1. Trang chủ
  2. » Giáo án - Bài giảng

Scattering amplitudes

31 140 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 31
Dung lượng 3,8 MB

Nội dung

Scattering Amplitudes ! in Three Dimensions Sangmin Lee Seoul National University 27 June 2014
 Strings 2014, Princeton Scattering Amplitudes Recent review [Elvang,Huang 13] SUGRA QCD String SYM Integrability Twistor Talks by Basso, Cachazo, Dolan, Mafra, Sen, Staudacher, Stieberger, Trnka Scope of this talk ABJM theory / tree amplitudes / planar sector Two amplitude-generating integrals Grassmannian A2k (L) = Z dk⇥2k C d(Cmi Cni ) ’km=1 d2|3 (Cmi Li ) vol[GL(k)] M1 (C ) M2 (C ) · · · Mk (C ) Twistor string A2k (L) = Z d2⇥2k s J D ’km=1 d2|3 (Cmi [s ]Li ) vol[GL(2)] (12)(23) · · · (2k, 1) “in four dimensions” = “for N=4 Super-Yang-Mills” This talk is based on SL [1007.4772] ! Dongmin Gang, Yu-tin Huang, Eunkyung Koh, SL, Arthur Lipstein [1012.5032]
 Yu-tin Huang, SL [1207.4851] ! Yu-tin Huang, Henrik Johansson, SL [1307.2222] ! Joonho Kim, SL [1402.1119] special thanks to N Arkani-Hamed Collaborators Henrik Johansson Yu-tin Huang Arthur Lipstein Dongmin Gang Eunkyung Koh Joonho Kim ABJM theory ABJM d = 3, N = 
 superconformal 
 Chern-Simons-matter OSp(6|4) Sp(4, R ) ⇥ SO(6) R ' SO(2, 3) ⇥ SU (4) R Color-ordered amplitudes of ABJM Gauge fields mediate interactions but have no d.o.f Number of external legs must be even ( n = 2k ) Kinematics, on-shell [Bargheer,Loebbert,Meneghelli 10] Null momentum in (1+2)d : pab = pµ (Cgµ )ab = la l b a b h ij i = e ( l ) ( l ) Lorentz invariants : ab i j On-shell super-fields SO(1, 2) ⇥ U (3) ⇢ SO(2, 3) ⇥ SO(6) R (1+3+3+1) = + Cyclic symmetry and Lambda-parity A2k (1, 2, · · · , 2k) = ( 1)k A2k (3, 4, · · · , 2k, 1, 2) A2k (· · · , Li , · · · ) = ( 1)i A2k (· · · , Li , · · · ) L = (la , h I ) BCFW and Grassmannian in 4d Momentum conservation in spinor-helicity 11 l a n n B C i ¯ ¯ ¯  ( pi )a¯ a =  lia˙ la = l1a˙ · · · lna˙ @ A i =1 i =1 lna BCFW deformation is a special case of li ! Si j l j , l¯ i ! l¯ j (S j ) i, [Britto, Cachazo, Feng, Witten 04-05] S GL(n, C ) l¯ (2-plane) P-conservation at each vertex: ! Grassmannian Cmi Gr(k, n) [Arkani-Hamed,Cachazo,Cheung,Kaplan 09] l (2-plane) C (k-plane) BCFW and Grassmannian in 3d Momentum conservation in spinor-helicity l1b n n B C  ( pi )ab =  lia lib = l1a · · · lna @ A i =1 i =1 lnb BCFW deformation is a special case of li ! Ri j l j , R O(n, C ) [Gang,Huang,Koh,SL,Lipstein 10] P-conservation at each vertex: ! orthogonal Grassmannian (a.k.a isotropic Gr)  Cmi Cni = , i [SL 10] Cmi OG (k, 2k) l (2-plane) C (k-plane) Grassmannian Integral in 3d [SL 10] A2k (L) = Z dk⇥2k C d(Cmi Cni ) ’km=1 d2|3 (Cmi Li ) vol[GL(k)] M1 (C ) M2 (C ) · · · Mk (C ) 2k (number of external legs) GL(k) ⇥ O(2k) k C= N=6 SUSY crucial (i ) (i + k 1) Mi (C ) = em1 ···mk Cm1 (i) Cm2 (i+1) · · · Cmk (i+k 1) KK and BCJ in 4d Kleiss-Kuijf identities A n ( pi , hi , ) =  [Kleiss-Kuijf 89] Tr( T s2Sn /Z n f abc = Tr( T a T b T c ) a s (1) ···T Tr( T b T a T c ) , 1) ! ! ( n Bern-Carrasco-Johansson identities An (gauge) =  I cI nI DI )An (s(1h1 ), · · · , s(nhn )) f abe f e cd + f bce f e ad + f cae f e bd = #(independent amplitudes) : (n ns cs nt ct nu cu A4 = + + s t u as(n) [Bern,Carrasco,Johansson 08] cs + ct + cu = ns + nt + nu = =) Mn (gravity) =  #(independent amplitudes) : (n 2) ! I 2) ! ! ( n n I n˜ I DI ! 3) ! color (Jacobi) kinematics BCJ doubling KK in 3d KK identity follows from bi-fundamental algebra ¯ ¯ a¯ Mb M ¯ c¯ Md f a¯ bcd = Tr( M ¯ f a¯ bcg f g de¯ f ¯ c¯ Mb M ¯ a¯ Md ) M ¯ ¯ f a¯ dcg f g be¯ f = f e¯ f a¯ g f g bcd [Bagger,Lambert 08] “structure constant” ¯ f e¯ f cg f g b a¯ d “fundamental identity” Independent color basis counted; no closed-form formula known external legs 10 12 cyclic/reflection 72 1440 43200 KK identity 57 1144 * n = 2k 1)!/2 k!(k * KK from twistor string [Huang,SL 12][Huang,Johansson,SL 13] A2k (L) = Z d2⇥2k s J D ’km=1 d2|3 (Cmi [s ]Li ) vol[GL(2)] (12)(23) · · · (2k, 1) Under (non-cyclic) permutations, the only non-trivial part is D2k (1, 2, , 2k ) = (12)(34) · · · (2k, 1) All KK identities can be constructed 
 by recursive use of elementary identities: 1 + =0 (ij) ( ji ) (ij) + ( jk) + (kl ) + (li ) + (cyclic) = =0 (ij)( jk)(kl ) (ij)( jk)(kl )(li ) BCJ in 3d Yang-Mills : BCJ relation in any dimension (on-shell) BLG : BCJ relation in 3d only [Bargheer,He,McLoughlin 12] 4- and 6-point 
 BLG doubling for YM and CSm agree! 8-point of higher
 BCJ for BLG, but NOT ABJM Bonus relations and more [Huang,Johansson 12] SUSY truncation On-shell diagrams and positive Grassmannian [Arkani-Hamed,Bourjaily, Cachazo,Goncharov,Postnikov,Trnka 12] All tree amplitudes & ! loop integrands from ! 3-point amplitudes ! via “BCFW bridging” Permutation, ! positive Grassmannian On-shell diagrams in 3d [ABCGPT 12][Huang, Wen1309][Kim, SL 1402] Building blocks d3 ( P ) d6 ( Q ) h14ih34i 4-point on-shell amplitude Z unique integral preserving superconformal symmetry d2 ld3 h Pairing of external particles up to Yang-Baxter equivalence Positive orthogonal Grassmannian [Huang, Wen1309][Kim, SL 1402] Complex OG(k) = moduli space of null k-planes in C2k = O(2k)/U (k) Pure spinor Real OG(k) h = diag( , +, · · · , , +) , C · h · CT = , Positive OG(k) All ordered minors are positive Cmi R OG tableaux [Joonho Kim, SL 1402] 6 5 4 Fix Yang-Baxter ambiguity at the expense of manifest cyclic symmetry 1 6 5 4 OG tableaux [Joonho Kim, SL 1402] 6 5 1 Invertible 6 4 OG tableaux Level = number of crossing Top-cell : unique #(bottom cell) = Ck Canonically positive BCFW coordinates Explicit coordinate charts for POG 0 (C4 , C5 , C6 ) = @0 0 s1 s2 = @ c1 s2 c2 10 1 0A @0 0 c1 s1 10 c2 s1 A @ s2 c1 s1 c2 c3 + c1 s3 c1 c2 c3 s1 s3 s2 c3 10 0A @0 1 c1 c3 + s1 c2 s3 s1 c3 c1 c2 s3 A s2 s3 si = sinh ti , ci = cosh ti , ti R + s2 c2 0 c3 s3 s3 A c3 BCFW coordinates and recursion Integration measure Z dt a ’ sinh ta = a Z ’ a dz a = za Z ’ d log za a ✓ ta z a = ◆ Integration contour problem solved A2k =  2m L 2m R m L + m R = k +1 Alternative coordinates and loop BCFW [Huang,Wen,Xie 1402] Combinatorics and topology of POG Generating function k (k 1)/2 Tk (q) =  l =0 l Tk,l q = k (1 q)k  ( 1) j= k j ✓ ◆ 2k q j( j k+j 1)/2 [Riordan 75] T2 (q) = + q T3 (q) = + 6q + 3q2 + q3 Euler characteristic ck = Tk ( 1) = l ( ) Tk,l =  Combinatorics - Eulerian poset : proven! Topology - Ball : conjectured l [Lam 1406] Open problems - trees Dual superconformal (Yangian) symmetry Momentum twistor ? Fermionic T-duality in AdS4 ? Amplituhedron ? [Huang,Lipstein 10] [Hodges 09] Amplitude/Wilson-loop duality [Drummond,Ferro 10] [SL 10] [Bargheer,Loebbert,Meneghelli 10] [Bianchi,Griguolo,Leoni,Penati,Seminara 14] [Bianchi,Giribet,Leoni,Penati 13] [Adam,Dekel,Oz 10][Bakhmatov 11] [Bakhmatov,OColgain,Yavartanoo 11] [Arkani-Hamed,Trnka 13] Scattering equation ? [Cachzo,He,Yuan 13] Symplectic (a.k.a Lagrangian) Grassmannian in 5d/6d ? Open problems - loops Thanks to feedback from Yu-tin Huang IR divergence 4-point 3-loop and 6-point 2-loop [Caron-Huot Huang 12] [Chen,Huang 11][Bianchi,Leoni,Mauri,Penati,Santambrogio 11][Bianchi,Leoni 14] Unitarity 1-loop = 0, 2-loop 6= Modified unitarity equation? Analyticity [Agarwal,Beisert,McLoughlin 08][Chen,Huang 11] [Bianchi,Leoni,Mauri,Penati,Santambrogio 11] [Jain,Mandlik,Minwalla,Takimi,Wadia,Yokoyama 14] [Bargheer,Beisert,Loebbert,McLoughlin 12] 6-point, 1-loop contains sgn(q2 Non-perturbative resolution? q1 ) [Caron-Huot Huang 12] .. .Scattering Amplitudes Recent review [Elvang,Huang 13] SUGRA QCD String SYM Integrability Twistor Talks... e bd = #(independent amplitudes) : (n ns cs nt ct nu cu A4 = + + s t u as(n) [Bern,Carrasco,Johansson 08] cs + ct + cu = ns + nt + nu = =) Mn (gravity) =  #(independent amplitudes) : (n 2) !... [Arkani-Hamed,Bourjaily, Cachazo,Goncharov,Postnikov,Trnka 12] All tree amplitudes & ! loop integrands from ! 3-point amplitudes ! via “BCFW bridging” Permutation, ! positive Grassmannian On-shell

Ngày đăng: 27/09/2017, 09:46