Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
15,6 MB
Nội dung
Strings 2014, Princeton 25th of June, 2014 Recent Progress on the Abelian Sector of F-‐Theory Denis Klevers arXiv:1303.6970 [hep-‐th]: M Cve8č, D.K., H Piragua arXiv:1306.3987 [hep-‐th]: M Cve8č, A Grassi, D.K., H Piragua arXiv:1307.6425 [hep-‐th]: M Cve8č, D.K., H Piragua arXiv:1310.0463 [hep-‐th]: M Cve8č, D.K., H Piragua, P Song arXiv:1407.nnnn : D.K., D Mayorga Peña, P Oehlmann, H Piragua, J Reuter arXiv:14nn.nnnn : M Cve8č, D.K, H Piragua, W Taylor F-‐theory & U(1)-‐symmetries INTRODUCTION Why F-‐theory? F-‐theory = Type IIB • ellipQcally fibered • back-‐reacted • regions with on Why F-‐theory? M-‐theory Type II A On T2 Limit vol(T2) 0 on S1 F-‐theory = Type IIB • ellipQcally fibered • back-‐reacted • regions with on Why F-‐theory? M-‐theory Type II A On T2 Limit vol(T2) 0 on S1 E8xE8 Het Certain setups F-‐theory = Type IIB • ellipQcally fibered • back-‐reacted • regions with on Why F-‐theory? M-‐theory Type II A On T2 Limit vol(T2) 0 on S1 E8xE8 Het Certain setups F-‐theory = Type IIB • ellipQcally fibered Certain setups SO(32) Het S-‐duality Het/F-‐theory duality: see Anderson’s talk • back-‐reacted • regions with on Type I EffecQve theories of F-‐theory Use F-‐theory to engineer effecQve theories: F-‐theory Calabi-‐Yau geometry (+ G4-‐flux,…) Geometry Physics N=1 SUGRA effecQve theories in 6D & 4D Classifica8on of 6D (1,0) SCFTs via F-‐theory: see Vafa’s talk Since are non-‐perturbaQve, they different from those of • used for models of local models: [Donagi,Wijnholt; Beasley,Heckman,Vafa; Bouchard,Heckman,Kane,Seo,Shao,Tavanfar,Vafa; Font,Ibanez; Randall,Simmons-‐Duffin; Hayashi,Kawano,Tsuchiya,Watari,Yamazaki; Dudas,Pal8; Cecoi,Cheng,Heckman,Vafa; Marchesano,Martucci… many works] global models: [Blumenhagen,Grimm,Jurke,Weigand;Marsano,Saulina,SchäferNameki; Cordova; Grimm,Krause,Weigand… many works] Goals of this talk Develop & of F-‐theory: of F-‐theory ArithmeQc of ellipQcally fibred CY: [Morrison,Vafa] The Abelian sector of F-‐theory has been rather : only Few early examples: [Aldazabal,Font,Ibanez,Uranga; Klemm Mayr,Vafa] Torsion part: [Aspinwall,Morrison; Mayrhofer,Morrison,Till,Weigand] A lot of recent progress: [Grimm,Weigand;Esole,Fullwood,Yau;Morrison,Park; Cve8č,Grimm,DK; Braun,Grimm,Keitel; Lawrie,Schäfer-‐Nameki; Borchmann,Mayrhofer,Pal8,Weigand; Cve8č,DK,Piragua; Grimm,Kapfer,Keitel;Braun,Grimm, Keitel; Cve8č,Grassi,DK,Piragua; Borchman,Mayrhofer,Pal8,Weigand; Cve8č,DK,Piragua; Cve8č,DK,Piragua,Song; Braun,Collinucci,Valandro; Morrison,Taylor; Kuntzler,Schäfer-‐Nameki] Unlike well-‐studied [Kodaira; Tate;Morrison,Vafa; Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa; Candelas,Font,…] Recently: [Esole,Yau;Marsano,Schäfer-‐Nameki; Morrison,Taylor; Cve8č,Grimm,DK,Piragua; Braun,Grimm,Kapfer,Keitel; Borchman,Krause,Mayrhofer,Pal8,Weigand; Hayashi,Lawrie,Morrison, Schäfer-‐Nameki; Esole,Shao,Yau] Outline & Results SystemaQc construcQon of Abelian sectors in F-‐theory of general • in Exemplify explicitly for 2. Develop gauge group to study such geometries spectra (also with non-‐Abel groups) G4-‐flux • of toolbox: CICY in P 3 ( group), ellipQc curves in 16 2D • moduli space of F-‐theory: A very brief summary F-‐THEORY COMPACTIFICATIONS G4-‐flux & 4D maher chiraliQes [Cve8č,Grassi,D.K.,Piragua] 3) for F-‐theory on X4: Geometry: (verQcal) G4-‐flux in HV(2,2)(X4 , Z/2 ) requires computaQon of [Wipen] of CY 4-‐fold Example: explicitly for family of G4-‐flux is with P3 properly studied in M-‐theory 3D M-‐/F-‐theory duality: F-‐theory on S1 = M-‐theory • In ⇥M AB = Z informaQon of verQcal X4 • M-‐/F-‐duality for CS-‐terms relates – use to – use to derive G4 ^ ! A ^ !B [Gukov,Vafa,Wipen; Haack,Louis] of F-‐theory See also: [Hayashi,Grimm; Cve8č,Grimm,D.K.; Grimm,Kapfer,Keitel; Braun,Grimm,Keitel] extend earlier condi8ons: [Dasgupta,Rajesh,Sethi] 22 ApplicaQon of toolbox APPLICATION 1: RANK THREE CURVES 23 EllipQc fibraQons with three raQonal p oints [Cve8č,D.K.,Piragua,Song] Similarly for ellipQc fibraQons with 3 U(1)’s: Bl3 P3 • EllipQc curve with rank 3 Mordell-‐Weil group: Calabi-‐Yau of E over given base B F-‐theory vacua points in – miraculous structure of singulariQes: in 6D found for general base B 6D Anomalies cancelled ✓ 24 7 7 Bb B2 ˆ7 S9 ˜ b 4S ˜7 S ˜7˜ [s8 ] · [s18 ] (0,1,1) ˆ+˜Sˆ7 S˜17B2 3[K S + , 122 B ]S b 9([p b ]1 )S91 == [˜ s[˜ ] · S 17S119 ˜ 9 ˆ ˆ ˜˜7 ˆ 1 b b b b b2 ]2bb˜ =7 2[K 2[K ] ˜]S +923([p 3([p ]˜ ))2[K +)S2[K 2[K + 3([p 2[K 3([p )7SS ˜˜77 + ˆ]S)Sˆ+4+ s3 ] · S7 =[s8[˜ ]s· ][s·18 ] xx[s +S4[K 3[K 9([p ]+ 4S]]S 4]S)b2S 7S , ]BBS˜75]]SS 1ˆ bB3([p 773([p (1,1,0) 7S 2+ ]S 7ˆS = ] + ] S + 3([p + 2[K + 3([p B B ˆ ˆ ˜ x = ] ] ) ] 3([p ] 9S 22S 27]79)9S772[K 2)]S,) (1,1,0) 2 (1,1,1) +3([p ] ) S + S 2[K ]S 9([p )S S S S + 6S B B x S ] · [s ] B B B 7 9 3· S (0, 1,1) = [˜ ˜7 [s8 ] 8· [s18 ]18 B x s ] 1 b b b (0, 1,1) ˆ ˆ ˜ ˜ Starting theb counting, the4[K singularities were found in P72 + the bwith 2) 2[K ] )S7 x+(1,1,1) 3([p ]bˆˆ· )SS2[K 2[K 3([p 3]S 1simplest ˆBbb ]S7 1˜ ˜ 2B bb] ˆ ˜ 3([p b b ˆˆ b ˜2 bb 22 as ˆˆ(1,1,1) ˜= ˜]˜ ˜ 2S 2S ˜SBl b 2+ [p2 ] b· S 3S 12]S3[p ==Starting ([p c [p ] · ] S S S · 2S 17S 2˜˜ b2[K b792 ˜, 172B + S S 3[K 9([p ] S + 7S x 4[K ] 3([p ) ] S 3([p ] ) S ] S 3([p ) S ˆ ˜ ˜ ˜ ˆ ] ]) 7bcounting, 1=··S 7b + 2simplest 7+ 29([p 9)S 71B 9as ˆ ˆ ˜ ˆ ˜ ˆ ˜ 99([p 77S 99 77˜ 99]·P ]+ ]1b··])S 299 7]S 2,],2S with thethe singularities were found in Bl the B B B + S S 3[K ]S ] )S S S S + 7S ([p ) + [p ] · S + c S + [p ] · S + S 3[p ] S S · S S S + x = 2[K ] 3([p ] ) + 2[K S + 3([p ) + 2[K S + 3([p ] ) b b 2 S S + 2[K ]S + + S + S S 8S , 7 9 ([pb ] 27) + 7˜ + 37 99 229S 27Bb9 27b 79 ˜ B (1,1,0) ˜27 B2+˜2Swere ˜7calculated ˆPtheir ˜S,77 · S(4.46) 7simplest ·S 99 97S B Bsingularities , = ([p [p]b2 ]· 7Smultiplicities · the Sˆ+ c [p · S 3[p · S + 2S nishing of2 two=with coefficients The are from classes Starting the found in Bl as the ˆ ˜ ˜ ˜ ˆ ˜ 2) counting, + 1S [p 2·] directly 2·] S S 7S· S 92 2S b ] + [p c · + ] S + S 3[p ] · S · S + , ˜7 S7their 2 The7ˆmultiplicities 1˜7 +17 2are 911 classes 9b ˜ 12[K bb9 b 2[K ˆˆ+ ˜˜7, (4.43) 2S˜Sˆ7+ ]S29([p 9([p )S 5ˆ2Sˆ3([p + 5ˆˆS (4.46) vanishing of two coefficients directly calculated from 159 22 ]SB3([p 9]bb+ ]b 7+ S59S , 28S 4[K )2279([p ]]S )S 2[K ]]9SS 3([p ˜77 2S= + SS + S 8S (4.46) 77 22˜]]7from 22]]b))S ˆS ˜2[K ˜S (1,1,1) B ]]B3[K B B 7= 1are ] )S )S 973([p 977S xx(1,1,1) 4[K 3([p ] ) 2[K S ) S 2[K 3([p S vanishing of two coefficients The multiplicities directly calculated their classes +7 S ]S ] S + 7S , 7 7 S7B 9 9 B B (4.43) B (4.43 Charges Proceeding MulQpliciQes in aqsimilar wayqfor1 the hympermultiplets (1, 0,˜ 1), (0, 1,21) and (1,(4.43) 1, 0) b Loci q Multiplicity ˆ ˜ ˆ Q R S 1S ˆ ] b)S + 5bSˆˆS + 5S˜ S ˜ 8S , b ˜ b 2 S + 2[K ]S + 9([p (4.46) ˆ ˜ + 9([p 99 +2 ]5S 77 S]9S qqB2QS]77Sqq77R3([p Multiplicity xLoci =in of 4[K ] for )B 2[K 3([p )S777S99 (1, 2[K 3([p )S7 (1, 1, 99 1) B ]S + 2[K + 50, Scharge 8S ,2 ](1, (4.46) S 2q (1,1,1) B ]S27] )S B Proceeding a multiplicity similar way the hympermultiplets 1),91,7(0, 1, and 0) we get the orders vanishing Loci Multiplicity Proceeding in a similar hympermultiplets (1, 0, 1), (0, 1) and 1, 0) we the notation x for the of hypermultiplets with Q way R for qthe S (q(q ,q ,q ) s = s = 1 [s ] · [s ] (1,1,-‐1) Q R S weused used the notation x for the multiplicity of hypermultiplets with charge 18 18 ,q ,q ) 1 b b b Q R S ˆ ˆ ˜ ˜ sthe ss18 = 11the 1)multiplicity [sˆ8]]B·b· [s ]hypermultiplets whereweweused used the x hypermultiplets with = 18+ xorders =0 ]) +for + ]]S +19([p 2[K ][s Sof 3([p S57S˜ S13[K ]2S,7(4.42) +(4.42) 3([p S7 (q,q ,q we get the orders of 12[K 22 b3([p 2the bcharge 21 2] ) (1,0,1) Q R ˆS117,q ˜Sfor the x2[K multiplicity with B ˜7 B ˜7charge snotation = = [s ]2of we get of vanishing (q ,qvanishing )S S+ 2[K ] ·hympermultiplets )S 5bclasses, SˆSˆ S29] +)3[K 8S (4.46) multiplicities, 18 872]+ ,R q, SqS).).where Calculating the other without expanding the classes, we obtain x9notation = ] 3([p ] ) + 2[K ] S 3([p ] ) S + 3([p ] ) S Q0 R 7similar 9+ 918+ 77 7B (1, 9]obtain (4.42) 2 (1,0,1) B B B s = s = 0 [s [s ] Calculating the other multiplicities, without expanding the we Proceeding in a way for the 0, 1), (0, 1, 1) and (1, 0) 19 19] x( 1,0,1) xthe Charges xwithout x( (0, xand ss9 = ss19 = 00Loci 11 x˜(1,1, 1)without [s99]] ··xhympermultiplets [s (0,1,2) (1,0,2) (0,(1, 1,1) 1, we 1, 2) (0,0,2) (1,1,1) Proceeding in0 a ˜similar for 0, ˜1), 1, 1) (1,x1, 1, 0) , q , q(0,1,2) Calculating the other multiplicities, expanding classes, 19 S ).Calculating 1[sthe way b 2obtain (q(q the other multiplicities, expanding the classes, we obtain = = [s ] ˆ ˆ 19 19 Q ,QqR ,RqS ) +2 S S + S + 2[K ]S 9([p ] )S S S S S + 6S , QS Q b 7 9 9 we= get the of vanishing x ˆ07Loci ˜ vanishing ˜70x s10 = sget 0Sorders [s [s ] x5S(ˆ701,0,1) Charges x7(1,1, x(0,1,2) x4S x6S x(1,1,1) (1, 0, 1) g= = g+ 0+(1,1, 022x]S 4x20 4, x +2 S˜71 S= )S S S1,1) 1)9 B (1,0,2) (0, ( 91, 1,(0,0,2) 2) (0,0,2) 20 10 Charges Loci x10 x9(0, (1, x1, we the of ss10 ss20= 002[K [s09([p ]]2··]x·[s [s 920 1)B (0,1,2) (1,0,2) (]] 1,0,1) 1,1) (9 + 1, 1, 2) (1,1,1) 7x orders 91 Proceeding in a similar way for the hympermultiplets 0, 1), (0, 1, 1) and (1, 0) = = [s ] (1,0,2) harges Contained in Loci Multiplicity 10 20 10 20 QS Q RS R ˆ b QS = Q Charges Contained inContained Loci (1, 0, =] 00+]b03([p 02 ]3[K x ) 1Multiplicity 3[K S047 + 0bMultiplicity 3([p ]b )ˆ Sˆ027 + S 1, 1) gorders = g= = 40Sˆx B 02x0+ 00ˆ72 +12[K 192[K 2in Charges (0,1,1) (1,x(0, 0, 1) gthe 0Loci 4+ ]3([p 4]S˜7xB44]S˜70 x00 x11 gin ˆMultiplicity 6= 99B 2[K Charges Contained Loci we get of vanishing = ] + 3([p ) ] ] ) S S + 2[K Charges Loci x x x 7 (0,1,1) ˜ (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 2) x(0,0,2) x(1,1,1 RSB R Q RLoci QR ˜ Charges x x277(0,1,2) x88(1,0,2) x˜(]] 1,0,1) x0(0,B 1,1) x(141,1,are 1,1,0, 1)1) proceed s˜s˜3to = s˜(1, = 00 g RSggsingularities [˜ ss433B]]dP ··04S [s ]0·· [s [s (-‐1,0,1) (1,1, 1) 1, 2) 771) 18 0, = s ˜ = [˜ S [s ] hen we to the apparent in the picture The multiplicities Then we proceed the apparent singularities in the picture The multiplicities (0, 1, 1) = g = 0 0 0(0,0,2) 18 0) 0 QS Q (0, 1, = g = 0 0 12 , 11(1,1, b b ( 1, 0, 1) s ˜ = s ˜ = [˜ s ] · S [s ] · [s ] ˜7 27] 0multiplicities ˜= ˆ7 S˜07 dP ˆ ˜47 S0are Then we proceed to the apparent singularities in2Sthe The are 6= QS Q 31)6s 79g 3bS 8[s 18 picture (1, 0, = g 0 0 +3([p ] ) S + + 2[K ]S 9([p )S S S S + 6S ( 1, 0, 1) s ˜ ˜ = [˜ s ] · [s ] · ] b 2 9 9 18 9 B ˜ ˆ ˜ ˆ ˜ QR Q ˆ QR (1, 0, 1) gQ = gand = 0the 032]xB1·(0,1,2) x1(1,0,2) 4b·]xthe 040loci 0x5(11S71,˜Staken 4b6S0x9(0,0,2) 0(1,1,1) 111 +3([p ] ) S + S S + 2[K ]S 9([p )S S S + , 1) s ˆ = s ˆ = [ˆ s S [s ] [s ] Charges Loci x x x 7 9 9 b b b (1,1, 1) ( 1,0,1) (0, 1,1) 1, 2) 7 18 (1, 1, 0) g = g = 0 0 given by the multiplication of the classes subtraction of loci already (4.47) , 1, 1, 1) s ˆ = s ˆ = RS R 1 b ven by the multiplication of the classes and the subtraction of the already taken (1, 1, 0) g = g = 0 ˆ ˆ ˜ ˆ77 + x 8[ˆ 2[K ]2 ]= +) 3([p 2[K ]ˆ S )03[K ]S˜ given by the multiplication the classes of = 2[K +9= 3([p + 2[K )the Sˆ·7718 ]S·˜018 3([p ]44)S˜27] b)S˜7 00 R (0, 1, 1)= g2and 0the 03B+]S 44B1 3([p 11 (0, 1, sˆ6= sˆ= 0= s0]0·3([p ]Sˆ S2ˆ]b]7loci [s ]taken +23([p (1,0,1) B+ Bg 7[s (1,0,1) (0, 31) 79g]gRS 33([p 83[K 1Q b ]subtraction 2) QS 6= 9+ B·2[K (0, 1,(0,-‐1,1) 1)1) s0, ˆxof s6ˆhypermultiplets = [ˆ s747and ]2+ [s ]already [s ]18 ˆS778[s = 0 0 31, 7B 3+ x = 2[K ] 3([p ] ) + 2[K ] S ) S + ] S + 3([p ]0 )S7(4.47) Finally for the (1, 0, 0), (0, 1, 0) (0, 0, 1) we obtain the degrees [HP: (1, 1) g = g = 0 0 1 1 b b b 2 (1,1,0) 1, 2) s ˜ = s ˜ = or s ˆ = s ˆ = [˜ s ] · S [s ] · [s ] = [ˆ s ] · S ] · [s ] QR Q B B B ˆ ˆ ˜ ˜ (4.47) 9 9 10 20 9 19 , into 1, 2) s ˜ = s ˜ = or s ˆ = s ˆ = [˜ s ] · S ] · [s ] account in the first case For example the singularities at the loci s ˜ = s ˜ = 0, x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S + 2[K ] S + 3([p ] ) S to account in the first case For example the singularities at the loci s ˜ = s ˜ = 0, 9 10 20 9 19 7 b [s 7[s loci 7] 227 [s QR into (account at ˜[ˆ s˜79 [s = (1, 1, 0)For gs = 005] S= 11·927[s 304·S˜S 1S 1singularities bthe Bˆ B ( 1,1, (-‐1,-‐1,-‐2) 2) s˜(1,1,0) s˜1, = 0or s6ˆ= ˆ= = 07(1, [˜ ·9([p ·(0, ] ·19 [s 00] 11 3s = RS ˜Q ˆ[ˆ = 91, = 92 20 1,1,in2)the s˜first s˜case = 00) sˆ = 0the [˜ ]s119(0, · ]S [s ]2102·00]][s = sB4we S ]0, How can we center this ˆor ˜ˆ9R92˜ ˆ097]S +2 S + S + 9([p )S Ss + (1, g˜g8example = = 00˜0, 02and 09the = 9for 82[K 10 20 80S 9+7 S 9,6S 7gS 91, 9]˜7·8 94the (0, 1) g7s gS 0s]S 4]S 0Sˆand ] 19[HP: Finally the hypermultiplets 0, 0), (0, 0) 0, 1) obtain degrees ,[HP: +2 S S + + 2[K ] )S S S 6S Finally for the hypermultiplets (1, 0), 0) (0, 0, 1) we obtain degrees B1, 6= 97·table] b 9 ˜ B ˆ ˜ ˆ ˜ ,0, 0, 2) s ˜ = s ˜ = or s ˆ = s ˆ = S S [s ][s ] = · S [s ][s ] ininthe coefficients read = s8s848+ s18 s9ˆ49s )S 0, contain 0,that s(0, ˜77 original =original s˜99 = 0How or sˆ7can sˆ = S+ ] 7S +s Ss ]Sss 9([p S+7+ S + 9read 99Bss 9S 18 16 18 ˆ][s 220 7s= 98 9·20 we 9+ 7s 19 10 atthat in2)the original coefficients ss1ˆ7B= + = (] 9)S s19 ss= )S7= = 0, the read s7QS s9621·63[K + ))b˜ = ss[s s[s )10 = 0, contain QR ,contain ˜( ˆˆ919 18 6]S 16 ˜19 18 19 90 s˜= s= ˜1, = 0or ˆ((S = 0s16 ·999(2(S [s1][s ][s] 20 ] (4.47) How center table] Sˆ7or S 9([p )S S 40]sS˜9= 7S , 92[K center this table] (4.47) = we 7123[K 70 19 ][s 97b]S18 10 14S bS 227]S 299 S (0, 0,0, 2)2) s˜coefficients s ˜ = s ˆ = s ˆ = · S S · S [s 772this 9][s 9ˆ2+ (1, 0) g g 1 ˆ ˜ can 9 19 10 20 (0,0,2) 1 b b x = 2[K ] + 3([p ] ) 3[K ] S + 3([p ] ) S + S + ] S ˆ1,0,1) ˆ7x2+ ˆ0, ˜of Finally for thethe hypermultiplets (1, 0,(]S 0), (0, and 1) we obtain the [HP: 0)]1,1) 71,+ degrees (0,1,1) 12 Loci xone xthe x0, x1, x(1,0,1) xb(0,1,1) x(1,1,0) 7x(0,0,2) Bx2After B B 12 (4.44) the loci s = s = with degree the subtraction, the multiplicity the x = 2[K ] + ] ) 3[K + 3([p ) S S 2[K ] S (1,1, 1)3([p (0,1,2) (1,0,2) (0, ((0, 1, 2) (4.44) 1 b b 7 (0,1,1) 18 Finally for hypermultiplets (1, 0), (0, 1, 0) and (0, 0, 1) we obtain the degrees ˆ ˆ ˜ ˜ the loci s = s = with degree one After subtraction, the multiplicity of the B B B e loci s8 = 8s18 =18 with degree one After the multiplicity the x(1,1,1) ] this ]S7 b3([p ]S7 of )S7 [HP: (4.44) 14[K 12[K 12[K b3([p the b3([p ] ) subtraction, ] )S ] (4.47) Q How Q can= (4.44) B B B ˆ ˆ ˜ ˜ we center table] xthe == ]be 3([p ) xtable] 2[K 3([p )(the S1,7 x1,(codimension 2[K ]S7xˆ(0,0,2) 3([px2 ](1,0,1) )S7 x(0,1,1) g(1,1,1) =Loci g12 04[K 1is 02this 11,0,1) 1,x 0(1,0,1) Loci xcan x1) x x x0(1,1,0) x1(1,1,1 11,1) b]x(1,0,2) b2) xany 20]x1,1) x x(0,1,2) x](1S(0, x]S x(1,1,0) B B B(0,0,2) How can we center (1,1, 1) (0,1,2) (0, ˆ(using ˜1,0,1) (1,1, (1,0,2) (0, 1, 2) with charge (0, 1, 1) calculated as st hypermultiplet two multiplicities in table calculated of +3([p S˜7˜+ 21be S 2[K 9([p0,codimension ]1) )S 4S 5degrees S˜x17(0,1,1) S9 +2 6S ast twoThe multiplicities in the table can be calculated Finally for the hypermultiplets (1, 0, 0), 1,Bb0) and we obtain the [HP: bis b(0, (1,1,1) 2] ) 7S + using any 9ˆ of S9˜ hypermultiplet with charge (0, 1, 1) calculated as , ˜ ˆ R R Q Q ypermultiplet with charge (0, 1, 1) is calculated as last two multiplicities in the table can calculated the codimension Q Q +3([p ] ) S + S S + 2[K ]S 9([p ] )S S S S S + 6S , 21 70 7be0 5S 7˜the The last two multiplicities in the table can calculated codimension ˜7 + ˆ17any g=12 00we 1012[K 01 92 ]0)Susing 11of 01 10 1(4.46)11 g9 g= g= 0= 1ˆcenter 1+Bb9([p 17 9, x g99How = =Loci 1]S Sˆ(1,1, S˜b9 x+ 5S 8S 00(0,0,2) 12 g can Sthis 70S9 B ˜712+ ˆ9710+ x xtable] x9(1,0,2) x(0, x(1,1,0) (0,1,2) (+ 1,0,1) 1,1) ( 1, 1, 2) ,x (1,0,1) 1) 5ˆ 1x ˜ sub-loci bx 2 ] )Sx b x ut inineach case we have subtract the right S S 2[K ]S + 9([p S S + S S 8S (4.46) Sto S12 but each case we have subtract the right sub-loci Rgto R ˆ ˜x(0,1,1) 9 9 R R Loci x x x x x x x01(1,1,0 B x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S + 2[K ] S + 3([p ] ) S = g = 16 16 1 16 16 1 (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 1, 2) (0,0,2) (1,0,1) (0,1,1) loci,but butinineach each case we have to subtract the right sub-loci g = g = 1 0 1 0 1 7 7 (1,1,0) Q Q 1 b b b B B B g = g = 1 0 1 0 9+ 12+ loci, case we have to subtract the right sub-loci ˜7 ˜S˜7Sx 12 g·12 = g]]Q = 0]1 2+ 3([p ] )b 20+ 2[KB1 1]Sˆˆ 13([p2 ] b)S 0ˆˆ7 + 2[KB 1]S˜˜7 + 3([p ]b )1S = 2[K + Q xx = [˜ s ] · S [s ] · [s (1,1,0) ˜ 12 S B = [˜ s ] · [s ] [s 18 (0, 1,1) S S x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S 3[K ] S + 3([p ] ) S 3˜ 18 (0, 1,1) g g = 1 1 Loci x x x x x x x x x x x (1,1,0) (4.48) 7 7 (1,0,1) = in1(1,1, 16way 1Bthe 160,(0,0,2) 12(1,0,1) (1,0,2) ( 11,0,1)b1 (0, 11,1) 16 ( 1, 16 1, 2) (0,1,1)1 0(1,1,0) 11 R 9R gfound 0from 16(0,1,2) 16 16 10and 12+ [˜ shypermultiplets [sg=89+ ]g·= [s ]=Qg12 ally for the hypermultiplets found the WSF, start with (1, 1, 1) ˆ116 ˆ7 S ˜ ] · S7 g9+ 18 0, 1,1) Proceeding afound similar for hympermultiplets (1, 1), (0, (1, 0) 1(1,1 g12+ = =B + 11) we WSF, 1S 1B7the , 1, 1) nally for= the from the WSF, the charge (1, 1, 1) 1]0ˆ 17S 2˜ b1 ]S 2the b9with b 1) R R Q S S 3[K 9([p )S 4 S S + 12 ˆ ˜ ˜711 1, 7 9 Finally for the hypermultiplets from we start charge (1, 1, B x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S 3[K ] S + 3([p ] ) S Proceeding in a similar way for the hympermultiplets (1, 0, 1), (0, 1, 1) and (1, 1, 0) g = g = 1 0 1 0 b Finally for bthe hypermultiplets found from the WSF, we start with the charge (1, 1, 1) g = g = 1 1 1 7 (1,0,1) 1 b b b (4.48) ˆ ˜ ˆ ˜ S S 12 B 12 ˜,7 +16 ˜7 subtraction the multiplicites (4.48) 01 bx b9 16 9B]Sˆ714 b 2˜ + S 3[K ]S ]˜12)S S73([p 4SˆS77 S + 7S b)22After bS 212 = 2[K ]vanishing + )9([p + 2[K ]˜ˆS )ˆ ]9SB 3([p ]b 1)+ S 1are 3([p b+ · 2S ˆ= ˜˜77Bof ˆ793[K ˜ gb9RS(1,0,1) = = 0S 1˜ 16 15 16 7S 71 2 ]S ˆ ˜ ˆ ˜ ˆ ˜ ˜ B we get the orders S Rg Bby B 19 b12[K 216 bS 9+ 12+ = ([p ] + [p ] · S + c · S + [p ] · 3[p ] · S S · S S + 2S , 01 ˆ ˜ ˜ the degree of vanishing of the other loci are given +2 S + S + ]S 9([p ] )S S S + 6S , = ([p ] ) + [p ] · S + c · S + S 3[p ] · S · S S · S 2S scase, case,In the degree of vanishing of the other loci are 2 2 7 1 b b b g g = 16 1 16 16 1 g = g = 0 1 0 9 9 2 7 9 9 = 2[K ] 4[K +multiplicites 3([p ]b )2other + Sare 3([p )by S˜72by ]S7 +]S˜3([p ] )S weAfter ofB=the vanishing 9˜ ˜79 , 1(4.48) B 2[K 72]2[K b the 99+ 12vanishing 12+ In this case, the degree of loci are + 2bb] 3([p 23([p (1,0,1) After subtraction the multiplicites are ˆoforders ˜ ˜other ˆ B B2[K xof ] 2]the 3([p )loci ]Sˆ7given ] )3[K Sˆˆ7S this case, degree vanishing of the given 1˜ 2S ]+ 72S 27] )S (1,1,1) are ˆ ˜ ˜ ˜ B B3[p B = ([p ]b )2the + [pxxget S + [p · S S ] · S · S · + 2S SS7 + S c1 · 1 b b b 2(1,0,1) ] g·subtraction 7 9 +2 S S + S + 2[K ]S 9([p ] )S S S S S + 6S , b , ˆ97ˆ1 9([p ˆ97ˆ5Sˆ716 21] )bS 94S 3([p ˆ717S3([p ˜77 +2S = g12+ = +2 16 B]S7 16 ,] )bS 0(4.48) 1]12S 1]9S b7 22 2[K 9˜71 4[K ]˜]16 2[K 3([p 2[K ]1˜S7˜ 9+ = Sˆ2[K S 6S ˜x 9]b )x 7˜9 1+ 2Loci ] )S 92 x B B are B(0, 7)b)+ 1, B 1) x(1,1,1) = 4[K ] 3([p 2[K ] S 3([p S + ] S 3([p ] ) S ˆ ˆ ˜ Charges x x x x x b 2 7 7 (1,0,0) (1,1, (0,1,2) (1,0,2) ( 1,0,1) 1,1) ( 1, 2) (0,0,2) After subtraction the multiplicites ˆ ˜ ˜ ˆ ˜ x = 2[K ] + 3([p ] ) 3[K ] S + 3([p ] ) S + S + 2[K ] S BxS B+ 6S 11 B 2b ,x (4.43) 2+ 12 ]]b)S 2ˆ+ (4.43) (0,1,1) ˜ +2 S2B7BQS S Sˆ27Q + 2[K 9([p 55S S(0, S 711,1) Bare Charges x x]S x(0, xb )(99x x(4.48) 1Loci b˜ 72 + 9ˆ 7x 7S 21the S 2[K ]S + 9([p )S Sˆ7ˆ2[K 524 S ,1S˜˜ (4.46)(1,1,1) 1) (1,0,2) 1,0,1) 1, 8S 1, ]792) (0,0,2) (1,1,1) ˜ 7]S 9) 1(1,0,2) bB 2(0,1,2) bS 21(993([p B After subtraction multiplicites 72(1,1, 21,1) 99ˆ+ 7(0,0,2) arges Loci contianed in x x x x x ges Loci contianed in x x x x x x 1 b b b ˆ ˆ x = 4[K ] 3([p ) 2[K ] S 3([p ] S + ] S (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) ( 1, 1, 2) (1,1, 1) (0,1,2) ( 1,0,1) 2) (0,0,2) ˆ ˜ ˜ 1 b b 7 7 Charges Loci in x]0(0,1,2) x x x x(0,1,1) = 2[K + ])x )B 3[K + 3([p ](0, )+ SBx708S (1,0,0) ˆ071,1) ˜B7 x b ]S Charges Loci contianed x=3([p x x]92(0, x(+ B B71,1) 1,0,1) xcontianed = 4[K ] (1,1, )29]2+ 2[K 3([p S 2[K S21, ]0 (0,0,2) )S(4.46) (1, 0, 1)in gS = g]3([p 0B7](Sˆx]7S 42]S 1) (1,0,2) (+ (]+ 2) Q ˆx ˜x ˆ47 S ˜S B 2[K 1) (0,1,2) (1,0,2) 1,0,1) 1, 2) (0,0,2) = 2[K ]0 3([p ])+ )2S + Sˆ+ 2[K ]S3([p 213([p 72[K 27 0(4.43) 92+ (0,1,1) B1] )S S + 9([p S ,1 ˜1, b5S B B After subtraction multiplicites are (0,1,1) 7B˜ 70S297 (1,(1,0,0) 0, 1)x00 g6QS2 = g6(1,1, 093[K 02+ ˆ ˜ ˆ ˜ 91 4B 1ˆ 941 + b= B b]S 17972the ˜ b 12]S b b4 1˜ 21 b7 S b2 ,˜ ˆ ˆ RS R ˆ ˆ ˜ S S S 2[K + 9([p ] )S S + S S 6S , ˆ ˆ ˜ 1, h = h = 1 9 , 1)1) h = h = 0 +3([p ] ) S + S S + 2[K ]S 9([p ] )S S S S S + 6S x = 2[K ]20˜= + )71127B ]S4B ]2 )S27]0b9+ S ]7S 02 ] 90 = 4[K ] )3[K )0Sb0 2[K 3([p 1, 9]S 2[K 7 94 11, 1, 1)0 g4[K g]7the 09with ]3([p 7b 1+ 13([p 1]S 27 = b)S˜70 0023([p 7˜ (1,0,0) (1, = hxx= = 1B2[K 7++ B B2[K B 20 2˜ 1)1)22the = h1) 100+ 0hypermultiplets 41), B B ˆ3([p ˆ5)S 6R (0,1,1) ˆQ6RS ˜RR7ˆ= 1h 2(0, ˜7+ ˆ 1hympermultiplets b9bsimilar 2)S where(1, we used thehnotation notation x for hypermultiplets with charge where we used x multiplicity of charge = ]S7ˆb9S )7˜102+ 2[K ]S 3([p ]ˆ)S )]S 2[K S 3([p ]+ (0, 1, gS gQR = 41 0)S 0ˆ+ 4]4 06S 22[K 2˜ ˆ17S ˜6S Proceeding in a0]S way for the (1, 0, (0, 1, 1) and (1, 0) S S ]S 9([p ]BBof S S + S 6S , (q ,q ,qS+3([p (q ,q ))92for ]˜ )S˜S˜773([p S + ]S 9([p S S S S 6S , 2ˆ 7b+ 2]9bS 70S+ 7S 191, (1,0,0) ˜ ˜ S Q 7,q 29([p 7 B B 9 7 +3([p ] ) + S 2[K ]S 9([p S S S + , Q B B 1 b b b 9 9 S S 2[K ]S + ] )S S + S , ˆ7 3([p ˜˜7(4.45) 7g6171Q2b2= 1 ]0 2[K ˆ2 1(4.45) 7˜7 3([p 73([p (1, 1, 0)QR g9way =multiplicity 09b2]]bbb))S 0+ 19] (4.45) B 12[K ˜ x0) 4[K ]+ ]2˜2)+ ]0S b)2S 1,00) 7+ 2and (1,0,0) ˆS+ ˆSˆˆ+ ˜2[K B ]expanding B BS(4.45) ˆ ˜1) ˆ0270, ˜we here notation x(qother for of hypermultiplets with charge Proceeding in the (1, 1), (0, 1, (1, x(0,1,0) = 4[K 3([p ]ˆ˜]b012b7722)for 2[K 3([p S ] S we get the orders of vanishing (1, g6= = 0hympermultiplets 091+9([p 0)S 0S x1, =,q 2[K ]ˆˆ)7= 3([p ) + S 3([p ] ) S 2[K ] S + 3([p ] ) qused Calculating the other multiplicities, without the classes, we obtain +3([p S 2222S S + 2[K ]S 9([p ] )S S S S + 6S , (q(q , q, R , ,qqSS).).the Calculating the multiplicities, expanding the classes, obtain 7 ,q1a )similar (1,0,0) 7 7 (1,1,0) S˜˜1˜1the 2[K ]S ] S S + S S 6S , Q R 770 9 B B B Qwe Q R S Bg2]9]S B b b b QR B 9 9 b 1 22+ b b b QR 1 b b B2[K ˆ+ ˜973([p ˜7(4.47) ˜+ ˜˜ ˜ ˜2QR x = + 3([p )Bfactor + S ]= x =of 2[K ]2 ])2[K + ]Sˆ]9([p 3([p )2+ + S + ]QR S S23([p S7]]2 ]+ S + ]factor )S Sˆˆin S+ + S S ,(4.47) x(0,1,0) = 4[K ]is2[K )223([p 2[K ]missing Sˆ2[K 3([p ]+ Sˆ3([p S7ˆ)4of 1is 12+ b7to 78 772[K (1,1,0) inthe the column is related to some missing sˆ2ˆS]ˆ18 gBand = 7S 23([p 7] )S= (1,1,0) 7B 9ˆ 2)and 922[K 11,in column xxthe related to some missing of s]2b3([p g6S6B5]s2[K B B B]77S B 7]S 7]2b]9 7S ˆ2[K ˜6S 9)g (1,1, 1) is 1B 7s B (1,1, 1) we get the orders vanishing The in column x related some missing s s in The in the column x related to some factor of and in g = ˆ ˜ ˜ ˜ x = 4[K ] 3([p ] ) + 2[K ] S ) S S ] S 18 (1,1, 1) 18 (1,1, 1) 7 (0,1,0) q , q ) Calculating the other multiplicities, without expanding the classes, we obtain S S S 2[K ]S + 9([p )S + S S + S 6S , 1 b b b B B B Finally for the hypermultiplets (1, 0, 0), (0, 1, 0) and (0, 0, 1) we obtain the degrees [HP: )˜ +x bS Q R S 7˜ b1]S 2ˆ 9] ) ˜ˆ 92[K 92 +x ˆ0) ˆx ˜7 x 13([p 1+ 7S b 2[K 91,12 ]1,˜)S B ˆB7 S ˜27]7]b )+ ˆ+ ˜3([p Charges Loci x xSˆ(1,0,2) x x(1,1,1) ˆ79]22S˜+ x(1,1,0) =right 2[K 3([p (1,1, 1) (0,1,2) (b9+ 1,0,1) (0, 1,1) (72S 2)[HP: (0,0,2) + S 3[K ]S 9([p ] )S S S 7S , 2ˆ]3([p 2S 7]4 7the 3([p S S 2[K ]S + 9([p ] )S + S S S 6S , Finally for the hypermultiplets (1, 0), (0, 1, and (0, 0, 1) we obtain degrees x = 4[K ] ] ) + 2[K ] S 3([p ) S S 2[K ] S B B 10, b991 24 9 7 7 b 0.Thus Thus in order to obtain the spectrum we have class instead of 7 (0,1,0) B ˆ ˜ ˆ ˜ 1 b b B ˆ ˜ ˆ ˜ in order to obtain the right spectrum we have to add that instead of B B B b b ˆ ˆ ˆ ˜ Charges Contained in Loci Multiplicity How can we center this table] S S 3[K ]S 9([p ] )S S S S S + 7S , R Thus order to obtain the right spectrum we have to add that class instead of Contained in Loci Multiplicity RCharges ==0.0.Thus inin order to obtain the right spectrum we have to add that class instead of ˜ ˆ ˜ ˆ ˜ + S S 3[K ]S 9([p ] )S S S S + 7S , QS Q 7 9 9 (0,1,0) x = 4[K ] 3([p ] ) + 2[K ] S 3([p ] ) S S 2[K ] S 7 9 9 3([p ] )Sg]67this S + ]x)S +S2ˆ5S S +S42[K S B 22 xB0]S9 11 9ˆ2ˆ (0,1,0) b1B2˜ b2[K 7 S1,9 1˜ B2) B How can we0, center 24[K 7gx 7=B]˜ 7(0, (1, 1)Loci =Stable] 0 +723([p 9x,76S ,0x(1,1,1)1 ˆ9([p ˜76S Charges x x˜0+ x (1,1, (0,1,2) (1,0,2) (4229 1,0,1) x(0,1,0) = 2[KB ]ˆS ]b]bbb))S 2S S 3([p S 2[K ]S 5S 4S]1,9S 1ˆ7b2bS b1 B 74b9S 1)S 2)]S 27)1) + 21B 72 b 3([p 971 49([p 17S 91˜(+ 7S b b(0,0,2) ˆ ˜ ˆ 71,1) B ˜ b ˜ 1 2 ˆ act it ˜ RS R + S S 3[K ]S 9([p ] S S + , ct it ˆ ˆ ˜ 1 b b ˜ ˆ ˜ ˆ ˜ ( 1, 0, 1) s ˜ = s ˜ = [˜ s ] · S [s ] · [s ] x(1,1,1) = 4[K ]6 (1,1,1= 3([p ] ))902S]+ 2[K ]9] 2)1,1) 2[K ]23([p )S˜4([p 70B 7Q 2B2[K 97 770 92[K subtract QS ˆ3]S ˆbb8x ˜97(0,0,2) ˜7b6S 1+3([p ( subtract 1, 0, 1)it.it Contained s˜x s˜ = ]ˆ3([p Sx3([p ·9271,0[s ]2)ˆ]07SS 27 2[K b 20 74[K 7x 27 x(0,0,1) =Loci ](0,1,2) 2[K ]xBS([˜ 4([p )]SS2[s S18 + 2[K ]S ],7)1Sx7 (1,1,0) ]2b1)gb)B9S˜223([p )S + 52[K S S S Charges in (0, 1, 1) g] 3([p = 41,0,1) 0](27Sˆ ˜473([p B 33x= 729([p =Loci 4[K ]24([p S )27]S ]9S 7]s 23([p 7]8 x x273([p x 7)bS 9·7Multiplicity 7x4 9] )S 113 2˜ 718 7S 7]x˜ B2[K B (1,1,1) B (1,0,2) (0, 1, (1,0,1) (0,1,1) = 4[K ] ] ) ] ) ] S )9(1,1,0) S 1=2Bg 10 ˆ 1B b+ (1, 0, 1) g = 0 4 B B ˆ ˜ ˜ 2 (1,1,1) ˆ ˆ ˜ B B Loci x x x x x x x x x x x 3([p ] ) S S S 2[K ]S + 9([p ] )S + S S + S S 6S , x = ] 4([p ] ) 2[K ] S 4([p ] ) S S + 2[K ] S 4([p ] ) S 1) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 1, 2) (0,0,2) (1,0,1) (0,1,1) b(0,1,2) b 2 7 9 9 QR Q 7+ Q 4[K Q B (1,1, 1 b b b 7 7 (0,0,1) B ˜ ˆ ˜ ˆ ˜ ˆ B ˆ[ˆ ˆ9b788+ ˜176S ˆS RS 1R 1B b]ˆ 26 ]1= )3([p S2g729 2]= 2[K ]S 9([p 5][s S S + 42S0) S3([p , 02 ] )1bS˜7 1(1,1,1) = = 00 0)720S1+ 0b] ))S 1S 04 1b )9S˜ (0, 1) sˆgsimilar = sgˆ = 01ˆg3([p s7s0bs110933+ ]]ˆ0]3([p ··4([p SS [s ]and ]091+ (1, 1, 0) g]]˜ 11(1, 0]7˜·2[K 02B (0,0,1) ˆS ˜1, = 4[K 4([p ]bS 2[K S )S 2˜S 2[K 4([p Q9= 7b 2[K 2]0 7ˆ 7B ]S 7way 7˜ 18 1,1, sˆfor s ˆ = [ˆ [s · [s ] 1hympermultiplets 12 oceeding in similar way for the hympermultiplets 0, 1), (0, 1, 1) (1, (0, 1,a 1) g = = 0 0 x = 4[K ) ] S ] S ] 1 3g12 7 18 ˆ B B ( 1,(0, 0,in 1) = s ˜ = [˜ · [s · [s ] ceeding aa1) similar the hympermultiplets (1, 1, 0) b 2 7 7(4.46) (1,1,1) ˆ ˜ ˆ gx = 0 1 1 ] )S˜ Proceeding inway a9Qs˜(0,0,1) similar for the hympermultiplets (1, 0, 1), (0, 1, 1) and (1, 1, 0) ˆ ˜ Proceeding in way for the (1, 0, 1), (0, 1, 1) and (1, 1, 0) 3= 7 18 B B B ˆ ˜ ˜ ˆ ˜ S S + 2[K ]S + 9([p ] )S + S S + S 8S , b R R = S S + 2[K ]S + 9([p ] )S + S + S S 8S , (4.46) x 4[K ] 4([p ] ) 2[K ] S 4([p ] ) S + 2[K ] S 4([p 7 9 9 ˆ ˜ ˆ ˜ 7 9 9 S S S + 2[K ]S + 12([p ] )S + S S + S S s 10S 25 B 7 7 (0,0,1) ]b ˆ + bB 90 + b 9ˆ+ gQR =˜0= 1S 1sBB 0˜] (4.47) Q2 9([p +]195= 908S 9] · 9B B2 SB˜72= 2[K S S S (4.46) 4([p R9 0=or 2]1 2119 ˆˆsˆ= ˆ2ˆ771]S ˜297790SˆS77299s+ 1, 1,1, 2) 2) s˜s˜88= =g9Rs˜1, s˜9=90) ··+ S [s ·1)S [s [ˆ s)9s8S8+ ]27]·0Sˆ6·59S [s [s,[s xgS12 4[K )]S + 2[K 4([p 2[K ].S ]b )S˜711 1[sB 19 b0 2S b ˜ g= 1g 0]]S˜·B 17]02 ]4([p 12 8S 8)12]2]]S 990 012([p 10 20 91 ( ( 1, = 0sˆ==or = sˆsˆ72hypermultiplets ·71,4([p [s = [ˆ S [s16 (0,0,1) (1, g0g= =4[K 07+0˜4([p 1[˜ 0]1]6bS 26S12= Ss S 2[K + ]]]S)S + 10S ˆ[ˆ ˆ B 991= 10 20 19 78 7the 9S 27s 90) b 9 x ] ] 2[K ] S ) S + 2[K 4([p ) S b B ˜ ˆ ˜ g = 16 16 16 1 (0, 1, 1) s ˆ = ] · S [s ] · [s ] 2 7 (0,0,1) ˆ ˜ ˆ ˜ Finally for (1, 0, 0), (0, and (0, 0, 1) we obtain the degrees [HP: S 3+ this 7Sapproach, 7S79 + 18 9+ 12+ 2S SB7 + 2[K 2Ssee+]S 2[K ]S 12([p 6Sfirst 1212 S 5S 8S , s 10S (4.46) 1]+)S + 9([p b +6 is variety can be seen as aS determinantal variety, (2.7) Following the 9B ]S)S 7BS ) 1) 6D maher spectrum with U(1)3 ApplicaQon of toolbox APPLICATION 2: ELLIPTIC CURVES IN TORIC VARIETIES 26 EllipQc fibraQons with toric ellipQc fibers polytopes: [D.K., Mayorga Peña, Oehlmann, Piragua, Reuter] associated to 16 reflexive F13 F16 F15 F14 F9 F11 F10 F12 F5 F6 F7 F8 F1 F2 F3 F4 For algorithmic approach to toric models & toric Mordell-‐Weil, see: [Braun,Grimm,Keitel] Applying presented techniques: with given E & arbitrary base B • determine • compute : maher reps, 6D mulQpliciQes; 4D 27 EllipQc fibraQons with toric ellipQc fibers [D.K., Mayorga Peña, Oehlmann, Piragua, Reuter] F16 SU(3) Z3 Arrow: SU(3) x SU(2)2 x U(1) F13 (SU(4) x SU(2)2) rank of total gauge group • Up to SU(2) F11 F10 F8 F6 F4 SU(2)4 x U(1) Z2 Z2 SU(3) x SU(2) x U(1) F14 F15 SU(3) x SU(2) F3 F12 SU(2)2 x U(1)2 SU(2)2 x U(1) F9 SU(2) x U(1)2 SU(2) x U(1) F5 U(1)2 F7 in fiber U(1)3 F2 F1 Mordell-Weil rank , Mordell-‐Weil , only (need Jacobian fibraQons) • Extremal transiQons in fiber = : worked out 28 EllipQc fibraQons with toric ellipQc fibers [D.K., Mayorga Peña, Oehlmann, Piragua, Reuter] F Arrow: F F F in fiber F F Polytopes dual F F F F Sum rule: F F of gauge group of poly + its dual F F F F Mordell-Weil rank • Up to , Mordell-‐Weil , only (need Jacobian fibraQons) • Extremal transiQons in fiber = : worked out 16 SU(3) Z3 SU(3) x SU(2)2 x U(1) 13 (SU(4) x SU(2)2) rank of total gauge group 10 SU(3) x SU(2) 4 15 SU(2) x U(1) Z2 Z2 SU(3) x SU(2) x U(1) SU(2) 14 2 12 SU(2) x U(1) 11 SU(2) x U(1) SU(2) x U(1) SU(2) x U(1) U(1) 3 U(1) 28 ApplicaQon of toolbox APPLICATION 3: ENHANCING U(1)2 29 Higgs-‐TransiQons in F-‐theory: U(1)’s GnA EllipQc fibraQons with higher rank Mordell-‐Weil group crucial for understanding the compacQficaQons Can we tune complex structure to to non-‐Abel Rank 1 case understood: [Morrison, Taylor] Every 6D F-‐theory with comes SU(2) on Riemann surface ⌃ g adjoint V EV U(1) rk(MW)=0 tuning m oduli rk(MW)=1 Geometrically: transiQon of 30 Higgs-‐TransiQons in F-‐theory: U(1)2 GnA Enhancement of U(1)xU(1): • Reduce MW-‐rank to zero by E [Cve8č, D.K., Piragua, Taylor] types of possible uf2 (u, v, w) + Q, R with origin P Y (ai v + bi w) = i=1 31 Higgs-‐TransiQons in F-‐theory: U(1)2 GnA Enhancement of U(1)xU(1): • Reduce MW-‐rank to zero by E [Cve8č, D.K., Piragua, Taylor] types of possible Q, R with origin P uf2 (u, v, w) + (a1 v + b1 w)2 (a3 v + b3 w) = • rk(MW)=2 1: P Q 0 31 Higgs-‐TransiQons in F-‐theory: U(1)2 GnA Enhancement of U(1)xU(1): • Reduce MW-‐rank to zero by E [Cve8č, D.K., Piragua, Taylor] types of possible Q, R with origin P uf2 (u, v, w) + (a1 v + b1 w)3 = • rk(MW)=2 1: P Q 0 • rk(MW)=1 0: P R 0 This tuned fibraQon has build in: 1. U(1)xU(1) SU(3): set i = 1 , at f 2 (0, b 1 , a 1 ) = 0 in E at P=[0,-‐b1,a1] 2. U(1)xU(1) SU(2)xSU(2): set f2 (0, b1 , a1 ) = i = 0 in B: uf 2 (u, v, w) = 0 3. general case : U(1)2 SU(3)xSU(2)2 31 Summary of ellipQc fibraQons with Mordell-‐Weil group • Developed to analyze these models • 6D maher spectrum & 4D Yukawas: • 4D chiraliQes & G4-‐flux: CY & • Applied tools to with ell fibers as • hypersurface in dP2: U(1)2, also with SU(5) in Bl 3 (P 3 ) : U(1)3 in 16 2d toric varieQes can be into GnA, always in way Outlook • ClassificaQon of n>3 U(1)’s [Cve8č, DK, Piragua, Peng Song]: work in progress • HeteroQc dual of F-‐theory w/ U(1)’s [Cve8č, Grassi, DK, Piragua, Song]: work in progress 32 33 ... Het/F-‐theory duality: see Anderson’s talk • back-‐reacted • regions with on Type I EffecQve theories of F-‐theory Use F-‐theory to engineer effecQve theories:... F-‐THEORY COMPACTIFICATIONS F-‐theory = geometry/physics dicQonary F-‐theory specified by of ellipQc fibraQon co-‐dim one sing over S on. .. IllustraQon: dP 2 -‐ellipQc fibraQons with two raQonal secQons TOOLBOX FOR STUDYING F-‐THEORY WITH U(1)’S 17 ConstrucQon of C[Cve8č, Y-‐ellipQc fi braQons