1. Trang chủ
  2. » Giáo án - Bài giảng

Recent progress on the

44 110 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 44
Dung lượng 15,6 MB

Nội dung

Strings  2014,  Princeton   25th  of  June,  2014   Recent  Progress  on  the      Abelian  Sector  of  F-­‐Theory   Denis  Klevers   arXiv:1303.6970  [hep-­‐th]:  M  Cve8č,  D.K.,  H  Piragua   arXiv:1306.3987  [hep-­‐th]:  M  Cve8č,  A  Grassi,  D.K.,  H  Piragua   arXiv:1307.6425  [hep-­‐th]:  M  Cve8č,  D.K.,  H  Piragua   arXiv:1310.0463  [hep-­‐th]:  M  Cve8č,  D.K.,  H  Piragua,  P  Song   arXiv:1407.nnnn  :  D.K.,  D  Mayorga  Peña,  P  Oehlmann,  H  Piragua,  J  Reuter   arXiv:14nn.nnnn  :  M  Cve8č,  D.K,  H  Piragua,  W  Taylor     F-­‐theory  &  U(1)-­‐symmetries     INTRODUCTION       Why  F-­‐theory?   F-­‐theory                                    =                            Type  IIB   •  ellipQcally  fibered       •  back-­‐reacted     •  regions  with    on       Why  F-­‐theory?   M-­‐theory   Type  II  A        On  T2        Limit  vol(T2)            0   on  S1   F-­‐theory                                    =                            Type  IIB   •  ellipQcally  fibered       •  back-­‐reacted     •  regions  with    on       Why  F-­‐theory?   M-­‐theory   Type  II  A        On  T2        Limit  vol(T2)            0   on  S1   E8xE8  Het     Certain   setups   F-­‐theory                                    =                            Type  IIB   •  ellipQcally  fibered       •  back-­‐reacted     •  regions  with    on       Why  F-­‐theory?   M-­‐theory   Type  II  A        On  T2        Limit  vol(T2)            0   on  S1   E8xE8  Het     Certain   setups   F-­‐theory                                    =                            Type  IIB   •  ellipQcally  fibered       Certain   setups   SO(32)  Het     S-­‐duality   Het/F-­‐theory  duality:  see  Anderson’s  talk   •  back-­‐reacted     •  regions  with    on     Type  I     EffecQve  theories  of  F-­‐theory   Use  F-­‐theory  to  engineer  effecQve  theories:   F-­‐theory   Calabi-­‐Yau  geometry     (+  G4-­‐flux,…)   Geometry                        Physics   N=1  SUGRA  effecQve     theories  in  6D  &  4D   Classifica8on  of  6D  (1,0)  SCFTs     via  F-­‐theory:  see  Vafa’s  talk   Since   are  non-­‐perturbaQve,  they   different  from  those  of   •  used  for  models  of       local  models:    [Donagi,Wijnholt;  Beasley,Heckman,Vafa;  Bouchard,Heckman,Kane,Seo,Shao,Tavanfar,Vafa;     Font,Ibanez;  Randall,Simmons-­‐Duffin;  Hayashi,Kawano,Tsuchiya,Watari,Yamazaki;  Dudas,Pal8;        Cecoi,Cheng,Heckman,Vafa;  Marchesano,Martucci…  many  works]   global  models:    [Blumenhagen,Grimm,Jurke,Weigand;Marsano,Saulina,SchäferNameki;  Cordova;     Grimm,Krause,Weigand…  many  works]       Goals  of  this  talk   Develop  &   of  F-­‐theory:       of  F-­‐theory     ArithmeQc  of  ellipQcally  fibred  CY:                                                                          [Morrison,Vafa]      The  Abelian  sector  of  F-­‐theory  has  been  rather   :       only       Few  early  examples:  [Aldazabal,Font,Ibanez,Uranga;  Klemm  Mayr,Vafa]     Torsion  part:    [Aspinwall,Morrison;  Mayrhofer,Morrison,Till,Weigand]     A  lot  of  recent  progress:  [Grimm,Weigand;Esole,Fullwood,Yau;Morrison,Park;  Cve8č,Grimm,DK;  Braun,Grimm,Keitel;     Lawrie,Schäfer-­‐Nameki;  Borchmann,Mayrhofer,Pal8,Weigand;  Cve8č,DK,Piragua;  Grimm,Kapfer,Keitel;Braun,Grimm,   Keitel;  Cve8č,Grassi,DK,Piragua;  Borchman,Mayrhofer,Pal8,Weigand;  Cve8č,DK,Piragua;  Cve8č,DK,Piragua,Song;     Braun,Collinucci,Valandro;  Morrison,Taylor;  Kuntzler,Schäfer-­‐Nameki]     Unlike  well-­‐studied                                        [Kodaira;  Tate;Morrison,Vafa;  Bershadsky,Intriligator,Kachru,Morrison,Sadov,Vafa;  Candelas,Font,…]                      Recently:  [Esole,Yau;Marsano,Schäfer-­‐Nameki;  Morrison,Taylor;  Cve8č,Grimm,DK,Piragua;                                          Braun,Grimm,Kapfer,Keitel;  Borchman,Krause,Mayrhofer,Pal8,Weigand;  Hayashi,Lawrie,Morrison,                                          Schäfer-­‐Nameki;  Esole,Shao,Yau]     Outline  &  Results   SystemaQc  construcQon  of  Abelian  sectors  in  F-­‐theory    of  general   •   in   Exemplify  explicitly  for   2.  Develop   gauge  group      to  study  such  geometries    spectra    (also  with  non-­‐Abel  groups)  G4-­‐flux   •   of  toolbox:   CICY  in  P    3      (  group),  ellipQc  curves  in  16  2D   •  moduli  space  of  F-­‐theory:         A  very  brief  summary   F-­‐THEORY  COMPACTIFICATIONS     G4-­‐flux  &  4D  maher  chiraliQes   [Cve8č,Grassi,D.K.,Piragua]     3)   for  F-­‐theory  on    X4:   Geometry: (verQcal)  G4-­‐flux  in  HV(2,2)(X4  ,  Z/2              )                    requires  computaQon  of   [Wipen]   of  CY  4-­‐fold Example:   explicitly    for  family  of   G4-­‐flux  is    with   P3 properly  studied  in  M-­‐theory   3D  M-­‐/F-­‐theory  duality:    F-­‐theory  on  S1  =  M-­‐theory •  In     ⇥M AB = Z informaQon  of  verQcal   X4 •  M-­‐/F-­‐duality  for  CS-­‐terms  relates   –  use  to   –  use  to  derive     G4 ^ ! A ^ !B   [Gukov,Vafa,Wipen;   Haack,Louis]   of  F-­‐theory   See  also:  [Hayashi,Grimm;  Cve8č,Grimm,D.K.;   Grimm,Kapfer,Keitel;  Braun,Grimm,Keitel]     extend  earlier  condi8ons:  [Dasgupta,Rajesh,Sethi]   22   ApplicaQon  of  toolbox   APPLICATION  1:  RANK  THREE   CURVES   23   EllipQc  fibraQons  with  three  raQonal   p oints     [Cve8č,D.K.,Piragua,Song]     Similarly   for  ellipQc  fibraQons  with  3  U(1)’s:   Bl3 P3 •  EllipQc  curve  with  rank  3  Mordell-­‐Weil  group:    Calabi-­‐Yau   of  E  over  given  base  B       F-­‐theory  vacua                            points  in             –  miraculous  structure  of  singulariQes:   in  6D  found  for  general  base  B                  6D  Anomalies  cancelled   ✓   24   7 7 Bb B2 ˆ7 S9 ˜ b 4S ˜7 S ˜7˜ [s8 ] · [s18 ] (0,1,1) ˆ+˜Sˆ7 S˜17B2 3[K S + , 122 B ]S b 9([p b ]1 )S91 == [˜ s[˜ ] · S 17S119 ˜ 9 ˆ ˆ ˜˜7 ˆ 1 b b b b b2 ]2bb˜ =7 2[K 2[K ] ˜]S +923([p 3([p ]˜ ))2[K +)S2[K 2[K + 3([p 2[K 3([p )7SS ˜˜77 + ˆ]S)Sˆ+4+ s3 ] · S7 =[s8[˜ ]s· ][s·18 ] xx[s +S4[K 3[K 9([p ]+ 4S]]S 4]S)b2S 7S , ]BBS˜75]]SS 1ˆ bB3([p 773([p (1,1,0) 7S 2+ ]S 7ˆS = ] + ] S + 3([p + 2[K + 3([p B B ˆ ˆ ˜ x = ] ] ) ] 3([p ] 9S 22S 27]79)9S772[K 2)]S,) (1,1,0) 2 (1,1,1) +3([p ] ) S + S 2[K ]S 9([p )S S S S + 6S B B x S ] · [s ] B B B 7 9 3· S (0, 1,1) = [˜ ˜7 [s8 ] 8· [s18 ]18 B x s ] 1 b b b (0, 1,1) ˆ ˆ ˜ ˜ Starting theb counting, the4[K singularities were found in P72 + the bwith 2) 2[K ] )S7 x+(1,1,1) 3([p ]bˆˆ· )SS2[K 2[K 3([p 3]S 1simplest ˆBbb ]S7 1˜ ˜ 2B bb] ˆ ˜ 3([p b b ˆˆ b ˜2 bb 22 as ˆˆ(1,1,1) ˜= ˜]˜ ˜ 2S 2S ˜SBl b 2+ [p2 ] b· S 3S 12]S3[p ==Starting ([p c [p ] · ] S S S · 2S 17S 2˜˜ b2[K b792 ˜, 172B + S S 3[K 9([p ] S + 7S x 4[K ] 3([p ) ] S 3([p ] ) S ] S 3([p ) S ˆ ˜ ˜ ˜ ˆ ] ]) 7bcounting, 1=··S 7b + 2simplest 7+ 29([p 9)S 71B 9as ˆ ˆ ˜ ˆ ˜ ˆ ˜ 99([p 77S 99 77˜ 99]·P ]+ ]1b··])S 299 7]S 2,],2S with the the singularities were found in Bl the B B B + S S 3[K ]S ] )S S S S + 7S ([p ) + [p ] · S + c S + [p ] · S + S 3[p ] S S · S S S + x = 2[K ] 3([p ] ) + 2[K S + 3([p ) + 2[K S + 3([p ] ) b b 2 S S + 2[K ]S + + S + S S 8S , 7 9 ([pb ] 27) + 7˜ + 37 99 229S 27Bb9 27b 79 ˜ B (1,1,0) ˜27 B2+˜2Swere ˜7calculated ˆPtheir ˜S,77 · S(4.46) 7simplest ·S 99 97S B Bsingularities , = ([p [p]b2 ]· 7Smultiplicities · the Sˆ+ c [p · S 3[p · S + 2S nishing of2 two=with coefficients The are from classes Starting the found in Bl as the ˆ ˜ ˜ ˜ ˆ ˜ 2) counting, + 1S [p 2·] directly 2·] S S 7S· S 92 2S b ] + [p c · + ] S + S 3[p ] · S · S + , ˜7 S7their 2 The7ˆmultiplicities 1˜7 +17 2are 911 classes 9b ˜ 12[K bb9 b 2[K ˆˆ+ ˜˜7, (4.43) 2S˜Sˆ7+ ]S29([p 9([p )S 5ˆ2Sˆ3([p + 5ˆˆS (4.46) vanishing of two coefficients directly calculated from 159 22 ]SB3([p 9]bb+ ]b 7+ S59S , 28S 4[K )2279([p ]]S )S 2[K ]]9SS 3([p ˜77 2S= + SS + S 8S (4.46) 77 22˜]]7from 22]]b))S ˆS ˜2[K ˜S (1,1,1) B ]]B3[K B B 7= 1are ] )S )S 973([p 977S xx(1,1,1) 4[K 3([p ] ) 2[K S ) S 2[K 3([p S vanishing of two coefficients The multiplicities directly calculated their classes +7 S ]S ] S + 7S , 7 7 S7B 9 9 B B (4.43) B (4.43 Charges   Proceeding MulQpliciQes   in aqsimilar wayqfor1 the hympermultiplets (1, 0,˜ 1), (0, 1,21) and (1,(4.43) 1, 0) b Loci q Multiplicity ˆ ˜ ˆ Q R S 1S ˆ ] b)S + 5bSˆˆS + 5S˜ S ˜ 8S , b ˜ b 2 S + 2[K ]S + 9([p (4.46) ˆ ˜ + 9([p 99 +2 ]5S 77 S]9S qqB2QS]77Sqq77R3([p Multiplicity xLoci =in of 4[K ] for )B 2[K 3([p )S777S99 (1, 2[K 3([p )S7 (1, 1, 99 1) B ]S + 2[K + 50, Scharge 8S ,2 ](1, (4.46) S 2q (1,1,1) B ]S27] )S B Proceeding a multiplicity similar way the hympermultiplets 1),91,7(0, 1, and 0) we get the orders vanishing Loci Multiplicity Proceeding in a similar hympermultiplets (1, 0, 1), (0, 1) and 1, 0) we the notation x for the of hypermultiplets with Q way R for qthe S (q(q ,q ,q ) s = s = 1 [s ] · [s ] (1,1,-­‐1)   Q R S weused used the notation x for the multiplicity of hypermultiplets with charge 18 18 ,q ,q ) 1 b b b Q R S ˆ ˆ ˜ ˜ sthe ss18 = 11the 1)multiplicity [sˆ8]]B·b· [s ]hypermultiplets whereweweused used the x hypermultiplets with = 18+ xorders =0 ]) +for + ]]S +19([p 2[K ][s Sof 3([p S57S˜ S13[K ]2S,7(4.42) +(4.42) 3([p S7 (q,q ,q we get the orders of 12[K 22 b3([p 2the bcharge 21 2] ) (1,0,1) Q R ˆS117,q ˜Sfor the x2[K multiplicity with B ˜7 B ˜7charge snotation = = [s ]2of we get of vanishing (q ,qvanishing )S S+ 2[K ] ·hympermultiplets )S 5bclasses, SˆSˆ S29] +)3[K 8S (4.46) multiplicities, 18 872]+ ,R q, SqS).).where Calculating the other without expanding the classes, we obtain x9notation = ] 3([p ] ) + 2[K ] S 3([p ] ) S + 3([p ] ) S Q0 R 7similar 9+ 918+ 77 7B (1, 9]obtain (4.42) 2 (1,0,1) B B B s = s = 0 [s [s ] Calculating the other multiplicities, without expanding the we Proceeding in a way for the 0, 1), (0, 1, 1) and (1, 0) 19 19] x( 1,0,1) xthe Charges xwithout x( (0, xand ss9 = ss19 = 00Loci 11 x˜(1,1, 1)without [s99]] ··xhympermultiplets [s (0,1,2) (1,0,2) (0,(1, 1,1) 1, we 1, 2) (0,0,2) (1,1,1) Proceeding in0 a ˜similar for 0, ˜1), 1, 1) (1,x1, 1, 0) , q , q(0,1,2)   Calculating the other multiplicities, expanding classes, 19 S ).Calculating 1[sthe way b 2obtain (q(q the other multiplicities, expanding the classes, we obtain = = [s ] ˆ ˆ 19 19 Q ,QqR ,RqS ) +2 S S + S + 2[K ]S 9([p ] )S S S S S + 6S , QS Q b 7 9 9 we= get the of vanishing x ˆ07Loci ˜ vanishing ˜70x s10 = sget 0Sorders [s [s ] x5S(ˆ701,0,1) Charges x7(1,1, x(0,1,2) x4S x6S x(1,1,1) (1, 0, 1) g= = g+ 0+(1,1, 022x]S 4x20 4, x +2 S˜71 S= )S S S1,1) 1)9 B (1,0,2) (0, ( 91, 1,(0,0,2) 2) (0,0,2) 20 10 Charges Loci x10 x9(0, (1, x1, we the of ss10 ss20= 002[K [s09([p ]]2··]x·[s [s 920 1)B (0,1,2) (1,0,2) (]] 1,0,1) 1,1) (9 + 1, 1, 2) (1,1,1) 7x orders 91 Proceeding in a similar way for the hympermultiplets 0, 1), (0, 1, 1) and (1, 0) = = [s ] (1,0,2)   harges Contained in Loci Multiplicity 10 20 10 20 QS Q RS R ˆ b QS = Q Charges Contained inContained Loci (1, 0, =] 00+]b03([p 02 ]3[K x ) 1Multiplicity 3[K S047 + 0bMultiplicity 3([p ]b )ˆ Sˆ027 + S 1, 1) gorders = g= = 40Sˆx B 02x0+ 00ˆ72 +12[K 192[K 2in Charges (0,1,1) (1,x(0, 0, 1) gthe 0Loci 4+ ]3([p 4]S˜7xB44]S˜70 x00 x11 gin ˆMultiplicity 6= 99B 2[K Charges Contained Loci we get of vanishing = ] + 3([p ) ] ] ) S S + 2[K Charges Loci x x x 7 (0,1,1) ˜ (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 2) x(0,0,2) x(1,1,1 RSB R Q RLoci QR ˜ Charges x x277(0,1,2) x88(1,0,2) x˜(]] 1,0,1) x0(0,B 1,1) x(141,1,are 1,1,0, 1)1) proceed s˜s˜3to = s˜(1, = 00 g RSggsingularities [˜ ss433B]]dP ··04S [s ]0·· [s [s (-­‐1,0,1)   (1,1, 1) 1, 2) 771) 18 0, = s ˜ = [˜ S [s ] hen we to the apparent in the picture The multiplicities Then we proceed the apparent singularities in the picture The multiplicities (0, 1, 1) = g = 0 0 0(0,0,2) 18 0) 0 QS Q (0, 1, = g = 0 0 12 , 11(1,1, b b ( 1, 0, 1) s ˜ = s ˜ = [˜ s ] · S [s ] · [s ] ˜7 27] 0multiplicities ˜= ˆ7 S˜07 dP ˆ ˜47 S0are Then we proceed to the apparent singularities in2Sthe The are 6= QS Q 31)6s 79g 3bS 8[s 18 picture (1, 0, = g 0 0 +3([p ] ) S + + 2[K ]S 9([p )S S S S + 6S ( 1, 0, 1) s ˜ ˜ = [˜ s ] · [s ] · ] b 2 9 9 18 9 B ˜ ˆ ˜ ˆ ˜ QR Q ˆ QR (1, 0, 1) gQ = gand = 0the 032]xB1·(0,1,2) x1(1,0,2) 4b·]xthe 040loci 0x5(11S71,˜Staken 4b6S0x9(0,0,2) 0(1,1,1) 111 +3([p ] ) S + S S + 2[K ]S 9([p )S S S + , 1) s ˆ = s ˆ = [ˆ s S [s ] [s ] Charges Loci x x x 7 9 9 b b b (1,1, 1) ( 1,0,1) (0, 1,1) 1, 2) 7 18 (1, 1, 0) g = g = 0 0 given by the multiplication of the classes subtraction of loci already (4.47) , 1, 1, 1) s ˆ = s ˆ = RS R 1 b ven by the multiplication of the classes and the subtraction of the already taken (1, 1, 0) g = g = 0 ˆ ˆ ˜ ˆ77 + x 8[ˆ 2[K ]2 ]= +) 3([p 2[K ]ˆ S )03[K ]S˜ given by the multiplication the classes of = 2[K +9= 3([p + 2[K )the Sˆ·7718 ]S·˜018 3([p ]44)S˜27] b)S˜7 00 R (0, 1, 1)= g2and 0the 03B+]S 44B1 3([p 11 (0, 1, sˆ6= sˆ= 0= s0]0·3([p ]Sˆ S2ˆ]b]7loci [s ]taken +23([p (1,0,1) B+ Bg 7[s (1,0,1) (0, 31) 79g]gRS 33([p 83[K 1Q b ]subtraction 2) QS 6= 9+ B·2[K (0, 1,(0,-­‐1,1)   1)1) s0, ˆxof s6ˆhypermultiplets = [ˆ s747and ]2+ [s ]already [s ]18 ˆS778[s = 0 0 31, 7B 3+ x = 2[K ] 3([p ] ) + 2[K ] S ) S + ] S + 3([p ]0 )S7(4.47) Finally for the (1, 0, 0), (0, 1, 0) (0, 0, 1) we obtain the degrees [HP: (1, 1) g = g = 0 0 1 1 b b b 2 (1,1,0) 1, 2) s ˜ = s ˜ = or s ˆ = s ˆ = [˜ s ] · S [s ] · [s ] = [ˆ s ] · S ] · [s ] QR Q B B B ˆ ˆ ˜ ˜ (4.47) 9 9 10 20 9 19 , into 1, 2) s ˜ = s ˜ = or s ˆ = s ˆ = [˜ s ] · S ] · [s ] account in the first case For example the singularities at the loci s ˜ = s ˜ = 0, x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S + 2[K ] S + 3([p ] ) S to account in the first case For example the singularities at the loci s ˜ = s ˜ = 0, 9 10 20 9 19 7 b [s 7[s loci 7] 227 [s QR into (account at ˜[ˆ s˜79 [s = (1, 1, 0)For gs = 005] S= 11·927[s 304·S˜S 1S 1singularities bthe Bˆ B ( 1,1, (-­‐1,-­‐1,-­‐2)   2) s˜(1,1,0) s˜1, = 0or s6ˆ= ˆ= = 07(1, [˜ ·9([p ·(0, ] ·19 [s 00] 11 3s = RS ˜Q ˆ[ˆ = 91, = 92 20 1,1,in2)the s˜first s˜case = 00) sˆ = 0the [˜ ]s119(0, · ]S [s ]2102·00]][s = sB4we S ]0, How can we center this ˆor ˜ˆ9R92˜ ˆ097]S +2 S + S + 9([p )S Ss + (1, g˜g8example = = 00˜0, 02and 09the = 9for 82[K 10 20 80S 9+7 S 9,6S 7gS 91, 9]˜7·8 94the (0, 1) g7s gS 0s]S 4]S 0Sˆand ] 19[HP: Finally the hypermultiplets 0, 0), (0, 0) 0, 1) obtain degrees ,[HP: +2 S S + + 2[K ] )S S S 6S Finally for the hypermultiplets (1, 0), 0) (0, 0, 1) we obtain degrees B1, 6= 97·table] b 9 ˜ B ˆ ˜ ˆ ˜ ,0, 0, 2) s ˜ = s ˜ = or s ˆ = s ˆ = S S [s ][s ] = · S [s ][s ] ininthe coefficients read = s8s848+ s18 s9ˆ49s )S 0, contain 0,that s(0, ˜77 original =original s˜99 = 0How or sˆ7can sˆ = S+ ] 7S +s Ss ]Sss 9([p S+7+ S + 9read 99Bss 9S 18 16 18 ˆ][s 220 7s= 98 9·20 we 9+ 7s 19 10 atthat in2)the original coefficients ss1ˆ7B= + = (] 9)S s19 ss= )S7= = 0, the read s7QS s9621·63[K + ))b˜ = ss[s s[s )10 = 0, contain QR ,contain ˜( ˆˆ919 18 6]S 16 ˜19 18 19 90 s˜= s= ˜1, = 0or ˆ((S = 0s16 ·999(2(S [s1][s ][s] 20 ] (4.47) How center table] Sˆ7or S 9([p )S S 40]sS˜9= 7S , 92[K center this table] (4.47) = we 7123[K 70 19 ][s 97b]S18 10 14S bS 227]S 299 S (0, 0,0, 2)2) s˜coefficients s ˜ = s ˆ = s ˆ = · S S · S [s 772this 9][s 9ˆ2+ (1, 0) g g 1 ˆ ˜ can 9 19 10 20 (0,0,2)   1 b b x = 2[K ] + 3([p ] ) 3[K ] S + 3([p ] ) S + S + ] S ˆ1,0,1) ˆ7x2+ ˆ0, ˜of Finally for the the hypermultiplets (1, 0,(]S 0), (0, and 1) we obtain the [HP: 0)]1,1) 71,+ degrees (0,1,1) 12 Loci xone xthe x0, x1, x(1,0,1) xb(0,1,1) x(1,1,0) 7x(0,0,2) Bx2After B B 12 (4.44) the loci s = s = with degree the subtraction, the multiplicity the x = 2[K ] + ] ) 3[K + 3([p ) S S 2[K ] S (1,1, 1)3([p (0,1,2) (1,0,2) (0, ((0, 1, 2) (4.44) 1 b b 7 (0,1,1) 18 Finally for hypermultiplets (1, 0), (0, 1, 0) and (0, 0, 1) we obtain the degrees ˆ ˆ ˜ ˜ the loci s = s = with degree one After subtraction, the multiplicity of the B B B e loci s8 = 8s18 =18 with degree one After the multiplicity the x(1,1,1) ] this ]S7 b3([p ]S7 of )S7 [HP: (4.44) 14[K 12[K 12[K b3([p the b3([p ] ) subtraction, ] )S ] (4.47) Q How Q can= (4.44) B B B ˆ ˆ ˜ ˜ we center table] xthe == ]be 3([p ) xtable] 2[K 3([p )(the S1,7 x1,(codimension 2[K ]S7xˆ(0,0,2) 3([px2 ](1,0,1) )S7 x(0,1,1) g(1,1,1) =Loci g12 04[K 1is 02this 11,0,1) 1,x 0(1,0,1) Loci xcan x1) x x x0(1,1,0) x1(1,1,1 11,1) b]x(1,0,2) b2) xany 20]x1,1) x x(0,1,2) x](1S(0, x]S x(1,1,0) B B B(0,0,2) How can we center (1,1, 1) (0,1,2) (0, ˆ(using ˜1,0,1) (1,1, (1,0,2) (0, 1, 2) with charge (0, 1, 1) calculated as st hypermultiplet two multiplicities in table calculated of +3([p S˜7˜+ 21be S 2[K 9([p0,codimension ]1) )S 4S 5degrees S˜x17(0,1,1) S9 +2 6S ast twoThe multiplicities in the table can be calculated Finally for the hypermultiplets (1, 0, 0), 1,Bb0) and we obtain the [HP: bis b(0, (1,1,1)   2] ) 7S + using any 9ˆ of S9˜ hypermultiplet with charge (0, 1, 1) calculated as , ˜ ˆ R R Q Q ypermultiplet with charge (0, 1, 1) is calculated as last two multiplicities in the table can calculated the codimension Q Q +3([p ] ) S + S S + 2[K ]S 9([p ] )S S S S S + 6S , 21 70 7be0 5S 7˜the The last two multiplicities in the table can calculated codimension ˜7 + ˆ17any g=12 00we 1012[K 01 92 ]0)Susing 11of 01 10 1(4.46)11 g9 g= g= 0= 1ˆcenter 1+Bb9([p 17 9, x g99How = =Loci 1]S Sˆ(1,1, S˜b9 x+ 5S 8S 00(0,0,2) 12 g can Sthis 70S9 B ˜712+ ˆ9710+ x xtable] x9(1,0,2) x(0, x(1,1,0) (0,1,2) (+ 1,0,1) 1,1) ( 1, 1, 2) ,x (1,0,1) 1) 5ˆ 1x ˜ sub-loci bx 2 ] )Sx b x ut inineach case we have subtract the right S S 2[K ]S + 9([p S S + S S 8S (4.46) Sto S12 but each case we have subtract the right sub-loci Rgto R ˆ ˜x(0,1,1) 9 9 R R Loci x x x x x x x01(1,1,0 B x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S + 2[K ] S + 3([p ] ) S = g = 16 16 1 16 16 1 (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 1, 2) (0,0,2) (1,0,1) (0,1,1) loci,but butinineach each case we have to subtract the right sub-loci g = g = 1 0 1 0 1 7 7 (1,1,0) Q Q 1 b b b B B B g = g = 1 0 1 0 9+ 12+ loci, case we have to subtract the right sub-loci ˜7 ˜S˜7Sx 12 g·12 = g]]Q = 0]1 2+ 3([p ] )b 20+ 2[KB1 1]Sˆˆ 13([p2 ] b)S 0ˆˆ7 + 2[KB 1]S˜˜7 + 3([p ]b )1S = 2[K + Q xx = [˜ s ] · S [s ] · [s (1,1,0) ˜ 12 S B = [˜ s ] · [s ] [s 18 (0, 1,1) S S x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S 3[K ] S + 3([p ] ) S 3˜ 18 (0, 1,1) g g = 1 1 Loci x x x x x x x x x x x (1,1,0)   (4.48) 7 7 (1,0,1) = in1(1,1, 16way 1Bthe 160,(0,0,2) 12(1,0,1) (1,0,2) ( 11,0,1)b1 (0, 11,1) 16 ( 1, 16 1, 2) (0,1,1)1 0(1,1,0) 11 R 9R gfound 0from 16(0,1,2) 16 16 10and 12+ [˜ shypermultiplets [sg=89+ ]g·= [s ]=Qg12 ally for the hypermultiplets found the WSF, start with (1, 1, 1) ˆ116 ˆ7 S ˜ ] · S7 g9+ 18 0, 1,1) Proceeding afound similar for hympermultiplets (1, 1), (0, (1, 0) 1(1,1 g12+ = =B + 11) we WSF, 1S 1B7the , 1, 1) nally for= the from the WSF, the charge (1, 1, 1) 1]0ˆ 17S 2˜ b1 ]S 2the b9with b 1) R R Q S S 3[K 9([p )S 4 S S + 12 ˆ ˜ ˜711 1, 7 9 Finally for the hypermultiplets from we start charge (1, 1, B x = 2[K ] + 3([p ] ) + 2[K ] S + 3([p ] ) S 3[K ] S + 3([p ] ) S Proceeding in a similar way for the hympermultiplets (1, 0, 1), (0, 1, 1) and (1, 1, 0) g = g = 1 0 1 0 b Finally for bthe hypermultiplets found from the WSF, we start with the charge (1, 1, 1) g = g = 1 1 1 7 (1,0,1) 1 b b b (4.48) ˆ ˜ ˆ ˜ S S 12 B 12 ˜,7 +16 ˜7 subtraction the multiplicites (4.48) 01 bx b9 16 9B]Sˆ714 b 2˜ + S 3[K ]S ]˜12)S S73([p 4SˆS77 S + 7S b)22After bS 212 = 2[K ]vanishing + )9([p + 2[K ]˜ˆS )ˆ ]9SB 3([p ]b 1)+ S 1are 3([p b+ · 2S ˆ= ˜˜77Bof ˆ793[K ˜ gb9RS(1,0,1) = = 0S 1˜ 16 15 16 7S 71 2 ]S ˆ ˜ ˆ ˜ ˆ ˜ ˜ B we get the orders S Rg Bby B 19 b12[K 216 bS 9+ 12+ = ([p ] + [p ] · S + c · S + [p ] · 3[p ] · S S · S S + 2S , 01 ˆ ˜ ˜ the degree of vanishing of the other loci are given +2 S + S + ]S 9([p ] )S S S + 6S , = ([p ] ) + [p ] · S + c · S + S 3[p ] · S · S S · S 2S scase, case,In the degree of vanishing of the other loci are 2 2 7 1 b b b g g = 16 1 16 16 1 g = g = 0 1 0 9 9 2 7 9 9 = 2[K ] 4[K +multiplicites 3([p ]b )2other + Sare 3([p )by S˜72by ]S7 +]S˜3([p ] )S weAfter ofB=the vanishing 9˜ ˜79 , 1(4.48) B 2[K 72]2[K b the 99+ 12vanishing 12+ In this case, the degree of loci are + 2bb] 3([p 23([p (1,0,1) After subtraction the multiplicites are ˆoforders ˜ ˜other ˆ B B2[K xof ] 2]the 3([p )loci ]Sˆ7given ] )3[K Sˆˆ7S this case, degree vanishing of the given 1˜ 2S ]+ 72S 27] )S (1,1,1) are ˆ ˜ ˜ ˜ B B3[p B = ([p ]b )2the + [pxxget S + [p · S S ] · S · S · + 2S SS7 + S c1 · 1 b b b 2(1,0,1)   ] g·subtraction 7 9 +2 S S + S + 2[K ]S 9([p ] )S S S S S + 6S , b , ˆ97ˆ1 9([p ˆ97ˆ5Sˆ716 21] )bS 94S 3([p ˆ717S3([p ˜77 +2S = g12+ = +2 16 B]S7 16 ,] )bS 0(4.48) 1]12S 1]9S b7 22 2[K 9˜71 4[K ]˜]16 2[K 3([p 2[K ]1˜S7˜ 9+ = Sˆ2[K S 6S ˜x 9]b )x 7˜9 1+ 2Loci ] )S 92 x B B are B(0, 7)b)+ 1, B 1) x(1,1,1) = 4[K ] 3([p 2[K ] S 3([p S + ] S 3([p ] ) S ˆ ˆ ˜ Charges x x x x x b 2 7 7 (1,0,0) (1,1, (0,1,2) (1,0,2) ( 1,0,1) 1,1) ( 1, 2) (0,0,2) After subtraction the multiplicites ˆ ˜ ˜ ˆ ˜ x = 2[K ] + 3([p ] ) 3[K ] S + 3([p ] ) S + S + 2[K ] S BxS B+ 6S 11 B 2b ,x (4.43) 2+ 12 ]]b)S 2ˆ+ (4.43) (0,1,1) ˜ +2 S2B7BQS S Sˆ27Q + 2[K 9([p 55S S(0, S 711,1) Bare Charges x x]S x(0, xb )(99x x(4.48) 1Loci b˜ 72 + 9ˆ 7x 7S 21the S 2[K ]S + 9([p )S Sˆ7ˆ2[K 524 S ,1S˜˜ (4.46)(1,1,1) 1) (1,0,2) 1,0,1) 1, 8S 1, ]792) (0,0,2) (1,1,1) ˜ 7]S 9) 1(1,0,2) bB 2(0,1,2) bS 21(993([p B After subtraction multiplicites 72(1,1, 21,1) 99ˆ+ 7(0,0,2) arges Loci contianed in x x x x x ges Loci contianed in x x x x x x 1 b b b ˆ ˆ x = 4[K ] 3([p ) 2[K ] S 3([p ] S + ] S (1,1, 1) (0,1,2) (1,0,2) ( 1,0,1) ( 1, 1, 2) (1,1, 1) (0,1,2) ( 1,0,1) 2) (0,0,2) ˆ ˜ ˜ 1 b b 7 7 Charges Loci in x]0(0,1,2) x x x x(0,1,1) = 2[K + ])x )B 3[K + 3([p ](0, )+ SBx708S (1,0,0) ˆ071,1) ˜B7 x b ]S Charges Loci contianed x=3([p x x]92(0, x(+ B B71,1) 1,0,1) xcontianed = 4[K ] (1,1, )29]2+ 2[K 3([p S 2[K S21, ]0 (0,0,2) )S(4.46) (1, 0, 1)in gS = g]3([p 0B7](Sˆx]7S 42]S 1) (1,0,2) (+ (]+ 2) Q ˆx ˜x ˆ47 S ˜S B 2[K 1) (0,1,2) (1,0,2) 1,0,1) 1, 2) (0,0,2) = 2[K ]0 3([p ])+ )2S + Sˆ+ 2[K ]S3([p 213([p 72[K 27 0(4.43) 92+ (0,1,1) B1] )S S + 9([p S ,1 ˜1, b5S B B After subtraction multiplicites are (0,1,1)   7B˜ 70S297 (1,(1,0,0) 0, 1)x00 g6QS2 = g6(1,1, 093[K 02+ ˆ ˜ ˆ ˜ 91 4B 1ˆ 941 + b= B b]S 17972the ˜ b 12]S b b4 1˜ 21 b7 S b2 ,˜ ˆ ˆ RS R ˆ ˆ ˜ S S S 2[K + 9([p ] )S S + S S 6S , ˆ ˆ ˜ 1, h = h = 1 9 , 1)1) h = h = 0 +3([p ] ) S + S S + 2[K ]S 9([p ] )S S S S S + 6S x = 2[K ]20˜= + )71127B ]S4B ]2 )S27]0b9+ S ]7S 02 ] 90 = 4[K ] )3[K )0Sb0 2[K 3([p 1, 9]S 2[K 7 94 11, 1, 1)0 g4[K g]7the 09with ]3([p 7b 1+ 13([p 1]S 27 = b)S˜70 0023([p 7˜ (1,0,0) (1, = hxx= = 1B2[K 7++ B B2[K B 20 2˜ 1)1)22the = h1) 100+ 0hypermultiplets 41), B B ˆ3([p ˆ5)S 6R (0,1,1) ˆQ6RS ˜RR7ˆ= 1h 2(0, ˜7+ ˆ 1hympermultiplets b9bsimilar 2)S where(1, we used thehnotation notation x for hypermultiplets with charge where we used x multiplicity of charge = ]S7ˆb9S )7˜102+ 2[K ]S 3([p ]ˆ)S )]S 2[K S 3([p ]+ (0, 1, gS gQR = 41 0)S 0ˆ+ 4]4 06S 22[K 2˜ ˆ17S ˜6S Proceeding in a0]S way for the (1, 0, (0, 1, 1) and (1, 0) S S ]S 9([p ]BBof S S + S 6S , (q ,q ,qS+3([p (q ,q ))92for ]˜ )S˜S˜773([p S + ]S 9([p S S S S 6S , 2ˆ 7b+ 2]9bS 70S+ 7S 191, (1,0,0) ˜ ˜ S Q 7,q 29([p 7 B B 9 7 +3([p ] ) + S 2[K ]S 9([p S S S + , Q B B 1 b b b 9 9 S S 2[K ]S + ] )S S + S , ˆ7 3([p ˜˜7(4.45) 7g6171Q2b2= 1 ]0 2[K ˆ2 1(4.45) 7˜7 3([p 73([p (1, 1, 0)QR g9way =multiplicity 09b2]]bbb))S 0+ 19] (4.45) B 12[K ˜ x0) 4[K ]+ ]2˜2)+ ]0S b)2S 1,00) 7+ 2and (1,0,0) ˆS+ ˆSˆˆ+ ˜2[K B ]expanding B BS(4.45) ˆ ˜1) ˆ0270, ˜we here notation x(qother for of hypermultiplets with charge Proceeding in the (1, 1), (0, 1, (1, x(0,1,0) = 4[K 3([p ]ˆ˜]b012b7722)for 2[K 3([p S ] S we get the orders of vanishing (1, g6= = 0hympermultiplets 091+9([p 0)S 0S x1, =,q 2[K ]ˆˆ)7= 3([p ) + S 3([p ] ) S 2[K ] S + 3([p ] ) qused Calculating the other multiplicities, without the classes, we obtain +3([p S 2222S S + 2[K ]S 9([p ] )S S S S + 6S , (q(q , q, R , ,qqSS).).the Calculating the multiplicities, expanding the classes, obtain 7 ,q1a )similar (1,0,0)   7 7 (1,1,0) S˜˜1˜1the 2[K ]S ] S S + S S 6S , Q R 770 9 B B B Qwe Q R S Bg2]9]S B b b b QR B 9 9 b 1 22+ b b b QR 1 b b B2[K ˆ+ ˜973([p ˜7(4.47) ˜+ ˜˜ ˜ ˜2QR x = + 3([p )Bfactor + S ]= x =of 2[K ]2 ])2[K + ]Sˆ]9([p 3([p )2+ + S + ]QR S S23([p S7]]2 ]+ S + ]factor )S Sˆˆin S+ + S S ,(4.47) x(0,1,0) = 4[K ]is2[K )223([p 2[K ]missing Sˆ2[K 3([p ]+ Sˆ3([p S7ˆ)4of 1is 12+ b7to 78 772[K (1,1,0) inthe the column is related to some missing sˆ2ˆS]ˆ18 gBand = 7S 23([p 7] )S= (1,1,0) 7B 9ˆ 2)and 922[K 11,in column xxthe related to some missing of s]2b3([p g6S6B5]s2[K B B B]77S B 7]S 7]2b]9 7S ˆ2[K ˜6S 9)g (1,1, 1) is 1B 7s B (1,1, 1) we get the orders vanishing The in column x related some missing s s in The in the column x related to some factor of and in g = ˆ ˜ ˜ ˜ x = 4[K ] 3([p ] ) + 2[K ] S ) S S ] S 18 (1,1, 1) 18 (1,1, 1) 7 (0,1,0) q , q ) Calculating the other multiplicities, without expanding the classes, we obtain S S S 2[K ]S + 9([p )S + S S + S 6S , 1 b b b B B B Finally for the hypermultiplets (1, 0, 0), (0, 1, 0) and (0, 0, 1) we obtain the degrees [HP: )˜ +x bS Q R S 7˜ b1]S 2ˆ 9] ) ˜ˆ 92[K 92 +x ˆ0) ˆx ˜7 x 13([p 1+ 7S b 2[K 91,12 ]1,˜)S B ˆB7 S ˜27]7]b )+ ˆ+ ˜3([p Charges Loci x xSˆ(1,0,2) x x(1,1,1) ˆ79]22S˜+ x(1,1,0) =right 2[K 3([p (1,1, 1) (0,1,2) (b9+ 1,0,1) (0, 1,1) (72S 2)[HP: (0,0,2) + S 3[K ]S 9([p ] )S S S 7S , 2ˆ]3([p 2S 7]4 7the 3([p S S 2[K ]S + 9([p ] )S + S S S 6S , Finally for the hypermultiplets (1, 0), (0, 1, and (0, 0, 1) we obtain degrees x = 4[K ] ] ) + 2[K ] S 3([p ) S S 2[K ] S B B 10, b991 24 9 7 7 b 0.Thus Thus in order to obtain the spectrum we have class instead of 7 (0,1,0) B ˆ ˜ ˆ ˜ 1 b b B ˆ ˜ ˆ ˜ in order to obtain the right spectrum we have to add that instead of B B B b b ˆ ˆ ˆ ˜ Charges Contained in Loci Multiplicity How can we center this table] S S 3[K ]S 9([p ] )S S S S S + 7S , R Thus order to obtain the right spectrum we have to add that class instead of Contained in Loci Multiplicity RCharges ==0.0.Thus inin order to obtain the right spectrum we have to add that class instead of ˜ ˆ ˜ ˆ ˜ + S S 3[K ]S 9([p ] )S S S S + 7S , QS Q 7 9 9 (0,1,0)   x = 4[K ] 3([p ] ) + 2[K ] S 3([p ] ) S S 2[K ] S 7 9 9 3([p ] )Sg]67this S + ]x)S +S2ˆ5S S +S42[K S B 22 xB0]S9 11 9ˆ2ˆ (0,1,0) b1B2˜ b2[K 7 S1,9 1˜ B2) B How can we0, center 24[K 7gx 7=B]˜ 7(0, (1, 1)Loci =Stable] 0 +723([p 9x,76S ,0x(1,1,1)1 ˆ9([p ˜76S Charges x x˜0+ x (1,1, (0,1,2) (1,0,2) (4229 1,0,1) x(0,1,0) = 2[KB ]ˆS ]b]bbb))S 2S S 3([p S 2[K ]S 5S 4S]1,9S 1ˆ7b2bS b1 B 74b9S 1)S 2)]S 27)1) + 21B 72 b 3([p 971 49([p 17S 91˜(+ 7S b b(0,0,2) ˆ ˜ ˆ 71,1) B ˜ b ˜ 1 2 ˆ act it ˜ RS R + S S 3[K ]S 9([p ] S S + , ct it ˆ ˆ ˜ 1 b b ˜ ˆ ˜ ˆ ˜ ( 1, 0, 1) s ˜ = s ˜ = [˜ s ] · S [s ] · [s ] x(1,1,1) = 4[K ]6 (1,1,1= 3([p ] ))902S]+ 2[K ]9] 2)1,1) 2[K ]23([p )S˜4([p 70B 7Q 2B2[K 97 770 92[K subtract QS ˆ3]S ˆbb8x ˜97(0,0,2) ˜7b6S 1+3([p ( subtract 1, 0, 1)it.it Contained s˜x s˜ = ]ˆ3([p Sx3([p ·9271,0[s ]2)ˆ]07SS 27 2[K b 20 74[K 7x 27 x(0,0,1) =Loci ](0,1,2) 2[K ]xBS([˜ 4([p )]SS2[s S18 + 2[K ]S ],7)1Sx7 (1,1,0) ]2b1)gb)B9S˜223([p )S + 52[K S S S Charges in (0, 1, 1) g] 3([p = 41,0,1) 0](27Sˆ ˜473([p B 33x= 729([p =Loci 4[K ]24([p S )27]S ]9S 7]s 23([p 7]8 x x273([p x 7)bS 9·7Multiplicity 7x4 9] )S 113 2˜ 718 7S 7]x˜ B2[K B (1,1,1) B (1,0,2) (0, 1, (1,0,1) (0,1,1) = 4[K ] ] ) ] ) ] S )9(1,1,0) S 1=2Bg 10 ˆ 1B b+ (1, 0, 1) g = 0 4 B B ˆ ˜ ˜ 2 (1,1,1) ˆ ˆ ˜ B B Loci x x x x x x x x x x x 3([p ] ) S S S 2[K ]S + 9([p ] )S + S S + S S 6S , x = ] 4([p ] ) 2[K ] S 4([p ] ) S S + 2[K ] S 4([p ] ) S 1) (1,0,2) ( 1,0,1) (0, 1,1) ( 1, 1, 2) (0,0,2) (1,0,1) (0,1,1) b(0,1,2) b 2 7 9 9 QR Q 7+ Q 4[K Q B (1,1, 1 b b b 7 7 (0,0,1) B ˜ ˆ ˜ ˆ ˜ ˆ B ˆ[ˆ ˆ9b788+ ˜176S ˆS RS 1R 1B b]ˆ 26 ]1= )3([p S2g729 2]= 2[K ]S 9([p 5][s S S + 42S0) S3([p , 02 ] )1bS˜7 1(1,1,1) = = 00 0)720S1+ 0b] ))S 1S 04 1b )9S˜ (0, 1) sˆgsimilar = sgˆ = 01ˆg3([p s7s0bs110933+ ]]ˆ0]3([p ··4([p SS [s ]and ]091+ (1, 1, 0) g]]˜ 11(1, 0]7˜·2[K 02B (0,0,1)   ˆS ˜1, = 4[K 4([p ]bS 2[K S )S 2˜S 2[K 4([p Q9= 7b 2[K 2]0 7ˆ 7B ]S 7way 7˜ 18 1,1, sˆfor s ˆ = [ˆ [s · [s ] 1hympermultiplets 12 oceeding in similar way for the hympermultiplets 0, 1), (0, 1, 1) (1, (0, 1,a 1) g = = 0 0 x = 4[K ) ] S ] S ] 1 3g12 7 18 ˆ B B ( 1,(0, 0,in 1) = s ˜ = [˜ · [s · [s ] ceeding aa1) similar the hympermultiplets (1, 1, 0) b 2 7 7(4.46) (1,1,1) ˆ ˜ ˆ gx = 0 1 1 ] )S˜ Proceeding inway a9Qs˜(0,0,1) similar for the hympermultiplets (1, 0, 1), (0, 1, 1) and (1, 1, 0) ˆ ˜ Proceeding in way for the (1, 0, 1), (0, 1, 1) and (1, 1, 0) 3= 7 18 B B B ˆ ˜ ˜ ˆ ˜ S S + 2[K ]S + 9([p ] )S + S S + S 8S , b R R = S S + 2[K ]S + 9([p ] )S + S + S S 8S , (4.46) x 4[K ] 4([p ] ) 2[K ] S 4([p ] ) S + 2[K ] S 4([p 7 9 9 ˆ ˜ ˆ ˜ 7 9 9 S S S + 2[K ]S + 12([p ] )S + S S + S S s 10S 25   B 7 7 (0,0,1) ]b ˆ + bB 90 + b 9ˆ+ gQR =˜0= 1S 1sBB 0˜] (4.47) Q2 9([p +]195= 908S 9] · 9B B2 SB˜72= 2[K S S S (4.46) 4([p R9 0=or 2]1 2119 ˆˆsˆ= ˆ2ˆ771]S ˜297790SˆS77299s+ 1, 1,1, 2) 2) s˜s˜88= =g9Rs˜1, s˜9=90) ··+ S [s ·1)S [s [ˆ s)9s8S8+ ]27]·0Sˆ6·59S [s [s,[s xgS12 4[K )]S + 2[K 4([p 2[K ].S ]b )S˜711 1[sB 19 b0 2S b ˜ g= 1g 0]]S˜·B 17]02 ]4([p 12 8S 8)12]2]]S 990 012([p 10 20 91 ( ( 1, = 0sˆ==or = sˆsˆ72hypermultiplets ·71,4([p [s = [ˆ S [s16 (0,0,1) (1, g0g= =4[K 07+0˜4([p 1[˜ 0]1]6bS 26S12= Ss S 2[K + ]]]S)S + 10S ˆ[ˆ ˆ B 991= 10 20 19 78 7the 9S 27s 90) b 9 x ] ] 2[K ] S ) S + 2[K 4([p ) S b B ˜ ˆ ˜ g = 16 16 16 1 (0, 1, 1) s ˆ = ] · S [s ] · [s ] 2 7 (0,0,1) ˆ ˜ ˆ ˜ Finally for (1, 0, 0), (0, and (0, 0, 1) we obtain the degrees [HP: S 3+ this 7Sapproach, 7S79 + 18 9+ 12+ 2S SB7 + 2[K 2Ssee+]S 2[K ]S 12([p 6Sfirst 1212 S 5S 8S , s 10S (4.46) 1]+)S + 9([p b +6 is variety can be seen as aS determinantal variety, (2.7) Following the 9B ]S)S 7BS ) 1) 6D  maher  spectrum  with  U(1)3   ApplicaQon  of  toolbox   APPLICATION  2:  ELLIPTIC  CURVES  IN   TORIC  VARIETIES   26     EllipQc  fibraQons  with  toric  ellipQc  fibers   polytopes:                               [D.K.,  Mayorga  Peña,  Oehlmann,  Piragua,  Reuter]    associated  to  16  reflexive   F13 F16 F15 F14 F9 F11 F10 F12 F5 F6 F7 F8 F1 F2 F3 F4 For  algorithmic  approach  to  toric     models  &  toric  Mordell-­‐Weil,   see:  [Braun,Grimm,Keitel]   Applying  presented  techniques:     with  given  E  &  arbitrary  base  B   •  determine     •  compute   :  maher  reps,  6D  mulQpliciQes;  4D   27     EllipQc  fibraQons  with  toric  ellipQc  fibers   [D.K.,  Mayorga  Peña,  Oehlmann,  Piragua,  Reuter]     F16 SU(3) Z3 Arrow:   SU(3) x SU(2)2 x U(1) F13 (SU(4) x SU(2)2) rank of total gauge group                                 •  Up  to   SU(2) F11 F10 F8 F6 F4 SU(2)4 x U(1) Z2 Z2 SU(3) x SU(2) x U(1) F14 F15 SU(3) x SU(2) F3 F12 SU(2)2 x U(1)2 SU(2)2 x U(1) F9 SU(2) x U(1)2 SU(2) x U(1) F5 U(1)2 F7 in  fiber     U(1)3 F2 F1 Mordell-Weil rank ,  Mordell-­‐Weil   ,  only      (need  Jacobian  fibraQons)   •  Extremal  transiQons  in  fiber  =   :  worked  out   28   EllipQc  fibraQons  with  toric  ellipQc  fibers   [D.K.,  Mayorga  Peña,  Oehlmann,  Piragua,  Reuter]     F     Arrow:   F F F   in  fiber         F F     Polytopes  dual   F F F F     Sum  rule:   F F    of  gauge  group       of  poly  +  its  dual     F F F       F     Mordell-Weil rank •  Up  to   ,  Mordell-­‐Weil   ,  only      (need  Jacobian  fibraQons)   •  Extremal  transiQons  in  fiber  =   :  worked  out   16 SU(3) Z3 SU(3) x SU(2)2 x U(1) 13 (SU(4) x SU(2)2) rank of total gauge group 10 SU(3) x SU(2) 4 15 SU(2) x U(1) Z2 Z2 SU(3) x SU(2) x U(1) SU(2) 14 2 12 SU(2) x U(1) 11 SU(2) x U(1) SU(2) x U(1) SU(2) x U(1) U(1) 3 U(1) 28   ApplicaQon  of  toolbox   APPLICATION  3:  ENHANCING  U(1)2   29   Higgs-­‐TransiQons  in  F-­‐theory:  U(1)’s            GnA   EllipQc  fibraQons  with  higher  rank  Mordell-­‐Weil  group  crucial  for   understanding  the   compacQficaQons            Can  we  tune  complex  structure  to   to  non-­‐Abel     Rank  1  case  understood:   [Morrison,  Taylor]   Every  6D  F-­‐theory  with      comes   SU(2)  on  Riemann  surface  ⌃        g                adjoint                            V   EV                            U(1)   rk(MW)=0                                                        tuning                        m        oduli                      rk(MW)=1   Geometrically:  transiQon  of     30   Higgs-­‐TransiQons  in  F-­‐theory:  U(1)2            GnA   Enhancement  of  U(1)xU(1):   •  Reduce  MW-­‐rank  to  zero  by   E   [Cve8č,  D.K.,  Piragua,  Taylor]    types  of  possible   uf2 (u, v, w) +  Q,  R  with  origin  P   Y (ai v + bi w) = i=1 31   Higgs-­‐TransiQons  in  F-­‐theory:  U(1)2            GnA   Enhancement  of  U(1)xU(1):   •  Reduce  MW-­‐rank  to  zero  by   E   [Cve8č,  D.K.,  Piragua,  Taylor]    types  of  possible    Q,  R  with  origin  P   uf2 (u, v, w) + (a1 v + b1 w)2 (a3 v + b3 w) = •  rk(MW)=2            1:      P      Q                          0   31   Higgs-­‐TransiQons  in  F-­‐theory:  U(1)2            GnA   Enhancement  of  U(1)xU(1):   •  Reduce  MW-­‐rank  to  zero  by   E   [Cve8č,  D.K.,  Piragua,  Taylor]    types  of  possible   Q,  R  with  origin  P   uf2 (u, v, w) + (a1 v + b1 w)3 = •  rk(MW)=2            1:      P      Q                          0   •  rk(MW)=1            0:      P      R                          0   This  tuned  fibraQon  has build  in:     1.  U(1)xU(1)          SU(3):  set        i      =          1    ,  at    f    2    (0,                b    1  ,    a    1    )      =        0           in  E  at  P=[0,-­‐b1,a1]   2.  U(1)xU(1)          SU(2)xSU(2):  set    f2 (0, b1 , a1 ) =      i      =          0      in  B:          uf        2    (u,            v,        w)            =          0       3.  general  case   :  U(1)2          SU(3)xSU(2)2   31   Summary    of  ellipQc  fibraQons  with  Mordell-­‐Weil  group   •  Developed    to  analyze  these  models   •  6D  maher  spectrum  &  4D  Yukawas:   •  4D  chiraliQes  &  G4-­‐flux:  CY   &   •  Applied  tools  to     with  ell  fibers  as   •  hypersurface  in  dP2:  U(1)2,  also  with  SU(5)   in    Bl        3    (P        3    )    :  U(1)3    in  16  2d  toric  varieQes    can  be    into  GnA,    always  in   way   Outlook   •  ClassificaQon  of  n>3  U(1)’s     [Cve8č,  DK,  Piragua,  Peng  Song]:  work  in  progress   •  HeteroQc  dual  of  F-­‐theory  w/  U(1)’s   [Cve8č,  Grassi,  DK,  Piragua,  Song]:  work  in  progress   32   33   ... Het/F-­‐theory  duality:  see  Anderson’s  talk   •  back-­‐reacted     •  regions  with   on     Type  I     EffecQve  theories  of  F-­‐theory   Use  F-­‐theory  to  engineer  effecQve  theories:... F-­‐THEORY  COMPACTIFICATIONS     F-­‐theory  =  geometry/physics  dicQonary   F-­‐theory  specified  by                  of  ellipQc  fibraQon     co-­‐dim     one  sing  over    S             on. .. IllustraQon:  dP            2    -­‐ellipQc  fibraQons  with  two  raQonal  secQons   TOOLBOX  FOR  STUDYING  F-­‐THEORY   WITH  U(1)’S   17   ConstrucQon  of  C[Cve8č,   Y-­‐ellipQc   fi braQons  

Ngày đăng: 27/09/2017, 09:46

w