Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 12 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
12
Dung lượng
375,5 KB
Nội dung
Phần 1. Daođộng và sóng cơ Daođộng cơ học Câu 10. tổng hợp hai daođộng điều hoà cùng phơng, cùng tần số, cùng biên độ là một daođộng có biên độ a (th) =a 2 thì 2 daođộng thành phần có độ lệch pha là: A. 2 B. 2k C. 4 D. . Câu 11. Hai con lắc đơn có chiều dài l 1 , l 2 khác l 1 daođộng với chu kì T 1 =0.6 (s), T 2 =0.8(s) đợc cùng kéo lệch góc 0 và buông tay cho dao động. Sau thời gian ngắn nhất bao nhiêu thì 2 con lắc lại ở trạng tháI này. ( bỏ qua mọi cản trở). A. 2(s). B 2.4(s). C. 2.5(s). D.4.8(s). Câu 12. con lắc lò xo daođộng với chu kì T= (s), ở li độ x= 2 (cm) có vận tốc v = 4(Cm/s) thì biên độ daođộng là : A. 2(cm) B. 2 2 (cm). C. 3(cm) D. không phảI các kết quả trên. Câu 13. daođộng điều hoà có phơng trình x=Asin(t + ).vận tốc cực đại là v max = 8(cm/s) và gia tốc cực đại a (max) = 16 2 (cm/s 2 ), thì biên độ daođộng là: A. 3 (cm). B. 4 (cm). C. 5 (cm). D. không phảI kết quả trên. Câu 14. con lắc lò xo daođộng theo phơng thẳng đứng có năng lợng toàn phần E=2.10 -2 (J)lực đàn hồi cực đại của lò xo F (max) =2(N).Lực đàn hồi của lò xo khi ở vị trí cân bằng là F = 2(N). Biên độ daođộng sẽ là : A. 2(cm). B.3(cm). C.4(cm). D.không phải các kết quả trên. Câu 17. con lắc lò so đang daođộng trên phơng thẳng đứng thì cho giá treo con lắc đi lên nhanh dần đều theo phơng thẳng đứng với gia tốc a khi đó : A.VTCB thay đổi. B. biên độ daođộng thay đổi. C. chu kì daođộng thay đổi. D. các yếu tố trên đều không thay dổi. Câu 18. Trong daođộng điều hoà khi động năng giảm đi 2 lần so với động năng max thì : A.thế năng đối với vị trí cân bằng tăng hai lần. B. li độ daođộng tăng 2 lần C. vận tốc daođộng giảm 2 lần D. Gia tốc daođộng tăng 2 lần. Câu 19. vận tốc trung bình một daođộng điều hoà trong thoi gian dàI : A. 16cm/s B.20 cm/s. C. 30 cm/s D. không phải kết quả trên. Biết phơng trình daođộng trên là : x=4.sin 2t(cm). Câu 22. Daođộng điều hoà có phơng trình x =8sin(10t + /6)(cm) thì gốc thời gian : A. Lúc daođộng ở li độ x 0 =4(cm) B. Là tuỳ chọn. C. Lúc daođộng ở li độ x 0 =4(cm) và hớng chuyển động theo chiều dơng. D. Lúc bắt đầu dao động. Câu 32. Một vật daođộng điều hoà phải mất t=0.025 (s) để đI từ điểm có vận tốc bằng không tới điểm tiếp theo cũng nh vậy, hai điểm cách nhau 10(cm) thì biết đợc : A. Chu kì daođộng là 0.025 (s) B. Tần số daođộng là 20 (Hz) C. Biên độ daođộng là 10 (cm). D. Pha ban đầu là /2 Câu 33. Vật có khối lợng 0.4 kg treo vào lò xo có K=80(N/m). Daođộng theo phơng thẳng đứng với biên độ 10 (cm). Gia tốc cực đại của vật là : A. 5 (m/s 2 ) B. 10 (m/s 2 ) C. 20 (m/s 2 ) D. -20(m/s 2 ) Câu 34. Vật khối lợng m= 100(g) treo vào lò xo K= 40(N/m).Kéo vật xuống dới VTCB 1(cm) rồi truyền cho vật vận tốc 20 (cm/s) hớng thẳng lên để vật daođộng thì biên độ daođộng của vật là : A. 2 (cm) B. 2 (cm) C. 2 2 (cm) D. Không phải các kết quả trên. Câu 38. con lắc lò xo gồm vật m, gắn vào lò xo độ cứng K=40N/m daođộng điều hoà theo ph- ơng ngang, lò xo biến dạng cực đại là 4 (cm).ở li độ x=2(cm) nó có động năng là : A. 0.048 (J). B. 2.4 (J). C. 0.024 (J). D. Một kết quả khác. Câu 43. Một vật daođộng điều hoà có phơng trình x= 10sin( 2 -2t). Nhận định nào không đúng ? A. Gốc thời gian lúc vật ở li độ x=10 B. Biên độ A=10 C. Chu kì T=1(s) D. Pha ban đầu =- 2 . Câu 44. Daođộng có phơng trình x=8sin(2t+ 2 ) (cm), nó phảI mất bao lau để đi từ vị trí biên về li độ x 1 =4(cm) hớng ngợc chiều dơng của trục toạ dộ: A. 0,5 (s) B. 1/3 (s) C. 1/6 (s) D. Kết qua khác. Câu 45. Câu nói nào không đúng về daođộng điều hoà : A. Thời gian daođộng đi từ vị trí cân bằng ra biên bằng thời gian đi ngợc lại. B. Thời gian đi qua VTCB 2 lần liên tiếp là 1 chu kì. C. Tại mỗi li độ có 2 giá trị của vận tốc. D. Gia tốc đổi dấu thì vận tốc cực đại Nhóm các bái tập tổng hợp và nâng cao về daođộng điều hòa Câu 46 Phng trỡnh dao ng ca mt vt dao ng iu hũa cú dng x = Asin ( 2 + ) cm. Gc thi gian ó c chn t lỳc no? A. Lỳc cht im i qua v trớ cõn bng theo chiu dng. B. Lỳc cht im khụng i qua v trớ cõn bng theo chiu õm. C. Lỳc cht im cú li x = + A D. Lỳc cht im cú li x = - A Cõu 47 Pha ca dao ng c dựng xỏc nh: A. Biờn giao ng B. Tn s dao ng C. Trng thỏi giao ng C. Chu k dao ng Cõu 48 Mt vt giao ng iu hũa, cõu khng nh no sau õy l ỳng: A. Khi vt qua v trớ cõn bng nú cú vn tc cc i, gia tc bng 0 B. Khi vt qua v trớ cõn bng vn tc v gia tc u cc i C. Khi vt qua v trớ biờn vn tc cc i gia tc bng 0 D. Khi vt qua v trớ biờn ng nng bng th nng. Cõu 49 Tỡm phỏt biu sai: A. ng nng l mt dng nng lng ph thuc vo vn tc B. C nng ca h luụn luụn l mt hng s C. Th nng l mt dng nng lng ph thuc vo v trớ D. C nng ca h bng tng ng nng v th nng. Cõu 50 Dao ng t do l dao ng cú: A. Chu k khụng ph thuc vo yu t bờn ngoi B. Chu k ph thuc vo c tớnh ca h C. Chu k khụng ph thuc vo c tớnh ca h v khụng ph thuc vo yu t bờn ngoi. Câu 51 Chọn câu sai Trong daođộng điều hòa thì li độ, vận tốc và gia tốc là những đại lượng biến đổi theo hàm sin hoặc cosin theo t và: A. Có cùng biến độ B. Có cùng tần số C. Có cùng chu kỳ D. Có cùng pha daođộng Câu 52 Chọn câu đúng Động năng của daođộng điều hòa: A. Biến đối theo hàm cosin theo t B. Biến đổi tuần hoàn với chu kỳ T C. Luôn luôn không đổi D. Biến đổi tuần hoàn với chu kỳ 2 T Câu 53 Chu kỳ daođộng của con lắc đơn phụ thuộc A. Khối lượng của con lắc B. Vị trí daođộng của con lắc C. Điều kiện kích thích ban đầu cho con lắc daođộng D. Biên độ daođộng của con lắc Câu 54 Daođộng tắt dần là một daođộng điều hòa A. Biên độ giảm dần do ma sát B. Chu kỳ tăng tỷ lệ với thời gian C. Có ma sát cực đại D. Biên độ thay đổi liên tục Câu 55 Gia tốc trong daođộng điều hòa A. Luôn luôn không đổi B. Đạt giá trị cực đại khi qua vị trí cân bằng C. Luôn luôn hướng về vị trí cân bằng và tỉ lệ với li độ D. Biến đổi theo hàm sin theo thời gian với chu kỳ 2 T Câu 56 Một chất điểm khối lượng m=0,01 kg treo ở đầu một lò xo có độ cứng k=4(N/m), daođộng điều hòa quanh vị trí cân bằng. Tính chu kỳ dao động. A. 0,624s B. 0,314s C. 0,196s D. 0,157s Câu 57 Một con lắc lò xo có độ dài l = 120 cm. Người ta thay đổi độ dài của nó sao cho chu kỳ daođộng mới chỉ bằng 90% chu kỳ daođộng ban đầu. Tính độ dài l' mới. A. 148,148cm B. 133,33cm C. 108cm D. 97,2cm Câu 58 Một chất điểm có khối lượng m = 10g daođộng điều hòa trên đoạn thẳng dài 4cm, tần số 5Hz. Lúc t = 0, chất điểm ở vị trí cân bằng và bắt đầu đi theo hướng dương của quỹ đạo. Tìm biểu thức tọa độ của vật theo thời gian. A. x = 2sin10πt cm B. x = 2sin (10πt + π) cm C. x = 2sin (10πt + π/2) cm D. x = 4sin (10πt + π) cm Câu 59 Một con lắc lò xo gồm một khối cầu nhỏ gắn vào đầu một lò xo, daođộng điều hòa với biên độ 3 cm dọc theo trục Ox, với chu kỳ 0,5s. Vào thời điểm t=0, khối cầu đi qua vị trí cân bằng. Hỏi khối cầu có ly độ x=+1,5cm vào thời điểm nào? A. t = 0,042s B. t = 0,176s C. t = 0,542s D. A và C đều đúng Câu 60 Hai lò xo R 1 , R 2 , có cùng độ dài. Một vật nặng M khối lượng m = 200g khi treo vào lò xo R 1 thì daođộng với chu kỳ T 1 = 0,3s, khi treo vào lò xo R 2 thì daođộng với chu kỳ T 2 = 0,4s. Nối hai lò xo đó với nhau thành một lò xo dài gấp đôi rồi treo vật nặng M vào thì M sẽ giao động với chu kỳ bao nhiêu? A. T = 0,7s B. T = 0,6s C. T = 0,5s D. T = 0,35s Câu 61 Một đầu của lò xo được treo vào điểm cố định O, đầu kia treo một quả nặng m 1 thì chu kỳ daođộng là T 1 = 1,2s. Khi thay quả nặng m 2 vào thì chu kỳ daođộng bằng T 2 = 1,6s. Tính chu kỳ daođộng khi treo đồng thời m 1 và m 2 vào lò xo. A. T = 2,8s B. T = 2,4s C. T = 2,0s D. T = 1,8s Câu 62 Một vật nặng treo vào một đầu lò xo làm cho lò xo dãn ra 0,8cm. Đầu kia treo vào một điểm cố định O. Hệ daođộng điều hòa (tự do) theo phương thẳng đứng. Cho biết g = 10 m/s 2 .Tìm chu kỳ giao động của hệ. A. 1,8s B. 0,80s C. 0,50s D. 0,36s Câu 63 Tính biên độ daođộng A và pha φ của daođộng tổng hợp hai daođộng điều hòa cùng phương: x 1 = sin2t và x 2 = 2,4cos2t A. A = 2,6; cosφ = 0,385 B. A = 2,6; tgφ = 0,385 C. A = 2,4; tgφ = 2,40 D. A = 2,2; cosφ = 0,385 Câu 64 Hai lò xo R 1 , R 2 , có cùng độ dài. Một vật nặng M khối lượng m = 200g khi treo vào lò xo R 1 thì daođộng với chu kỳ T 1 = 0,3s, khi treo vào lò xo R 2 thì daođộng với chu kỳ T 2 = 0,4s. Nối hai lò xo với nhau cả hai đầu để được một lò xo cùng độ dài, rồi treo vật nặng M vào thì chu kỳ daođộng của vật bằng bao nhiêu? A. T = 0,12s B. T = 0,24s C. T = 0,36s D. T = 0,48s Câu 65 Trong giao động điều hòa của một vật quanh vị trí cân bằng phát biểu nào sau đây ĐÚNG đối với lực đàn hồi tác dụng lên vật? A. Có giá trị không đổi. B. Bằng số đo khoảng cách từ vật tới vị trí cân bằng. C. Tỷ lệ với khoảng cách từ vật đến vị trí cân bằng và hướng ra xa vị trí ấy. D. Tỷ lệ với khoảng cách từ vật đến vị trí cân bằng và hướng về phía vị trí ấy Câu 66 Hàm nào sau đây biểu thị đường biểu diễn thế năng trong daođộng điều hòa đơn giản? A. U = C B. U = x + C C. U = Ax 2 + C D. U = Ax 2 + Bx + C Câu 67 Một vật M treo vào một lò xo làm lò xo dãn 10 cm. Nếu lực đàn hồi tác dụng lên vật là 1 N, tính độ cứng của lò xo. A. 200 N/m B. 10 N/m D. 1 N/m E. 0,1 N/m Câu 68 Một vật có khối lượng 10 kg được treo vào đầu một lò xo khối lượng không đáng kể, có độ cứng 40 N/m. Tìm tần số góc ω và tần số f của daođộng điều hòa của vật. A. ω = 2 rad/s; f = 0,32 Hz. B. ω = 2 rad/s; f = 2 Hz. C. ω = 0,32 rad/s; f = 2 Hz. D. ω=2 rad/s; f = 12,6 Hz. Câu 69 Biểu thức nào sau đây KHÔNG phải là dạng tổng quát của tọa độ một vật daođộng điều hòa đơn giản ? A. x = Acos(ωt + φ) (m) B. x = Asin(ωt + φ) (m) C. x = Acos(ωt) (m) D. x = Acos(ωt) + Bsin(ωt) (m) Câu 70 Một vật daođộng điều hòa quanh điểm y = 0 với tần số 1Hz. vào lúc t = 0, vật được kéo khỏi vị trí cân bằng đến vị trí y = -2m, và thả ra không vận tốc ban đầu. Tìm biểu thức toạ độ của vật theo thời gian. A. y = 2cos(t + π) (m) B. y = 2cos (2πt) (m) D. y = 2sin(t - π/2) (m) E. y = 2sin(2πt - π/2) (m) Câu 71 Cho một vật nặng M, khối lượng m = 1 kg treo vào một lò xo thẳng đứng có độ cứng k = 400 N/m. Gọi Ox là trục tọa độ có phương trùng với phương giao động của M, và có chiều hướng lên trên, điểm gốc O trùng với vị trí cân bằng. Khi M daođộng tự do với biên độ 5 cm, tính động năng E d1 và E d2 của quả cầu khi nó đi ngang qua vị trí x 1 = 3 cm và x 2 = -3 cm. A. E d1 = 0,18J và E d2 = - 0,18 J. B. E d1 = 0,18J và E d2 = 0,18 J. C. E d1 = 0,32J và E d2 = - 0,32 J. D. E d1 = 0,32J và E d2 = 0,32 J. Câu 72 Cho một vật hình trụ, khối lượng m = 400g, diện tích đáy S = 50 m 2 , nổi trong nước, trục hình trụ có phương thẳng đứng. Ấn hình trụ chìm vào nước sao cho vật bị lệch khỏi vị trí cân bằng một đoạn x theo phương thẳng đứng rồi thả ra. Tính chu kỳ daođộng điều hòa của khối gỗ. A. T = 1,6 s B. T = 1,2 s C. T = 0,80 s D. T = 0,56 s Câu 73 Một vật M daođộng điều hòa dọc theo trục Ox. Chuyển động của vật được biểu thị bằng phương trình x = 5 cos(2πt + 2)m. Tìm độ dài cực đại của M so với vị trí cân bằng. A. 2m B. 5m C. 10m D. 12m Câu 74 Một vật M daođộng điều hòa có phương trình tọa độ theo thời gian là x = 5 cos (10t + 2) m. Tìm vận tốc vào thời điểm t. A. 5sin (10t + 2) m/s B. 5cos(10t + 2) m/s C. -10sin(10t + 2) m/s D. -50sin(10t + 2) m/s Câu 75 Một vật có khối lượng m = 1kg được treo vào đầu một lò xo có độ cứng k = 10 N/m, daođộng với độ dời tối đa so với vị trí cân bằng là 2m. Tìm vận tốc cực đại của vật. A. 1 m/s B. 4,5 m/s C. 6,3 m/s D. 10 m/s Câu 76 Khi một vật daođộng điều hòa doc theo trục x theo phương trình x = 5 cos (2t)m, hãy xác định vào thời điểm nào thì W d của vật cực đại. A. t = 0 B. t = π/4 C. t = π/2 D. t = π Câu 77 Một lò xo khi chưa treo vật gì vào thì có chhiều dài bằng 10 cm; Sau khi treo một vật có khối lượng m = 1 kg, lò xo dài 20 cm. Khối lượng lò xo xem như không đáng kể, g = 9,8 m/s 2 . Tìm độ cứng k của lò xo. A. 9,8 N/m B. 10 N/m C. 49 N/m D. 98 N/m Câu 78 Treo một vật có khối lượng 1 kg vào một lò xo có độ cứng k = 98 N/m. kéo vật ra khỏi vị trí cân bằng, về phía dưới, đến vị trí x = 5 cm rồi thả ra. Tìm gia tốc cực đại của daođộng điều hòa của vật. A. 4,90 m/s 2 B. 2,45 m/s 2 C. 0,49 m/s 2 D. 0,10 m/s 2 Câu 79 Chuyển động tròn đều có thể xem như tổng hợp của hai giao động điều hòa: một theo phương x, và một theo phương y. Nếu bán kính quỹ đạo của chuyển động tròn đều bằng 1m, và thành phần theo y của chuyển động được cho bởi y = sin (5t), tìm dạng chuyển động của thành phần theo x. A. x = 5cos(5t) B. x = 5cos(5t + π/2) C. x = cos(5t) D. x = sin(5t) Câu 80 Một vật có khối lượng 5kg, chuyển động tròn đều với bán kính quỹ đạo bằng 2m, và chu kỳ bằng 10s. Phương trình nào sau đây mô tả đúng chuyển động của vật? A. x = 2cos(πt/5); y = sin(πt/5) B. x = 2cos(10t); y = 2sin(10t) C. x = 2cos(πt/5); y = 2cos(πt/5 + π/2) D. x = 2cos(πt/5) ; y = 2cos(πt/5) Câu 81 Vật nặng trọng lượng P treo dưới 2 lò xo như hình vẽ. Bỏ qua ma sát và khối lượng các lò xo. Cho biết P = 9,8N, hệ số đàn hồi của các lò xo là k 1 = 400N/m, k 2 = 500N/n và g= 9,8m/s 2 . Tại thời điểm đầu t = 0, có x 0 = 0 và v 0 = 0,9m/s hướng xuống dưới. Hãy tính hệ số đàn hồi chung của hệ lò xo?. A. 200,20N/m. B. 210,10N/m C. 222,22N/m. D. 233,60N/m. Câu 82 Vật M có khối lượng m = 2kg được nối qua 2 lò xo L 1 và L 2 vào 2 điểm cố định. Vật có thể trượt trên một mặt phẳng ngang. Vật M đang ở vị trí cân bằng, tách vật ra khỏi vị trí đó 10cm rồi thả (không vận tốc đầu) cho dao động, chu kỳ dao động đo được T = 2,094s = 2π/3s. Hãy viết biểu thức độ dời x của M theo t, chọn gốc thời gian là lúc M ở vị trí cách vị trí cân bằng 10cm. A. 10 sin(3t + π2). cm B. 10 sin(t + π2). cm C. 5 sin(2t + π2). cm D. 5 sin(t + π2). Cm Câu 83 Cho 2 vật khối lượng m 1 và m 2 (m 2 = 1kg, m 1 < m 2 ) gắn vào nhau và móc vào một lò xo không khối lượng treo thẳng đứng . Lấy g = 2 (m/s 2 ) và bỏ qua các sức ma sát. Độ dãn lò xo khi hệ cân bằng là 9.10 -2 m. Hãy tính chu kỳ dao động tự do?. A. 1 s; B. 2s. C 0,6s ; D. 2,5s. Câu 84 Một lò xo độ cứng k. Cắt lò xo làm 2 nửa đều nhau. Tìm độ cứng của hai lò xo mới? A. 1k ; B. 1,5k. C. 2k ; D. 3k. Câu 85 Hai lò xo cùng chiều dài, độ cứng khác nhau k1,k2 ghép song song như hình vẽ. Khối lượng được treo ở vị trí thích hợp để các sưc căng luôn thẳng đứng. Tìm độ cứng của lò xo tương đương?. A) 2k1 + k2 ; B) k1/k2. C) k1 + k2 ; D) k1.k2 Câu 86 Hai lò xo không khốilượng; độ cứng k 1 , k 2 nằm ngang gắn vào hai bên một khối lượng m. Hai đầu kia của 2 lò xo cố định. Khối lượng m có thể trượt không ma sát trênmặt ngang. Hãy tìm độ cứng k của lò xo tương đương. A) k 1 + k 2 B) k 1 / k 2 C) k 1 – k 2 D) k 1 .k 2 Câu 87 ĐH BK Cho hai daođộng điều hoà cùng phương, cùng chu kì T = 2s. Daođộng thứ nhất có li độ ở thời điểm ban đầu (t=0) bằng biên độ daođộng và bằng 1cm. Daođộng thứ hai có biên độ bằng 3 cm, ở thời điểm ban đầu li độ bằng 0 và vận tốc có giá trị âm. 1) Viết phương trình daođộng của hai daođộng đã cho. A)x 1 = 2cos πt (cm), x 2 = 3 sin πt (cm) B) x 1 = cos πt (cm), x 2 = - 3 sin πt (cm) C) x 1 = -2cos π t (cm), x 2 = 3 sin π t (cm) D) x 1 = 2cos π t (cm), x 2 = 2 3 sin π t (cm) Câu 88 ĐH An Giang Một con lắc lò xo gồm một lò xo khối lượng không đáng kể, độ cứng k, một đầu được giữ chặt tại B trên một giá đỡ (M), đầu còn lại móc vào một vật nặng khối lượng m =0,8kg sao cho vật có thể daođộng dọc theo trục lò xo. Chọn gốc của hệ quy chiếu tia vị trí cân bằng O, chiều dương hướng lên (như hình vẽ 1). Khi vật m cân bằng, lò xo đã bị biến dạng so với chiều dài tự nhiên một đoạn Dl =4cm. Từ vị trí O người ta kích thích cho vật daođộng điều hoà bằng cách truyền cho vật một vận tốc 94,2cm/s hướng xuống dọc theo trục lò xo. Cho gia tốc trọng trường g =10m/s 2 ; π 2 = 10. 1. Hãy xác định độ lớn nhỏ nhất và lớn nhất của lực mà lò xo tác dụng lên giá đỡ tại b. A) độ lớn nhỏ nhất là F 0 = 8 và lớn nhất là F 1 = 29,92N. B) độ lớn nhỏ nhất là F 0 = 5 và lớn nhất là F 1 = 18,92N. C) độ lớn nhỏ nhất là F 0 = 2 và lớn nhất là F 1 = 9,92N. D) độ lớn nhỏ nhất là F 0 = 0 và lớn nhất là F 1 = 19,92N. 2. Chứng minh rằng vectơ tổng của hai vectơ này là một vectơ biểu thị một daođộng điều hoà và là tổng hợp của hai daođộng đã cho. Hãy tìm tổng hợp của dao động. A) x = + 6 sin2 π π t (cm) B) x = − 6 5 sin2 π π t (cm) C) x = + 6 5 sin3 π π t (cm) D) x = + 6 5 sin2 π π t (cm) Câu 89 ĐH An Ninh Khi treo vật m lần lượt vào lò xo L 1 và L 2 thì tần số daođộng của các con lắc lò xo tương ứng là f 1 = 3Hz và f 2 =4Hz. Treo vật m đó vào 2 lò xo nói trên như hình 1. Đưa vật m về vị trí mà 2 lò xo không biến dạng rồi thả ra không vận tốc ban đầu (v o =0) thì hệ daođộng theo phương thẳng đứng. Bỏ qua lực cản của không khí. Viết phương trình daođộng (chọn gốc toạ độ ở vị trí cân bằng, chiều dương hướng thẳng đứng từ trên xuống, gốc thời gian là lúc thả vật ra). Cho g = 10m/s 2 , p 2 =10 A) x=2,34sin − 2 8,4 π π t cm. B) x= 2,34sin − 4 8,4 π π t cm. C) x= 4,34sin − 2 8,4 π π t cm. D) x= 4,34sin − 4 8,4 π π t cm. Câu 90 ĐH PCCP Có một con lắc lò xo daođộng điều hoà với biên độ A, tần số góc ω , pha ban đầu là ϕ . Lò xo có hệ số đàn hồi k. Lực ma sát là rất nhỏ. Câu 1 Thành lập biểu thức động năng của con lắc phụ thuộc thời gian. Từ đó rút ra biểu thức cơ năng của con lắc. A) E đmax = (7kA 2 )/2 B) E đmax = 2 2 3 kA . C) E đmax = . (5kA 2 )/2 D) E đmax = (kA 2 )/2 Câu 2 Từ biểu thức động năng vừa thành lập, chứng tỏ rằng thế năng của con lắc được viết dưới dạng sau, x là li độ của dao động. A) E t = 2 3 kx 2 B) E t = 2 1 kx 2 C) E t = 3 1 kx 2 D) E t = 4 1 kx 2 Câu 3 Trong ba đại lượng sau: a) Thế năng của con lắc; b) Cơ năng của con lắc; c) Lực mà lò xo tác dụng vào quả cầu của con lắc; Thì đại lượng nào biến thiên điều hoà, đại lượng nào biến thiên tuần hoàn theo thời gian? Giải thích? A) Chỉ có a) và c) B) Chỉ có b) và c) C) Chỉ có c) Đ D) Chỉ có b ) Câu 91 ĐH SP 1 Một cái đĩa nằm ngang, có khối lượng M, được gắn vào đầu trên của một lò xo thẳng đứng có độ cứng k. Đầu dưới của lò xo được giữ cố định. Đĩa có thể chuyển động theo phương thẳng đứng. Bỏ qua mọi ma sát và lực cản của không khí. 1. Ban đầu đĩa ở vị trí cân bằng. ấn đĩa xuống một đoạn A, rồi thả cho đĩa tự do. Hãy viết phương trình daođộng của đĩa. Lờy trục toạ độ hướng lên trên, gốc toạ độ là vị trí cân bằng của đĩa, gốc thời gian là lúc thả đĩa. A) x (cm) = 2sin (10π t – π /2) B) x (cm) = 4sin (10π t – π /2) C) x (cm) = 4sin (10π t + π /2) D) x (cm) = 4sin (10π t – π /4) 2. Đĩa đang nằm ở vị trí cân bằng, người ta thả một vật có khối lượng m rơi tự do từ độ cao h so với mặt đĩa. Va chạm giữa vật và mặt đĩa là hoàn toàn đàn hồi. Sau va chạm đầu tiên, vật nảy lên và được giữ lại không rơi xuống đĩa nữa. a) Tính tần số góc w' của daođộng của đĩa. b) Viết phương trình daođộng của đĩa. Lấy gốc thời gian là lúc vật chạm vào đĩa, gốc toạ độ là vị trí cân bằng của đĩa lúc ban đầu, chiều của trục toạ độ hướng lên trên. áp dụng bằng số cho cả bài: M = 200g, m = 100g, k = 20N/m, A = 4cm, h = 7,5cm, g = 10m/s 2 . A) a) w' = 20 rad/s. b) x (cm) = 8 sin(10t +p) B) a) w' = 20 rad/s. b) x (cm) = 4 sin(10t +p) C) a) w' = 30 rad/s. b) x (cm) = 10 sin(10t +p) D) a) w' = 10 rad/s. b) x (cm) = 8,16 sin(10t +p) Câu 92 ĐH Thái Nguyên Một lò xo có khối lượng không đáng kể, độ dài tự nhiên 20cm, độ cứng k =100N/m. Cho g =10m/s 2 . Bỏ qua ma sát. 1. Treo một vật có khối lượng m =1kg vào motọ đầu lò xo, đầu kia giữ cố định tại O để nó thực hiện daođộng điều hoà theo phương thẳng đứng (hình 1a). Tính chu kì daođộng của vật. A. T = 0,528 s. B. T = 0,628 s. C. T = 0,728 s. D. T = 0,828 s. 2. Năng vật nói trên khỏi vị trí cân bằng một khoảng 2cm, rồi truyền cho nó một vận tốc ban đầu 20cm/s hướng xuống phía dưới. Viết phương trình daođộng của vật. A) cmtx ) 4 10sin(2 π −= B) cmtx ) 4 10sin(25,1 π −= C) cmtx ) 4 10sin(22 π −= D) cmtx ) 4 10sin(25,2 π −= 3. Quay con lắc xung quanh trục OO' theo phương thẳng đứng (hình b) với vận tốc góc không đổi W. Khi đó trục của con lắc hợp với trục OO' một góc a =30 o . Xác định vận tốc góc W khi quay. Đáp án A) srad /05,6 =Ω B) srad /05,5 =Ω C) srad /05,4 =Ω D) srad /05,2 =Ω Câu 93 ĐH CS ND ở li độ góc nào thì động năng và thế năng của con lắc đơn bằng nhau (lấy gốc thế năng ở vị trí cân bằng). A) a = 2 0 α B) a = 2 2 0 α C) a = 3 2 0 α D) a = 4 2 0 α Câu 94 ĐH CS ND Một lò xo đồng chất có khối lượng không đáng kể và độ cứng k o = 60N/m. Cắt lò xo đó thành hai đoạn có tỉ lệ chiều dài l 1 : l 2 = 2: 3. 1. Tính độ cứng k 1 , k 2 của hai đoạn này. A) k 1 = 100N/m. và k 2 = 80 N/m B) k 1 = 120N/m. và k 2 = 80 N/m C) k 1 = 150N/m. và k 2 = 100 N/m D) k 1 = 170N/m. và k 2 = 170 N/m 2. Nối hai đoạn lò xo nói trên với vật nặng khối lượng m = 400g rồi mắc vào hai điểm BC cố định như hình vẽ 1 trên mặt phẳng nghiêng góc a = 30 o . Bỏ qua ma sát giữa vật m và mặt phẳng nghiêng. Tại thời điểm ban đầu giữ vật m ở vị trí sao cho lò xo độ cứng k 1 giãn Dl 1 = 2cm, lò xo độ cứng k 2 nén Dl 2 = 1cm so với độ dài tự nhiên của chúng. Thả nhẹ vật m cho nó dao động. Biết gia tốc trọng trường g = 10m/s 2 : a) Xác định vị trí cân bằng O của m so với vị trí ban đầu. b) Chứng tỏ rằng vật m daođộng điều hoà. Tính chu kì T. A) x 0 = 1,4cm. và T = 0,051s. B) x 0 = 2,4cm. và T = 0,251s. C) x 0 = 3,4cm. và T = 1,251s. D) x 0 = 4,4cm. và T = 1,251s. Câu 95 ĐH Đà Nẵng Một lò xo có dodọ dài l o = 10cm, K =200N/m, khi treo thẳng đứng lò xo và móc vào đầu dưới lò xo một vật nặng khối lượng m thì lò xo dài l i =12cm. Cho g =10m/s 2 . 1. Đặt hệt trên mặt phẳng nghiêng tạo góc a =30 o so với phương ngang. Tính độ dài l 2 của lò xo khi hệ ở trạng thái cân bằng ( bỏ qua mọi ma sát). A) cml 10 2 = B) cml 11 2 = C) cml 14 2 = D) cml 18 2 = 2. Kéo vật xuống theo trục Ox song song với mặt phẳng nghiêng, khỏi vị trí cân bằng một đoạn 3cm, rồi thả cho vật dao động. Viết phương trình daođộng và tính chu kì, chọn gốc thời gian lúc thả vật. A) x(cm) t510cos3 = , sT 281,0= . B) x(cm) t510cos3 = , sT 881,0= . C) x(cm) t510cos4 = , sT 581,0= . D) x(cm) t510cos6 = , sT 181,0 = . Câu 96 Một lò xo có khối lượng không đáng kể, chiều dài tự nhiên l o =40cm, đầu trên được gắn vào giá cố định. Đầu dưới gắn với một quả cầu nhỏ có khối lượng m thì khi cân bằng lò xo giãn ra một đoạn 10cm. Cho gia tốc trọng trường g ằ10m/s 2 ; π 2 = 10 1. Chọn trục Ox thẳng đứng hướng xuống,gốc O tại vị trí cân bằng của quả cầu. Nâng quả cầu lên trên thẳng đứng cách O một đoạn 2 3 cm. Vào thời điểm t =0, truyền cho quả cầu một vận tốc v =20cm/s có phương thẳng đứng hướng lên trên. Viết phương trình daođộng của quả cầu. A) x = 3 sin(10πt – 2π/3) (cm) B) x = 4 sin(10πt – 2π/3)(cm) C) x = 5 sin(10πt – 2π/3)(cm) D) x = 6 sin(10πt – 2π/3)(cm) 2. Tính chiều dài của lò xo sau khi quả cầu daođộng được một nửa chu kỳ kể từ lúc bắt đầu dao động. A) l 1 = 43.46 cm B) l 1 = 33.46 cm C) l 1 = 53.46 cm D) l 1 = 63.46 cm Câu 97 ĐH Luật Một lò xo có khối lượng không đáng kể, được cắt ra làm hai phần có chiều dài l 1 , l 2 mà 2l 2 = 3l 1 , được mắc như hình vẽ (hình 1). Vật M có khối lượng m =500g có thể trượt không ma sát trênmặt phẳng ngang.Lúc đầu hai lò xo không bị biến dạng. Giữ chặt M,móc đầu Q 1 vào Q rồi buông nhẹ cho vật daođộng điều hoà. 1) Tìm độ biến dạng của mỗi lò xo khi vật M ở vị trí cân bằng. Cho biết Q 1 Q = 5cm. A) ∆ l 01 = 1 cm và ∆ l 02 = 4cm B) ∆ l 01 = 2 cm và ∆ l 02 = 3cm C) ∆ l 01 = 1.3 cm và ∆ l 02 = 4 cm D) ∆ l 01 = 1.5 cm và ∆ l 02 = 4.7 cm 2) Viết phương trình daođộng chọn gốc thời gian khi buông vật M. Cho biết thời gian khi buông vật M đến khi vật M qua vị trí cân bằng lần đầu là p/20s. A) x =4.6 sin ( 10 πt – π/2)(cm). B) x =4 sin ( 10 πt – π/2)(cm). C) x = 3sin ( 10 πt – π/2)(cm). D) x = 2sin ( 10 πt – π/2)(cm). 3) Tính độ cứng k 1 và k 2 của mỗi lò xo, cho biết độc ứng tương đương của hệ lò xo là k =k 1 + k 2 . A) k 1 = 10N/m và k 2 = 40N /m B) k 1 = 40N/m và k 2 = 10N /m C) k 1 = 30N/m và k 2 = 20N /m D) k 1 = 10N/m và k 2 = 10N /m Câu 98 ĐH Quốc gia Cho vật m = 1,6kg và hai lò xo L 1 , L 2 có khối lượng không đáng kể được mắc như hình vẽ 1, trong đó A, B là hai vị trí cố định. Lò xò L 1 có chiều dài l 1 =10cm, lò xo L 2 có chiều dài l 2 = 30cm. Độ cứng của hai lò xo lần lượt là k 1 và k 2 . Kích thích cho vật m daođộng điều hoà dọc theo trục lò xo với phương trình x =4sinwt (cm). Chọn gốc toạ độ O tại vị trí cân bằng. Trong khoảng thời gian π/30(s) đầu tiên (kể từ thời điểm t=0) vật di chuyển được một đoạn 2cm. Biết độ cứng của mỗi lò xo tỉ lệ nghịch với chiều dài của nó và độ cứng k của hệ hai lò xo là k= k 1 + k 2 . Tính k 1 và k 2 . A) k 1 =20 N/m ,k 2 =20 N/m B) k 1 =30N/m, k 2 = 10 N/m C) k 1 =40N/m, k 2 =15 N/m D) k 1 = 40N/m, k 2 = 20 N/m Câu 99 ĐH Thương Mại Hai lò xo có khối lượng không đáng kể, có độ cứng lần lượt là k 1 = 75N/m, k 2 =50N/m, được móc vào một quả cầu có khối lượng m =300g như hình vẽ 1. Đầu M được giữ cố định. Góc của mặt phẳng nghiêng a = 30 o. Bỏ qua mọi ma sát. 1. Chứng minh rặng hệ lò xo trên tương đương với một lò xo có độ cứng là . A) k=3 21 21 kk kk + B) k=2 21 21 kk kk + C) k=1 21 21 kk kk + . D) k=0,5 21 21 kk kk + . 2. Giữ quả cầu sao cho các lò xo có độ dài tự nhiên rồi buông ra. Bằng phương pháp dộng ưực học chứng minh rằng quả cầu daođộng điều hoà. Viết phương trình daođộng của quả cầu. Chọn trục toạ độ Ox hướng dọc theo mặt phẳng nghiêng từ trên xuống. Gốc toạ độ O là vị trí cân bằng. Thời điểm ban đầu là lúc quả cầu bắt đầu dao động. Lấy g = 10m/s 2 A) x= -6cos10t (cm) B) x= -5cos10t (cm) C) x= -4cos10t (cm) D) x= -3cos10t (cm) 3. Tính lực cực đại và cực tiểu tác dụng lên điẻm M. A) F max =6 N , F min =4 B) F max =3 N , F min =2 C) F max =4 N , F min =1 D) F max =3 N , F min =0 Câu 100 ĐH Thuỷ Lợi 1. Phương trình chuyển động có dạng: x =3sin(5πt-π/6)+1 (cm). Trong giây đầu tiên vật qua vị trí x =1cm mấy lần? A) 3 lần B) 4 lần C) 5 lần D) 6 lần 2. Con lắc lò xo gồm vật khối lượng m mắc với lò xo, daođộng điều hoà với tần số 5Hz. Bớt khối lượng của vật đi 150gam thì chu kỳ daođộng của nó là 0,1giây.Lấy π 2 =10, g = 10m/s 2 . Vit phng trỡnh dao ng ca con lc khi cha bit khi lng ca nú. Bit rng khi bt u dao ng vn tc ca vt cc i v bng 314cm/s. A) x = 5sin(10t) cm. B) x = 10sin(10t) cm. C) x = 13sin(10t) cm. D) x = 16sin(10t) cm. Cõu 101 H Giao thụng Cho h dao ng nh hỡnh v 1. Hai lũ xo L 1 , L 2 cú cng K 1 =60N/m, K 2 =40N/m. Vt cú khi lng m=250g. B qua khi lng rũng rc v lũ xo, dõy ni khụng dón v luụn cng khi vt dao ng. v trớ cõn bng (O) ca vt, tng dón ca L 1 v L 2 l 5cm. Ly g =10m/s 2 b qua ma sỏt gia vt v mt bn, thit lp phng trỡnh dao ng, chn gc O, chn t = 0 khi a vt n v trớ sao cho L 1 khụng co dón ri truyn cho nú vn tc ban u v 0 =40cm/s theo chiu dng. Tỡm iu kin ca v 0 vt dao ng iu ho. A) )/7,24( max00 scmvv = B) )/7,34( max00 scmvv = C) )/7,44( max00 scmvv = D) )/7,54( max00 scmvv = Cõu 102 HV Cụng ngh BCVT Mt vt nh khi lng m = 200g treo vo si dõy AB khụng gión v treo vo mt lũ xo cú cng k =20N/m nh hỡnh v. Kộo vt m xung di v trớ cõn bng 2cm ri th ra khụng vn tc u. Chn gc to l v trớ cõn bng ca m, chiu dng hng thng ng t trờn xung, gc thi gian l lỳc th vt. Cho g = 10m.s 2 . 1. Chng minh vt m dao ng iu ho v vit phng trỡnh dao ng ca nú. B qua lc cn ca khụng khớ v ma sỏt im treo b qua khi lng ca dõy AB v lũ xo. A) ) 2 10sin( += tx B) ) 2 10sin(2 += tx C) x = 3 sin(10t + /2) D) ) 2 10sin(4 += tx 2. Tỡm biu thc s ph thuc ca lc cng dõy vo thi gian. V th s ph thuc ny. Biờn dao ng ca vt m phi tho món iu kin no dõy AB luụn cng m khụng t, bit rng dõy ch chu c lc kộo ti a l T max =3N. A) T(N) = 1 + 0,4sin(10t + 2 ), .5cmA B) T(N) = 2 + 0,4sin(10t + 2 ), .5cmA C) T(N) = 3 + 0,4sin(10t + 2 ), .4cmA D) T(N) = 4 + 0,4sin(10t + 2 ), .4cmA Cõu 72 Hc vin Hnh chớnh Một lò xo đợc treo thẳng đứng, đầu trên của lò xo đợc giữ cố định, đầu dới treo vật có khối lợng m =100g, lò xo có độ cứng k=25N/m. Kéo vật rời khỏi vị trí cân bằng theo phơng thẳng đứng hớng xuống dới một đoạn bằng 2cm rồi truyền cho vật một vận tốc 10 cm/s theo phơng thẳng đứng, chiều hớng lên. Chọn gốc thời gian là lúc truyền vận tốc cho vật, gốc toạ độ là vị trí cân bằng, chiều dơng hớng xuống. Cho g = 10m/s 2 ; 2 1. Xác định thời điểm lức vật đi qua vị trí mà lò xo bị giãn 2cm lần đầu tiên. A)t=10,3 ms B) t=33,6 ms C) t = 66,7 ms D) t =76,8 ms 2. Tính độ lớn của lực hồi phục ở thời điểm của câu b. [...]... bị nén 3cm rồi thả không vận tốc ban đầu, vật daođộng điều hoà Dựa vào phương trình daođộng của vật Lấy t = 0 lức thả, lấy gốc toạ độ O ở vị trí cân bằng và chiều dương hướng về điểm B a)Tính lực cưc đại tác dụng vào điểm A b)Xác định thời điểm để hệ có Wđ = 3Wt có mấy nghiệm A) 1,5 N và 5 nghiệm B) 2,5 N và 3 nghiệm C) 3,5 N và 1 nghiệm D) 3,5 N và 4 nghiệm Câu 104 ĐH Kiến Trúc HCM Một lò xo được... chạm hai vật cùng daođộng điều hoà Lấy t = 0 là lúc va chạm Viết phương trình daođộng của hai vật trong hệ toạ độ như hình vẽ, góc O là vị trí cân bằng của M trước va chạm A) X (cm) = 1sin ( 10 t + 5π/10) – 1 B) X (cm) = 1.5sin ( 10 t + 5π/10) – 1 C) X (cm) = 2sin ( 10 t + 5π/10) – 1 D) X (cm) = 2.5sin ( 10 t + 5π/10) – 1 3 Tính biên dao động cực đại của hai vật để trong quá trình dao động m không rời... một quả cầu nhỏ Trong thời gian xe trượt xuống, kích thích cho con lắc daođộng điều hoà với biên độ góc nhỏ 2 Bỏ qua ma sát lấy g = 10m/s Tính chu kì daođộng của con lắc A) 5,135 s B) 1,135 s C) 0,135 s D) 2,135 s Câu 74 VH Quan Hệ Quốc Tế Con lắc đơn gồm quả cầu nhỏ có khối lượng m; dây treo dài l, khối lượng không đáng kể, daođộng o với biên dodọ góc ao (ao ≤ 90 ) ở nơi có gia tốc trọng trường... gl (cos α −cos α ), Q(x) = mg (3cosa -2cosao o D) V(a) = 2 gl (cos α −cos α ), Q(x) = 0,1mg (3cosa -2cosao o 2 0 2 Cho m =100(g); l =1(m); g=10 (m/s ); ao =45 Tính lực căng cực tiểu Qmin khi con lắc daođộng Biên độ góc ao bằng bao nhiêu thì lực căng cực đại Qmax bằng hai lần trọng lượng của quả cầu 0 0 A) Qmin =0,907 N ,a0 = 70 B) Qmin =0,707 N ,a0 = 60 0 0 C) Qmin =0,507 N ,a0 = 40 D) Qmin =0,207 . Phần 1. Dao động và sóng cơ Dao động cơ học Câu 10. tổng hợp hai dao động điều hoà cùng phơng, cùng tần số, cùng biên độ là một dao động có biên độ. hai dao động điều hoà cùng phương, cùng chu kì T = 2s. Dao động thứ nhất có li độ ở thời điểm ban đầu (t=0) bằng biên độ dao động và bằng 1cm. Dao động