAPTER 3: RESEARCH METHODOLOGY 3.1 Analytical framework 19 3.2 Estimated analysis model .20 3.3 Interpretation of the variables 20 3.3.1 Dependent variables 20 3.3.2 Independent variables 22 3.4 Data collection 26 3.5 Study design 27 3.6 Population 28 3.6.1 Inclusion criteria 28 3.6.2 Exclusion criteria 28 3.7 Sample size 28 3.8 Ethical issue 29 CHAPTER 4: DATA ANALYSIS AND EMPITICAL RESULT 4.1 Descriptive statistics and basis estimation .30 4.1.1 Descriptive statistics 30 4.1.2 Descriptive statistics in Adherence group 31 4.2 Regression Models 38 4.2.1 Result of full regression model of DMMAS and NEWADH .38 4.2.2 Heterokelasticity 40 4.2.3 Correlation/multicollinearity tests 40 4.2.4 Factors associate with adherence 41 4.2.4.1 Model 1: MMAS-8 41 4.2.4.2 Model 2: Pill-counting without BMI 46 CHAPTER 5: DISCUSSION AND CONCLUSION 50 REFERENCE APPENDIX 1: QUESTIONNAIRE IN ENGLISH APPENDIX 2: QUESTIONNAIRE IN VIETNAMESE: BẢNG CÂU HỎI APPENDIX 3: STATA OUTPUT Descriptive statistics 1.1 Socio-demographic charateristics 1.2 Perception of patient 1.3 Complex of antihypertensive drug Descriptive statistics in Adherence group 2.1 MMAS-8 model 2.2 Pill Counting Model Full logistic regression models 3.1 Full regression model MMAS-8-DMMAS 3.2 Full regression model Pill-counting – NEWADH 3.3 Full regression model MMAS-8- adjusted analyses 3.4 Full regression model NWEADH – adjusted analyses Multicollinearity test 4.1 VIF test for Multicollinearity - DMMAS 4.2 VIF test for Multicollinearity – NEWADH 4.3 Test for standard normal distribution of AGE and BMI 4.4 Pearson test for correlation between Age and BMI Auxiliary Regression without BMI/without AGE 5.1 DMMAS: unadjusted analyses without BMI 5.2 DMMAS: adjusted analyses without BMI 5.3 NEWADH: unadjusted analyses without BMI 5.4 NEWADH: adjusted analyses without BMI 5.5 DMMAS – unadjusted analyeses without AGE 5.6 NEWADH - unadjusted analyeses without AGE Descriptive statistics of concomitant diseases ABBREVIATIONS BMQ: Belief Model Questionnaire CMA: Cumulative medication adherence DMMAS: Dependent variable defined as adherence in MMAS-8 model IPQ-R: Illness Perception Questionnaire HBM: Health Belief Model HTN: Hypertension MMAS-4: The 4-item Morisky Medical Scale MMAS-8: The 8-items Morisky Medical Scale MRCT: Medication regimen complexity index NEWADH: Dependent variable defined as adherence in Pill-counting model WHO: World Health Organization LIST OF TABLES Table 1: Summary of dependent variables 24 Table 2: Summary of independent variables 25 Table 3: Descriptive statistics of socio-demographic characteristics 33 Table 4: Descriptive statistics of patient’s perception of hypertension 34 Table 5: Descriptive statistics of complex of anti-hypertensive drug 34 Table 6: Descriptive statistics of socio-demographic in adherence groups: MMAS-8 and Pill counting 36 Table 7: Descriptive statistics of Patient perception on hypertension in adherence groups: MMAS-8 and Pill counting 37 Table 8: DMMAS full regression model 38 Table 9: NEWADH full regression model 39 Table 10: Changes in term of sign and significance of coefficients- NEWADH auxiliray regression 42 Table 11: Relationship between factors and adherence- adjusted analyses – MMAS-8 43 Table 12: Relationship between factors and adherence- unadjusted analyses– Pill Counting Model without BMI 44 Table 13: Relationship between factors and adherence- adjusted analyses – Pill counting Model without BMI 45 tab visit newadh Follow up newadh visit Total no yes 13 145 158 Total 14 150 164 tab pres newadh Following prescripti tab newadh on Total no 1 yes 14 149 163 Total 14 150 164 life newadh Lifestyle newadh change Total no 25 29 yes 10 125 135 Total 14 150 164 tab rem newadh Remember number of medication newadh taken Total no 14 109 123 yes 41 41 Total 14 150 164 tab ae newadh Medication adverse newadh event Total No 13 119 132 Yes 31 32 Total 14 150 164 tab effect newadh Effect of antihypertension newadh medication Total don't know 5 not all at well 40 43 11 105 116 14 150 164 moderately well Total FULL LOGISTIC REGRESSION MODELS: 3.1 Full regression model- MMAS-8-DMMAS Logistic regression Log likelihood = -63.932215 dmmas Coef Std Err Number of obs = LR chi2(19) = 14.95 Prob > chi2 = 0.7255 Pseudo R2 = 0.1047 z 130 P>|z| [95% Conf Interval] age 0523029 0354476 1.48 0.140 -.017173 1217789 bmi -.0241849 0666737 -0.36 0.717 -.154863 1064932 yrs -.021899 0419129 -0.52 0.601 -.1040468 0602489 mari (omitted) edu secondary 387861 6585393 0.59 0.556 -.9028523 1.678574 high school -.2234766 6149748 -0.36 0.716 -1.428805 9818518 College or university -.4529528 7847632 -0.58 0.564 -1.99106 1.085155 Post university -0.69 0.492 -1.372962 6601747 gender -.3563935 (empty) 5186668 work jobless or not working working -.9958261 925048 -1.08 0.282 -2.808887 8172347 retired -.6242947 8699887 -0.72 0.473 -2.329441 1.080852 others (omitted) -.9358072 5702732 -1.64 0.101 -2.053522 1819077 208522 669994 0.31 0.756 -1.104642 1.521686 insurance 2077612 6631026 0.31 0.754 -1.091896 1.507418 supported 054933 8304502 0.07 0.947 -1.57272 1.682586 diff (empty) insu Insurance pay inco -.1150295 1314738 -0.87 0.382 -.3727134 1426544 nomed 0639995 3797759 0.17 0.866 -.6803476 8083466 times -.1514756 5218331 -0.29 0.772 -1.17425 8712985 ae 9796184 672268 1.46 0.145 -.3380027 2.29724 effect -.5080819 4815836 -1.06 0.291 -1.451968 4358047 awre (omitted) visit 1.121355 1.035441 1.08 0.279 -.9080725 3.150782 _cons -.532217 3.848555 -0.14 0.890 -8.075246 7.010811 3.2 Full regression model- NEWADH Logistic regression Log likelihood = -8.3068293 newadh Coef Std Err Number of obs = 85 LR chi2(17) = 36.42 Prob > chi2 = 0.0040 Pseudo R2 = 0.6867 z P>|z| [95% Conf Interval] age -.96415 6322719 -1.52 0.127 -2.20338 2750801 bmi -.0882419 5944065 -0.15 0.882 -1.253257 1.076773 yrs 0482757 2501264 0.19 0.847 -.441963 5385144 mari 15.74562 10.44226 1.51 0.132 -4.720835 36.21208 edu secondary (empty) high school -2.221128 4.43663 -0.50 0.617 -10.91676 6.474508 College or university -12.22837 10.97571 -1.11 0.265 -33.74036 9.283622 Post university -1.03 0.303 -24.89032 7.750491 gender -8.569917 (empty) 8.326892 work jobless or not working working 6.933993 5.72123 1.21 0.226 -4.279412 18.1474 retired 13.37833 7.515711 1.78 0.075 -1.352197 28.10885 others (omitted) 7.564755 6.545577 1.16 0.248 -5.26434 20.39385 diff (empty) insu no (empty) Insurance (omitted) insurance 21.80741 16.43215 1.33 0.184 -10.39902 54.01384 supported 29.16798 22.34879 1.31 0.192 -14.63486 72.97081 -2.753252 3.810681 -0.72 0.470 -10.22205 4.715546 nomed 21.80027 15.87916 1.37 0.170 -9.322311 52.92286 times -2.089891 4.305985 -0.49 0.627 -10.52947 6.349685 ae 14.46311 9.658244 1.50 0.134 -4.466699 33.39292 effect -.5659022 2.308446 -0.25 0.806 -5.090374 3.95857 awre (omitted) visit (omitted) _cons -11.25694 29.68668 -0.38 0.705 -69.44176 46.92789 pay inco 3.3 Full regression model- MMAS-8-DMMAS- adjusted analyses Logistic regression Log pseudolikelihood = -63.81494 Number of obs = 130 Wald chi2(20) = 17.39 Prob > chi2 = 0.6275 Pseudo R2 = 0.1063 Robust dmmas Coef Std Err z P>|z| [95% Conf Interval] age 0542953 0289423 1.88 0.061 -.0024305 1110211 bmi -.0228185 0751867 -0.30 0.762 -.1701816 1245446 yrs -.0233965 0412584 -0.57 0.571 -.1042615 0574684 mari (omitted) secondary 3940886 5963228 0.66 0.509 -.7746826 1.56286 high school -.2271291 5844112 -0.39 0.698 -1.372554 9182958 College or university -.4059131 7990433 -0.51 0.611 -1.972009 1.160183 Post university -0.74 0.459 -1.357912 613771 edu gender -.3720702 (empty) 5029895 work jobless or not working working -1.097368 8487976 -1.29 0.196 -2.760981 5662443 retired -.6900136 7451169 -0.93 0.354 -2.150416 7703886 others (omitted) -.8967653 5507954 -1.63 0.103 -1.976304 1827738 0986715 7052852 0.14 0.889 -1.283662 1.481005 insurance 2044969 7036303 0.29 0.771 -1.174593 1.583587 supported -.0099272 8836805 -0.01 0.991 -1.741909 1.722055 diff (empty) insu Insurance pay inco -.1122653 124608 -0.90 0.368 -.3564926 131962 nomed 0430286 3413685 0.13 0.900 -.6260414 7120986 -.0214846 4869429 -0.04 0.965 -.9758752 932906 -.8405463 1.330809 -0.63 0.528 -3.448883 1.767791 times ae 9417278 6336042 1.49 0.137 -.3001136 2.183569 effect -.5172013 5004455 -1.03 0.301 -1.498056 4636538 awre (omitted) visit 1.132936 1.171603 0.97 0.334 -1.163363 3.429236 _cons -.6641902 3.974127 -0.17 0.867 -8.453336 7.124955 3.4 Full regression model- NEWADH- adjusted analyses Logistic regression Log pseudolikelihood = -8.3068293 Number of obs = 85 Wald chi2(17) = 28.71 Prob > chi2 = 0.0373 Pseudo R2 = 0.6867 Robust newadh Coef Std Err z P>|z| [95% Conf Interval] age -.96415 5309738 -1.82 0.069 -2.00484 0765395 bmi -.0882419 2789262 -0.32 0.752 -.6349272 4584434 yrs 0482757 1365766 0.35 0.724 -.2194096 3159609 mari 15.74562 7.436816 2.12 0.034 1.16973 30.32151 edu secondary high school -2.221128 2.31435 -0.96 0.337 -6.757171 2.314915 College or university -12.22837 7.459593 -1.64 0.101 -26.8489 2.392165 Post university -1.81 0.071 -17.87454 7347069 gender -8.569917 (empty) (empty) 4.747344 work jobless or not working working 6.933993 4.740801 1.46 0.144 -2.357807 16.22579 retired 13.37833 7.489619 1.79 0.074 -1.301056 28.05771 others (omitted) 7.564755 3.711954 2.04 0.042 2894582 14.84005 diff (empty) insu no (empty) Insurance (omitted) insurance 21.80741 12.29346 1.77 0.076 -2.287326 45.90215 supported 29.16798 16.33413 1.79 0.074 -2.846338 61.18229 pay inco -2.753252 2.087127 -1.32 0.187 -6.843946 1.337441 nomed 21.80027 11.56501 1.89 0.059 -.866723 44.46727 times -2.089891 1.532782 -1.36 0.173 -5.094089 9143066 ae 14.46311 7.615659 1.90 0.058 -.4633069 29.38953 effect -.5659022 1.08183 -0.52 0.601 -2.686251 1.554446 awre (omitted) visit (omitted) _cons -11.25694 10.38163 -1.08 0.278 -31.60456 9.090693 Note: failures and 42 successes completely determined MULTICOLLINEARITY TEST 4.1 VIF test for multicollinearity -DMMAS vif, uncentered Variable VIF 1/VIF age 66.88 0.014952 bmi 41.76 0.023946 yrs 3.01 0.331895 1.72 0.580572 1.92 0.521131 2.03 0.493254 13.58 0.073634 4.63 0.215821 8.37 0.119415 diff 11.63 0.086011 2.insu 9.50 0.105278 5.20 0.192145 2.97 0.336941 inco 6.88 0.145398 nomed 12.97 0.077075 3.94 0.253628 1.31 0.764669 ae 11.02 0.090743 effect 31.83 0.031420 visit 74.54 0.013416 edu gender work pay times Mean 4.2 VIF 15.78 VIF test for multicollinearity - NEWADH vif, uncentered Variable VIF 1/VIF age 81.34 0.012295 bmi 51.97 0.019243 yrs 3.44 0.290510 mari 93.76 0.010665 1.99 0.501275 2.19 0.455662 13.30 0.075166 5.13 0.195068 12.67 0.078929 11.01 0.090842 5.57 0.179457 2.97 0.336850 inco 7.18 0.139346 nomed 11.79 0.084784 times 12.51 0.079908 ae 11.90 0.084019 effect 30.90 0.032362 edu gender work diff pay Mean VIF 21.15 .02 01 Density 03 04 4.3 Test for standard normal distribution of AGE and BMI 20 60 Patient age 80 100 05 Density 15 40 15 20 25 30 BMI 4.4 Pearson test for correlation between Age and BMI pwcorr age bmi, star (0.1) age age bmi bmi 1.0000 -0.2637* 1.0000 35 40 AUXILIARY REGRESSION WITHOUT BMI/ WITHOUT AGE 5.1 DMMAS- unadjusted analyses without BMI Logistic regression Log likelihood = -64.03752 dmmas Coef Std Err Number of obs = 130 LR chi2(18) = 14.74 Prob > chi2 = 0.6795 Pseudo R2 = 0.1032 z P>|z| [95% Conf Interval] age 05401 0347988 1.55 0.121 -.0141945 1222145 yrs -.0241004 0419717 -0.57 0.566 -.1063634 0581626 mari (omitted) secondary 3692055 6573476 0.56 0.574 -.9191722 1.657583 high school -.2222752 6129222 -0.36 0.717 -1.423581 9790303 College or university -.4352336 7828399 -0.56 0.578 -1.969572 1.099104 Post university -0.75 0.455 -1.410187 6314432 edu gender -.3893721 (empty) 5208337 work jobless or not working working -1.021056 9176951 -1.11 0.266 -2.819705 7775931 retired -.629448 8638185 -0.73 0.466 -2.322501 1.063605 others (omitted) -.8843289 5587382 -1.58 0.113 -1.979436 2107779 1712479 6737207 0.25 0.799 -1.14922 1.491716 insurance 2382705 6629556 0.36 0.719 -1.061099 1.53764 supported 0937463 8221198 0.11 0.909 -1.517579 1.705072 diff (empty) insu Insurance pay inco -.1110158 1312518 -0.85 0.398 -.3682645 146233 nomed -.0134379 3589594 -0.04 0.970 -.7169854 6901096 times 0323274 4539902 0.07 0.943 -.8574771 9221319 ae 1.012191 6747644 1.50 0.134 -.3103225 2.334705 effect -.532329 4788745 -1.11 0.266 -1.470906 4062478 awre (omitted) visit 1.161607 1.027712 1.13 0.258 -.8526721 3.175886 _cons -1.423813 3.245522 -0.44 0.661 -7.78492 4.937293 5.2 DMMAS- Adjusted analyses (ROBUST) without BMI Logistic regression Log pseudolikelihood = -64.03752 Number of obs = 130 Wald chi2(18) = 16.40 Prob > chi2 = 0.5645 Pseudo R2 = 0.1032 Robust dmmas Coef Std Err z P>|z| [95% Conf Interval] age 05401 0267312 2.02 0.043 0016178 1064023 yrs -.0241004 0411263 -0.59 0.558 -.1047064 0565056 mari (omitted) secondary 3692055 5949257 0.62 0.535 -.7968275 1.535238 edu high school -.2222752 5879006 -0.38 0.705 -1.374539 9299889 College or university -.4352336 7885243 -0.55 0.581 -1.980713 1.110246 Post university -0.77 0.441 -1.380176 601432 gender -.3893721 (empty) 5055216 work jobless or not working working -1.021056 8403388 -1.22 0.224 -2.66809 6259776 retired -.629448 7923985 -0.79 0.427 -2.18252 9236245 others (omitted) -.8843289 5318915 -1.66 0.096 -1.926817 1581594 1712479 6676378 0.26 0.798 -1.137298 1.479794 insurance 2382705 6981625 0.34 0.733 -1.130103 1.606644 supported 0937463 8481284 0.11 0.912 -1.568555 1.756047 diff (empty) insu Insurance pay inco -.1110158 1242649 -0.89 0.372 -.3545705 132539 nomed -.0134379 3253982 -0.04 0.967 -.6512068 6243309 times 0323274 4038548 0.08 0.936 -.7592135 8238683 ae 1.012191 6274956 1.61 0.107 -.2176774 2.24206 effect -.532329 4818178 -1.10 0.269 -1.476675 4120166 awre (omitted) visit 1.161607 1.144303 1.02 0.310 -1.081186 3.4044 _cons -1.423813 2.993218 -0.48 0.634 -7.290412 4.442785 5.3 NEWADH- UNADJUSTED ANALYSES WITHOUT BMI Logistic regression Log likelihood = -8.3185623 Std Err Number of obs = LR chi2(16) = 36.40 Prob > chi2 = 0.0025 Pseudo R2 = 0.6863 z P>|z| 85 newadh Coef [95% Conf Interval] age -.9295124 539463 -1.72 0.085 -1.98684 1278157 yrs 0482993 230226 0.21 0.834 -.4029353 4995339 mari 15.58285 10.03243 1.55 0.120 -4.080357 35.24605 edu secondary high school -2.018686 4.123044 -0.49 0.624 -10.0997 6.062331 College or university -11.44636 8.362852 -1.37 0.171 -27.83725 4.94453 Post university -1.30 0.193 -19.60388 3.964328 gender -7.819778 (empty) (empty) 6.012409 work jobless or not working working 6.795507 5.234968 1.30 0.194 -3.464842 17.05586 retired 13.30869 7.211771 1.85 0.065 -.8261218 27.4435 others (omitted) 7.260716 5.781173 1.26 0.209 -4.070175 18.59161 diff (empty) insu no (empty) Insurance (omitted) insurance 21.0876 14.30062 1.47 0.140 -6.941088 49.11629 supported 28.0789 19.52196 1.44 0.150 -10.18344 66.34123 -2.497818 2.952259 -0.85 0.398 -8.28414 3.288503 nomed 21.05676 14.10825 1.49 0.136 -6.594903 48.70843 times -2.094535 4.092333 -0.51 0.609 -10.11536 5.92629 ae 14.0206 8.600227 1.63 0.103 -2.835534 30.87674 effect -.6957486 2.069064 -0.34 0.737 -4.75104 3.359543 awre (omitted) visit (omitted) _cons -15.07021 15.93818 -0.95 0.344 -46.30846 16.16805 pay inco 5.4 NEWADH- ADJUSTED ANALYSES WITHOUT BMI Logistic regression Log pseudolikelihood = -8.3185623 Number of obs = 85 Wald chi2(16) = 33.05 Prob > chi2 = 0.0073 Pseudo R2 = 0.6863 Robust newadh Coef Std Err z P>|z| [95% Conf Interval] age -.9295124 4090981 -2.27 0.023 -1.73133 -.1276948 yrs 0482993 1327397 0.36 0.716 -.2118657 3084643 mari 15.58285 6.482559 2.40 0.016 2.877266 28.28843 edu secondary high school -2.018686 1.902192 -1.06 0.289 -5.746915 1.709542 College or university -11.44636 5.091379 -2.25 0.025 -21.42528 -1.467439 Post university -2.99 0.003 -12.94401 -2.695549 gender -7.819778 (empty) (empty) 2.61445 work jobless or not working working 6.795507 4.232029 1.61 0.108 -1.499118 15.09013 retired 13.30869 6.899566 1.93 0.054 -.2142107 26.83159 others (omitted) 7.260716 2.781754 2.61 0.009 1.808578 12.71285 diff (empty) insu no (empty) Insurance (omitted) pay insurance 21.0876 9.7919 2.15 0.031 1.895832 40.27937 supported 28.0789 12.65143 2.22 0.026 3.282559 52.87523 -2.497818 1.441656 -1.73 0.083 -5.323412 327776 nomed 21.05676 8.883076 2.37 0.018 3.646256 38.46727 times -2.094535 1.423458 -1.47 0.141 -4.884461 695392 ae 14.0206 5.98829 2.34 0.019 2.283768 25.75743 effect -.6957486 8685289 -0.80 0.423 -2.398034 1.006537 awre (omitted) visit (omitted) _cons -15.07021 11.25051 -1.34 0.180 -37.12079 6.980379 inco Note: failures and 42 successes completely determined 5.5 DMMAS- unadjusted analyses without AGE Logistic regression Log likelihood = -65.458159 Std Err Number of obs = LR chi2(18) = 12.44 Prob > chi2 = 0.8235 Pseudo R2 = 0.0868 z P>|z| 131 dmmas Coef [95% Conf Interval] bmi -.0463874 0637061 -0.73 0.467 -.1712492 0784743 yrs 003101 0380504 0.08 0.935 -.0714764 0776784 mari (omitted) secondary 3465411 6454875 0.54 0.591 -.9185912 1.611673 edu high school -.4216492 5994303 -0.70 0.482 -1.596511 7532127 College or university -.5049844 7747763 -0.65 0.515 -2.023518 1.013549 Post university -0.46 0.644 -1.232946 7625813 9198514 -1.01 0.315 -2.727425 8783267 -0.05 0.963 -1.575973 1.503465 gender -.2351821 (empty) 5090723 work jobless or not working working -.924549 retired -.0362539 7855855 others (omitted) -.8511902 5544549 -1.54 0.125 -1.937902 2355215 206866 6644988 0.31 0.756 -1.095528 1.50926 insurance 3663537 6522297 0.56 0.574 -.9119931 1.6447 supported 2471363 8075575 0.31 0.760 -1.335647 1.82992 -.0823109 1280699 -0.64 0.520 -.3333232 1687015 nomed 1405522 3743475 0.38 0.707 -.5931554 8742597 times -.1158042 5205669 -0.22 0.824 -1.136097 9044883 ae 7673153 6515778 1.18 0.239 -.5097537 2.044384 effect -.5700739 4830738 -1.18 0.238 -1.516881 3767334 diff (empty) insu Insurance pay inco awre (omitted) visit 1.02765 1.044598 0.98 0.325 -1.019724 3.075024 _cons 2.588802 3.27214 0.79 0.429 -3.824475 9.002079 5.6 NEWADH- unadjusted analyses without AGE Logistic regression Log likelihood = -16.645615 Std Err Number of obs = LR chi2(16) = 19.74 Prob > chi2 = 0.2320 Pseudo R2 = 0.3723 z P>|z| 85 newadh Coef [95% Conf Interval] bmi -.1464592 1518694 -0.96 0.335 -.4441178 1511994 yrs -.1284986 1327641 -0.97 0.333 -.3887114 1317142 mari 3.133954 2.364871 1.33 0.185 -1.501108 7.769017 edu secondary high school -.326818 1.463868 -0.22 0.823 -3.195947 2.542311 College or university -3.066301 1.60868 -1.91 0.057 -6.219257 0866542 Post university -1.40 0.161 -4.816548 7979039 gender -2.009322 (empty) (empty) 1.432285 work jobless or not working working 1.117414 2.204999 0.51 0.612 -3.204306 5.439133 retired -.0253747 1.63095 -0.02 0.988 -3.221977 3.171228 others (omitted) -.7401507 1.300571 -0.57 0.569 -3.289224 1.808922 diff (empty) insu no (empty) Insurance (omitted) insurance 3.645151 2.011686 1.81 0.070 -.2976818 7.587984 supported 3.170038 2.43579 1.30 0.193 -1.604023 7.944099 pay inco -.4887473 4280604 -1.14 0.254 -1.32773 3502356 nomed 3.110778 1.712884 1.82 0.069 -.2464119 6.467969 times -.2294097 1.25211 -0.18 0.855 -2.6835 2.22468 ae 1.861308 1.825852 1.02 0.308 -1.717297 5.439913 effect -.6321248 9319346 -0.68 0.498 -2.458683 1.194434 0.04 0.966 -17.57598 18.36223 awre (omitted) visit (omitted) _cons 3931247 9.168079 DESCRIPTIVE STATISTICS OF CONCOMITANT DISEASE tab cad Coronary artery disease Freq Percent Cum no 131 81.88 81.88 yes 29 18.13 100.00 Total 160 100.00 diseases Freq Percent tab cvd Cardiovascu lar tab Cum no 73 45.06 45.06 yes 89 54.94 100.00 Total 162 100.00 Freq Percent diabt2 Diabete type tab Cum no 120 74.53 74.53 yes 41 25.47 100.00 Total 161 100.00 Freq Percent dlp Dislipidemi a Cum no 60 37.27 37.27 yes 101 62.73 100.00 Total 161 100.00 accident Freq Percent tab cva Celebrovasc ular Cum no 152 93.83 93.83 yes 10 6.17 100.00 Total 162 100.00 disease Freq Percent tab renal Renal Cum no 156 96.89 96.89 yes 3.11 100.00 Total 161 100.00 ... to assess factors associate with adherence to anti- hypertensive treatment among essential hypertensive patients The specific objectives are: • Identify rate of medication adherence • Assess associate. .. contribute to blood pressure control and prevent its complications This research is to determine the factors associate with adherence to antihypertensive treatment among essential hypertensive patients ... OF ECONOMICS HO CHI MINH CITY VIETNAM PHAN THI VAN FACTORS ASSOCIATE WITH ADHERENCE TO ANTI- HYPERTENSIVE TREATMENT AMONG ESSENTIAL HYPERTENSIVE PATIENTS Health Economics and Management Code: 60310105

Ngày đăng: 01/10/2017, 21:37

TỪ KHÓA LIÊN QUAN