Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 13 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
13
Dung lượng
434,5 KB
Nội dung
1. Phương trình tổng quát của đường thẳngTrong khônggian với hệ tọa độ cho đường thẳng . Ta có thể xem là giao của hia mặt phẳng nào đó. Giả sử: và .Khi đó điểm thuộc khi và chỉ khi tọa độ của nó nghiệm đúng hệ phương trình sau: (1). Ngược lại, mỗi điểm có tọa độ thỏa mãn hệ phương trình dạng (1) với điều kiện: (2) đều nằm trên một đường thẳng.Hệ phương trình (1) với các điều kiện (2) gọi là phương trình tổng quát cua đường thẳng2. Phương trình tham số của đường thẳng Đường thẳng hoàn toàn được xác định khi biết một điểm thuộc nó và một vectơ mà đường thẳng chứa song song hoặc trùng với . Vectơ như vậy gọi là vectơ chỉ phương của đường thẳng .Điềm nằm trên đường thẳng khi và chỉ khi vectơ cùng phương, tức là có số sao cho . Điều đó có nghĩa là : hay Ngược lại, rõ ràng mọi điểm thỏa mãn hệ phương trình (3) đều nằm trên một đường thẳng.Hệ phương trình (3) với điều kiện gọi là phương trình tham số của đường thẳng, gọi là tham số. 3. Phương trình chính tắc của đường thẳngGiả sử đường thẳng có phương trình tham số (3), trong đó đều khác 0. Bằng cách khử tham số trong (3) ta đi đến: (4) Trong truờng hợp một trong hai số bằng không thì ta vẫn viết phương trình (4) với quy ước nếu mẫu số bằng 0 thì tử số cũng bằng 0.Phương trình (4) với điều kiện được gọi là phương trình chính tắc của đường thẳng. 3. Vectơ đồng phẳng Định nghĩa Ba vectơ gọi là đồng phẳng nếu ba đường thẳng chứa chúng cùng song song với một mặt phẳng Trên hình 24 các đường thẳng chứa 3 vectơ đều song song với mặt phẳng nên ba vectơ này đồng phẳng. Từ định nghĩa đó ta suy ra: nếu ta vẽ thì ba vectơ đồng phẳng khi và chỉ khi bốn điểm nằm trên cùng một phẳng. Định lí 1. Cho 3 vectơ trong đó không đồng thời đồng phương. Khi đó ba vectơ đồng phẳng nếu và chỉ nếu có các số sao cho . Định lí 2. Nếu là ba vectơ không đồng phẳng thì với mọi vectơ ta đều có: trong đó bộ ba số là duy nhất. 1. Hệ tọa độ Đêcac vuông góc trong khônggian Cho ba trục vuông góc với nhau từng đôi một và có chung một điển gốc Gọi là các vectơ đơn vị tương ứng trên các trục trên (h.28). Hệ ba trục như vậy gọi là hệ tọa độ Đêcac vuông góc hoặc đơn giản là hệ tọa độ . Trục gọi là trục hoành. Trục gọi là trục tung. Trục gọi là trục cao. Điểm gọi là gốc của hệ tọa độ. Chú ý rằng, vì 3 vectơ là ba vectơ đơn vị đôi một vuông góc với nhau nên: . 6. Chia một đoạn thẳng theo một tỉ số cho trước Giả sử điểm chia đoạn thẳng theo một tỉ số . Gọi ta có . . Từ đó do nên . Đặc biệt nếu thì là trung điểm của , khi đó công thức trên trở thành: . Vậy tọa trung điểm của một đoạn thẳng bằng trung bình cộng các tọa độ tương ứng của hai điểm mút của đoạn thẳng ấy. 1. Định lí Trong khônggian với hệ tọa độ . Công thức trên gọi là biểu thức tọa độ của tích vô hướng hai vectơ. Đặc biệt nếu ta có bình phương vô hướng: . Do đó độ dài của vectơ được tính theo công thức sau: . Ta đã biết hai vectơ vuông góc với nhau khi và chỉ khi tích vô hướng của chúng bằng không: . 2. Khoảng cách giữa hai điểm Khoảng cách giữa hai điểm là độ dài của vectơ : . 3. Góc giữa hai vectơ Nếu là góc giữa hai vectơ . . 4. Tích có hướng của hai vectơ a) Định nghĩa Trong khônggian với hệ tọa độ . Vectơ có tọa độ là ba định thức: gọi là tích có (hay tích vecotơ) của hai vectơ. b) Tính chất i) cùng phương khi và chỉ khi . ii) . iii) , trong đó là góc giữa hai vectơ. c) Diện tích tam giác Trong khônggian với hệ tọa độ cho , ta có: . e) Thể tích hình hộp Cho hình hộp . Ta có công thức tính thể tích: . Baì 65238 Cho đường thẳng : và mặt phẳng a) Tìm tọa độ giao điểm của đường thẳng và mặt phẳng . b) Viết phương trình mặt cầu tâm tiếp xúc với mặt phẳng 1. Vectơ pháp tuyến của mặt phẳng a) Định nghĩa Vectơ được gọi là một vectơ pháp tuyến của mặt phẳng nếu nó nằm trên đường thẳng vuông góc với . Kí hiệu là (h.33) Chú ý i) Một mặt phẳng có vô số vectơ pháp tuyến, đó là các vectơ khác 0 và vuông góc với mặt phẳng đó, các vectơ này cùng phương với nhau. ii) Giả sử một điểm là một điểm thuộc mặt phẳng thì điều kiện cần và đủ để điểm thuộc mặt phẳng là . Như vậy là tập hợp các điểm sao cho . Một mặt phẳng hoàn toàn xác định khi biết một điểm thuộc nó và một vectơ pháp tuyến của nó. b) Cặp vectơ chỉ phương của mặt phẳng Trong khônggian với hệ tọa độ , nếu là hai vectơ không cùng phương và các đường thẳng chứa chúng song song (hoặc nằm trên) với một mặt phẳng thì vectơ: là một vectơ pháp tuyến của mặt phẳng . Hai vectơ gọi là cặp vectơ chỉ phương của mặt phẳng . Vậy: Nếu là ba điểm không thẳng hàng nằm trong mặt phẳng thì các vectơ là một cặp vectơ chỉ phương của và do đó là vectơ pháp tuyến của mặt phẳng . 2. Phương trình tổng quát của mặt phẳng a) Định lí Mỗi mặt phẳng là tập hợp tất cả các điểm có tọa độ thỏa mãn một phương trình dạng (1) và ngược lại, tập hợp tất cả các điểm có tọa độ thỏa mãn một phương trình (1) là một mặt phẳng. b) Định nghĩa Phương trình dạng được gọi là phương trình tổng quát của mặt phẳng (hay phương trình mặt phẳng ). c) Chú ý i) Nếu mặt phẳng đi qua một điểm và có một vectơ pháp tuyến thì phương trình của nó là: . ii) Nếu mặt phẳng có phương trình: thì là một vectơ pháp tuyến của mặt phẳng . 3. Các trường hợp riêng của phương trình mặt phẳng Cho mặt phẳng có phương trình: a) Nếu , mặt phẳng đi qua gốc tọa độ. b) Nếu thì mặt phẳng chứa hoặc song song với trục tung Tương tự nếu trong phương trình không có chứa (hoặc ) thì mặt phẳng tương ứng sẽ chứa hoặc song song với trục (hoặc ). c) Nếu phương trình có dạng thì mặt phẳng đó song song hoặc trùng với mặt phẳng . d) Nếu thì bằng cách đặt ta đưa phương trình về dạng Mặt phẳng đó cắt các trục lần lượt tại các điểm . Bởi vậy phương trình dạng đó được gọi là phương trình theo đoạn chắn của mặt phẳng. Baì 10541 Trong khônggian với hệ tọa độ Oxyz cho hai đường thẳng và Chứng minh rằng và song song với nhau.Viết phương trình mặt phẳng chứa cả hai đường thẳng và Baì 10360 Trong khônggian với hệ tọa độ Oxyz cho hai điểm và đường thẳng (d) : Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng AB. Gọi K là giao điểm của đường thẳng (d) và mặt phẳng (P). Chứng minh rằng đường thẳng (d) vuông góc với đường thẳng IK. Baì 8718 Trong khônggian với hệ tọa độ Oxyz cho hai đường thẳng : và Viết phương trình mặt phẳng chứa và song song với . 1. Khoảng cách từ một điểm đến một mặt phẳng Trong khônggian với hệ tọa độ cho một điểm và một mặt phẳng : . Người ta chứng minh được khoảng cách từ điểm đến mặt phẳng là: 2. Khoảng cách từ một điểm đến một đường thẳng Cho là vectơ chỉ phương của . Ta có khoảng cách từ đến là: 3. Khoảng cách giữa hai đường thẳng chéo nhau Cho hai đường thẳng chéo nhau lần lượt đi qua các điểm và có vectơ chỉ phương là . Ta có khoảng cách giữa hai đường thẳng trên là: 4. Góc giữa hai đường thẳng Cho hai đường thẳng thì góc giữa hai đường thẳng trên là thỏa mãn đẳng thức sau: (1). Đặc biệt (2) 5. Góc giữa đường thẳng và mặt phẳng Trong khônggian cho: Góc giữa đường thẳng và mặt phẳng thỏa mãn đẳng thức sau: . Đặc biệt hoặc . 6. Góc giữa hai mặt phẳng Trong khônggian cho: Góc giữa hai mặt phẳng thỏa mãn đẳng thức sau: . Đặc biệt . Baì 15707Hình tứ diện ABCD biết tọa độ các đỉnh A(2; 3; 1) , B(4; 1; - 2), C(6; 3; 7) , D(- 5; - 4; 8). Tính độ dài đường cao của hình tứ diện xuất phát từ A. 1. Vị trí tương đối của hai đường thẳng Trong khônggian với hệ tọa độ cho hai đường thẳng có phương trình lần lượt là: Lấy . Và lần lượt là vectơ chỉ phương của . Ta thấy rằng hai đương thẳng trên đồng phẳng khi và chỉ khi ba vectơ đồng phẳng, tức là: a) Hai đường thẳng cắt nhau khi và chỉ khi chúng đồng phẳng và các vectơ chỉ phương của chúng không cùng phương, tức là: b) Hai đường thẳng song song với nhau khi và chỉ khi cùng phương và không có điểm chung, tức là: [...]... gọi là phương trình của mặt cầu 2 Giao của mặt cầu và mặt phẳng Trong khônggian cho mặt phẳng và mặt cầu có phương trình sau: Goi là hình chiếu vuông góc của tâm mặt cầu lên mặt phẳng, ta có: Ta có các trường hợp sau: a) Nếu với điều kiện: là một đường tròn có phương trình là: b) Nếu c) Nếu là tiếp diện của , tức là mặt phẳng tạo không có điểm chung với mặt cầu Baì 36282Lập phương trình mặt cầu qua...c) Hai đường thẳng trùng nhau khi và chỉ khi cùng phương, hay: d) Hai đường thẳng chéo nhau khi và chỉ khi chúng không cùng thuộc một mặt phẳng Vậy: 2 Vị trí tương đối giữa đường thẳng và mặt phẳng Trong khônggian với hệ tọa độ cho đường thẳng Giả sử: và mặt phẳng lần lượt có phương trình: lần lượt có vectơ chỉ phương và vectơ pháp tuyến: a) b) c) d) Baì 35222Lập . giữa hai vectơ. c) Diện tích tam giác Trong không gian với hệ tọa độ cho , ta có: . e) Thể tích hình hộp Cho hình hộp . Ta có công thức tính thể tích: phẳng Trong không gian cho: Góc giữa đường thẳng và mặt phẳng thỏa mãn đẳng thức sau: . Đặc biệt hoặc . 6. Góc giữa hai mặt phẳng Trong không gian cho: