1. Trang chủ
  2. » Giáo án - Bài giảng

Revisiting stabilities

26 105 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,21 MB

Nội dung

Revisiting stabilities of 5D Myers-Perry black holes in numerical relativity Masaru Shibata (YITP, Kyoto) With H Yoshino (KEK) Myers-Perry black hole with single spin Gd µ Σ 2 ds = −dt + d−5 dt + asin θ dϕ + dr + Σdθ Δ r Σ + r + a sin θ dϕ + r cos θ dΩ2d−4 ( ( ) ) % Gd µ ( 2 2 ' Σ = r + a cos θ ; Δ = r + a − d−5 * r ) & µ : mass parameter, a : spin parameter d − Ωd−2 ⇒ M= µ, J = Ma 16π Gd d −2 parameters (µ , a) exist; but scale invariance exists a ⇒ q := : nondim spin 1/(d−3) Gd µ ( ) ( ) 5D Myers-Perry BH: Reminder •  Spin parameter q = a/µ1/2 = [0,1) # For q= 1, a naked singularity appears A =ΩD-2rh µ à for q à •  For q à , black hole is pancake-like Cp / Ceq à Cp(φ) “Axial ratio” Ceq ηm = Cp ϕ exp imϕ d ϕ ∫  Cp “Deformation” ( ) ( ) Previous studies for the stability of MP BH (1) •  Emparan & Myers gave a conjecture based on Thermodynamical argument (2003) ? M, J fixed A =ΩD-2rhµ à for high-spin A = 2Ao >0 Likely to be more stable •  High-spin BH seems to be unstable for any dimension including D=5 case with q ~ Previous studies for the stability of MP BH (2) •  Is higher-dimensional spinning BH unstable ? •  Yes, for more than 6D cases: Consensus ü For axisymmetric perturbation (Dias et al 09) ü For non-axisymmetric case (SY 10, Dias + 14) •  But, could be “No” for 5D case ü For axisymmetric perturbation, it is No ü SY 10 suggested in numerical relativity it could be “Yes” à However, simulation time was too short à We have been revisiting since last year ü Dias + 14 show it “No” II Summary of our previous higherdim numerical-relativity results: •  Use BSSN formulation with cartoon method: impose SU(D-3) symmetry for extra-dim space •  Excise a region deep inside horizon •  Fixed mesh refinement algorithm •  “Puncture gauge” with appropriate choice of coefficients ∂tα = −1.5α K i i ∂t β = B CB i i i ∂t B = Γ − B : C B = 1− µ Evolution of deformation of AH: 6D (SY10) Unstable Deformation (m=2) The result does agree with Dias+ 14 q=0.74 Marginal Evolution of deformation of AH: 7D (SY10) q=0.96 Unstable Deformation (m=2) The result does agree with Dias+ 14 q=0.735 6D Evolution of Cp / Ce for high spin Axial ratio SY10 q ~ 0.6 Critical value =NOT very small q=0.74 q > 0.74 q~1 Cp Ce SY10 Looks exponential Crash growth Stable Exponential decay Unstable? Deformation (m=2) Evolution of deformation of AH in 5D The result does not agree with Dias+ 14 Z4c formulation (Bernuzzi & Hilditch): 5D version l l     (∂t − β ∂l )γ ij = −2α Aij + γ il β ,j + γ jl β ,i − γij β l ,l Vacuum χ l l (∂t − β ∂l ) χ = α K − β ,l # & # & 1 l  (∂t − β ∂l ) Aij = αχ % Rij − γ ij R ( − χ % Di D jα − γ ij Δα ( 4 $ ' $ ' l  l l l      +α KAij − Ail A j + Ail∂ j β + A jl∂i β − β ,l Aij # 2& l ij    (∂t − β ∂l ) K = α % Aij A + K ( − Δα : K = K − 2Θ ' $ # i jk ij & k i ij    ∂t − β ∂k Γ = 2α % Γ jk A − γ 3K − 4Θ − χ , j A ( ,j $ ' i j ik j j i jk i  − Γ β, j + Γ β, j + γ β, jk + γ β, jk 2 l (∂t − β ∂l )Θ = α H : H = R + K − Ki j K ij 12 l ( ) ( ( ) ) ( ( ) ) Essence of Z4C formulation (Bernuzzi & Hilditch) H = : Hamiltonian constraint H i = : Momentum constraint %' ADM, BSSN: ∂ H ~ −D H i , ∂ H i ~ t i t ⇒& '( Z4c: ∂t Θ ~ H , H i ~ −∂i Θ ⇒ ∂t H ~ −Di H i , ∂t H i ~ −D i H Constraint violation obeys wave equations ADM, BSSN: constraint violation cannot propagate Z4C: constraint violation can propagate à “error” is washed out à long-term simulation 13 Evolution of bar-mode (m=2): Add bar perturbation and evolve as SY10 0.1 m=2 Preliminary 0.01 q=0.92 q=0.915 q=0.91 q=0.90 q=0.89 (t-1.5) The growth are not exponential q=0.92 r a e n i l x Appro q=0.915 q=0.91 q=0.90 0.001 q=0.89 Numerical results agree with Dias+ 14 (black dot-dot) 0.0001 0 1/2 50 t/µ 1/2 50 t/µ Study for Bar-mode (m=2 mode) •  For stable BHs, q < ~0.90, oscillation frequency and damping rate agree with Dias+ 14 e.g., ωr ~ 1.3, ωi ~ 0.028 for q = 0.90 à  For q < =0.90, 5D BH are stable (our previous analysis was incorrect) However,    for    q  >  ~0.91,    we    s2ll  find    an  instability   à    This    is    associated    with    other    unstable    mode   Axial ratio of horizon Cp / Ceq Evolution of axial ratio with no initial perturbation: Instability is not due to m=2 0.38 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.3 0.29 0.28 q ~ 0.875 Stationary states q ~ 0.89 Looks stable q = 0.90 q = 0.91 q=0.900 q=0.910 q=0.915 q=0.920 q = 0.92 Preliminary 50 100 150 1/2 tt // (µ µ1/2 ) 200 250 300 0.3 Evolution of the shape of apparent horizon t=65.5 t=75.8 q=0.92 0.3 0.2 0.1 0.1 0 y 0.2 -0.1 -0.1 -0.2 -0.2 -0.3 -0.3 Preliminary t=86.0 -0.3 -0.2 -0.1 0.1 0.2 0.3 This is not gauge-invariant -0.3 -0.2 -0.1 0.1 0.2 0.3 x But, it may show something x t=96.3 t=106.5 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 y 0.3 y 0.3 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.3 -0.3 -0.3 -0.3 -0.2 -0.1 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.1 0.2 0.3 -0.3 -0.2 -0.1 0.1 0.2 0.3 x x x m=4 mode perturbation by Cartesian grid q=0.900 q=0.910 q=0.915 q=0.920 q=0.925 0.1 m=4 Preliminary Stable Unstable !? 0.01 Noise level 0.001 0.0001 50 100 Growing mode still exists: Real frequency is by 10% smaller than in linear analysis for it 150 1/2 1/2 tt// µµ 200 250 300 Cp / Ceq Results depend only weakly on resolution 0.38 0.37 0.36 0.35 0.34 0.33 0.32 0.31 0.3 0.29 0.28 q=0.92 à ~ 0.875 Stable q=0.92:Unstable !? q=0.90 N=60,q=0.92 N=48,q=0.92 N=40,q=0.92 N=60,q=0.90 N=48,q=0.90 N=40,q=0.90 q=0.92 Preliminary 50 100 t/µ 1/2 150 200 r+exact 11 Ar+AH/ /A exact Evolution of area of apparent horizon 0.14 0.12 0.1 0.08 0.06 0.04 0.02 -0.02 q=0.92, Unstable ? q=0.900 q=0.910 q=0.915 q=0.920 q=0.915, Unstable ? q=0.91, Unstable ? q=0.90, Stable Preliminary 50 100 150 1/2 tt // µ1/2 200 250 300 Checking 1st law of BH thermodynamics ( 1/2 ) µ−a rh κδ A = 8π δ M − ΩHδ J > : κ = = µ µ Assume monotonic wave emission ω q ⇒ δ M = σδ J : σ = ; Here, ΩH = 1/2 > σ is needed m µ % δµ " $$ ⇒ δq = − q '' 1/2 µ #µ σ & 1/2 µ σ − ΩH δA δq δ q σµ1/2 − q ⇒ = = 1/2 A 1− q 1− σµ q 1− q2 1− σµ1/2q ( ) ( ) I checked this relation between δA & δq is satisfied for m=4 approximately: σ ~ 0.8 Summary •  Z4c formalism enables us long-term simulations •  For q < =0.9, 5D Myers-Perry BH appears stable (I am very sorry for our previous result): This new result agrees with Dias+ 14 i.e., our results for ωr & ωi agree with Dias+ 14 •  However, simulations still find a non-axisym instability (m=4) for 5D high-spin MP BH !?!? v  New possible critical value is q ~ 0.91 (a/rh ~ 2.2) v  The instability is NOT associated with bar-mode v  Unstable BH evolves to a less spinning BH Ø  To be honest, I not still believe this result: Please not believe as well … A concern •  Theory in Z4c formalism is different from GR in the presence of a constraint violation •  If a large constraint violation is continuously generated (e.g., near the BH horizon), something wrong such as bypassing might occur •  We have to be careful and need more studies Prohibited    in    GR Another       solu2on Direc2on    of   constraint    viola2on A    solu2on Solution space in GR A concern in Z4c formulation l l  (∂t − β ∂l )γij = −2α Aij + γil β ,j + γ jl β ,i − γij β l ,l χ l (∂t − β ∂l ) χ = α K − β l ,l # & # & 1 l  (∂t − β ∂l ) Aij = αχ % Rij − γ ij R ( − χ % Di D jα − γ ij Δα ( 4 $ ' $ ' l ( ) Add +α ( K + nΘ)Aij − Ail A lj + Ail∂ j β l + A jl∂i β l − β l ,l Aij constraint # 2& l ij    (∂t − β ∂l ) K = α % Aij A + K ( − Δα : K = K − 2Θ ( $ ) ' # i jk ij & k i ij    ∂t − β ∂k Γ = 2α % Γ jk A − γ 3K − 4Θ − χ , j A ( ,j $ ' i j ik j j i jk i − Γ β, j + Γ β, j + γ β, jk + γ β, jk 2 l (∂t − β ∂l )Θ = α H : H = R + K − Ki j K ij ( ) ( ( ) ) 24 Cp / Ceq Final state depends on n for q=0.92 Need more researches 0.44 0.42 0.4 0.38 0.36 0.34 0.32 0.3 0.28 Z4c n=-1 n=1 n=2 q=0.90 q=0.92 Preliminary 50 100 t / µ1/2 150 200 No spin: Check of 4th-order convergence AAH / Aexact - 1/2  /  N Δx=1.2=µ x=1.2µ1/2/N -0.01 -0.02 -0.03 -0.04 -0.05 -0.06 -0.07 -0.08 N=30 N=24 N=20 N=24, (4/5) N=20, (2/3)4 200 400 t/µ 600 1/2 800 1000 ... numerical relativity it could be “Yes” à However, simulation time was too short à We have been revisiting since last year ü Dias + 14 show it “No” II Summary of our previous higherdim numerical-relativity

Ngày đăng: 26/09/2017, 16:45