1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Some difficult problems

15 140 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 691,19 KB

Nội dung

A DOUBLE INTEGRAL OVIDIU FURDUI Let k ≥ be a natural number and let , i = 1, · · · , k be natural numbers Evaluate ∞ ∞ (e−a1 x − e−a1 y ) · · · (e−ak x − e−ak y ) dxdy (x − y)2 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com A SEQUENCE OF RATIONAL NUMBERS OVIDIU FURDUI Find n→∞ n lim + n + ··· + n n n+1 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com A SIMPLE LIMIT OVIDIU FURDUI Find the limit dx + cos2 x cos2 (2x) · · · cos2 (nx) lim n→∞ Western Michigan University, Math Department, Kalamazoo, MI, 49009 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com Date: October 17, 2007 THE LIMIT OF AN INTEGRAL SEQUENCE OVIDIU FURDUI Let a and b be real numbers and let c be a positive number Find the limit b dx c + sin x · sin (x + 1) · · · sin2 (x + n) lim n→∞ a Western Michigan University, Math Department, Kalamazoo, MI, 49009 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com Date: October 17, 2007 A QUICKIE OVIDIU FURDUI Prove that ∞ n n=1 n k=1 xk − ln k 1−x =− ln2 (1 − x) , The University of Toledo, Math Department, Toledo, OH E-mail address: ofurdui@yahoo.com, Ovidiu.Furdui@utoledo.edu Date: October 23, 2007 −1 ≤ x < PROPOSED PROBLEM TO CRUX MATHEMATICORUM WITH MATHEMATICAL MAYHEM OVIDIU FURDUI Find the sum ∞ (−1)n−1 n n=1 1− 1 (−1)n−1 + − ··· + n The University of Toledo, Math Department, Toledo, OH E-mail address: ofurdui@yahoo.com, Ovidiu.Furdui@utoledo@edu Date: March 1, 2008 PROPOSED PROBLEM TO THE HARVARD COLLEGE MATHEMATICS REVIEW A TRICKY LIMIT OVIDIU FURDUI Let a, b ≥ be two nonnegative numbers Find the limit n lim n→∞ n+k+b+ k=1 √ n2 + kn + a The University of Toledo, Math Department, Toledo, OH E-mail address: ofurdui@yahoo.com, Ovidiu.Furdui@utoledo@edu Date: September 17, 2007 PROPOSED PROBLEM TO SCHOOL SCIENCE AND MATHEMATICS OVIDIU FURDUI Find the sum ∞ (−1)k ln − k=2 k2 The University of Toledo, Math Department, Toledo, OH E-mail address: ofurdui@yahoo.com, Ovidiu.Furdui@utoledo.edu Date: November 6, 2007 THE LIMIT OF A PRODUCT OVIDIU FURDUI Let α be a real number and let p > Find: n lim n→∞ k=1 np + (α − 1)k p−1 np − k p−1 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com PROPOSED PROBLEM TO REVISTA ESCOLAR DE LA OLIMPIADA IBEROAMERICANA DE MATEMATICA OVIDIU FURDUI Let n be a positive integer Evaluate cos (π {nx}) dx, n where {a} = a − a is the fractional part of a Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com Date: November 22, 2006 PROPOSED PROBLEM TO THE COLLEGE MATHEMATICS JOURNAL AN IMPROPER EXPONENTIAL INTEGRAL OVIDIU FURDUI Let n be a fixed nonnegative integer Evaluate ∞ xn ex + + x + x2! + · · · + xn n! dx Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com PROPOSED PROBLEM TO CRUX MATHEMATICORUM WITH MATHEMATICAL MAYHEM A QUARTIC FRACTIONAL INTEGRAL OVIDIU FURDUI Evaluate 1 x dx, where {x} = x − x is the fractional part of x Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com PROPOSED PROBLEM TO THE MATHEMATICAL GAZETTE OVIDIU FURDUI Let n ≥ and m ≥ be natural numbers Evaluate ∞ ∞ I= (e−nx − e−ny ) (e−mx − e−my ) dxdy (x − y)2 Department of Mathematics, Western Michigan University, Kalamazoo, MI 49008 E-mail address: o0furdui@wmich.edu, ofurdui@yahoo.com A GEOMETRY PROBLEM OVIDIU FURDUI Let ABCD be a convex quadrilateral and let P be a point in the interior of ABCD such that PA = √ AB , PB = √ BC , PC = √ CD 2 and P D = a square E-mail address: ofurdui@yahoo.com √ DA Prove or disprove that ABCD is PROBLEM 11234, THE AMERICAN MATHEMATICAL MONTHLY, 6/113 11234 Let a1 , a2 , · · · , an and b1 , · · · , bn−1 be real numbers with a1 < b1 < a2 < · · · < an−1 < bn−1 < an , and let h be an integrable function from R to R Show that ∞ h −∞ (x − a1 ) · · · (x − an ) (x − b1 ) · · · (x − bn−1 ) ∞ dx = h(x)dx −∞

Ngày đăng: 25/08/2017, 18:31

TỪ KHÓA LIÊN QUAN

w