Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 94 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
94
Dung lượng
3,81 MB
Nội dung
Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử LỜI CẢM ƠN Em xin chân thành cảm ơn Hiệu trưởng nhà trường, Viện khoa học Công nghệ Nhiệt lạnh trường Đại học Bách Khoa Hà Nội tạo điều kiện để em làm luận văn, đặc biệt em xin chân thành cảm ơn PGS.TSKH.VS Nguyễn Văn Mạnh giúp đỡ em suốt trình để em hoàn tất phần luận văn Trong trình làm tránh thiế độc giả góp ý để em có làm luận văn tốt Em xin chân thành cảm ơn! HVTH: Lê Văn Hùng thầy cô giáo Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử LỜI CAM ĐOAN Tôi xin cam đoan rằng, luận văn tính toán, thiết kế nghiên cứu hướng dẫn thầy giáo PGS.TSKH.VS Nguyễn Văn Mạnh Để hoàn thành luận văn này, sử dụng tài liệu ghi mục tài liệu tham khảo, không sử dụng tài liệu khác không ghi Nếu sai, xin chịu hình thức kỷ luật theo quy định HỌC VIÊN THỰC HIỆN LÊ VĂN HÙNG HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử MỤC LỤC LỜI CẢM ƠN LỜI CAM ĐOAN MỤC LỤC DANH MỤC HÌNH VẼ MỞ ĐẦU CHƢƠNG 1: TỔNG QUAN VỀNHÀMÁYĐIỆNNGUYÊNTỬ 1.1 Tổng quan .3 1.2 Một số khái niệm công nghệ lò phản ứng hạt nhân 1.2.1 Nguyên lý phản ứng phân hạch 1.2.2 Cấu trúc lò vật liệu sử dụng 1.2.3 Phân loại lò phản ứng hạt nhân 1.3 Lò nƣớc nhẹ áp lực PWR - Pressurized Water Reactor 1.4 Lò nƣớc sôi BWR - Boiling Water Reactor 12 1.5 Lò nƣớc nặng PHWR .14 1.6 Các hệ lò phản ứng hạt nhân 17 1.7 Một số thiết kế lò phản ứng cải tiến (advanced) 21 1.7.1 Lò nước sôi cải tiến - Advanced Boiling Water Reactor (ABWR) 21 1.7.2 Lò nước áp lực cải tiến AP600 AP1000 Westinghouse .22 1.7.3 Lò nước áp lực cải tiến tiêu chuẩn châu Âu EPR 23 1.8 Các loại lò VVER Nga 24 1.8.1 Các hệ lò VVER cũ 25 1.8.2 Các hệ VVER cải tiến .25 1.9 Kết luận: 31 CHƢƠNG 2: CHU TRÌNH NHIỆT VÀ SỰ TRAO ĐỔI NHIỆT TRONG NHÀMÁYĐIỆNNGUYÊNTỬ 32 2.1 Sơ đồ hệthống trao đổi nhiệt nhàmáyđiệnnguyêntử 32 2.2 Sử dụng nƣớc để làm mát hệthống chuyển đổi lƣợng 33 2.2.1 Sử dụng nước để làm mát phục vụ thiết bị phụ trợ 35 2.2.2 Sử dụng nước làm mát phục vụ hệthống an toàn thiết bị khác 36 2.2.3 Sử dụng nước cho hệthống loại bỏ nhiệt dư 38 2.2.4 Sử dụng nước để làm mát bảovệ 39 2.3 Công nghệ cho hệthống làm mát 40 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử 2.3.1 Hệthống làm mát hở 41 2.3.2 Hệthống làm mát kín .41 2.4 Kết luận: 49 CHƢƠNG 3: PHƢƠNG PHÁP TỔNG HỢP HỆTHỐNG THEO QUAN ĐIỂM BỀN VỮNG 50 3.1 Đánh giá chất lượng hệthống 50 3.1.1 Khái niệm chất lượng trình điềukhiển 50 3.1.2 Các tiêu chất lượng trực tiếp 50 3.1.3 Đánh giá chất lượng điều chỉnh theo tiêu tích phân .54 3.2 Khái niệm chung tổng hợp bền vững tối ƣu 54 3.3 Cấu trúc bền vững cao hệthốngđiềukhiển 57 3.4 Hệthốngđiều chỉnh bền vững 59 3.4.1 Cấu trúc tựa bền vững điều chỉnh hệthống 59 3.4.2 Chỉ số dao động mềm, đặc tính mềm .60 3.4.3 Xác định tham số tối ưu điều chỉnh bền vững 62 3.4.4 Tăng cường khả kháng nhiễu cho điều chỉnh 63 3.5 Kết luận 67 CHƢƠNG 4: TÍNH TOÁN CHỈNH ĐỊNH HỆTHỐNGĐIỀUKHIỂN CÔNG SUẤT NHIỆT CỦA VÒNG SƠ CẤP 68 4.1 Mô tả sơ đồ công nghệ nhàmáyđiệnnguyêntử 68 4.2 Tổng hợp điềukhiển vòng tuần hoàn sơ cấp .71 4.2.1 Sơ đồ khối hệthốngđiềukhiển 71 4.2.2 Giới thiệu phần mềm thiết kế CASCAD 71 4.2.3 Xử lý số liệu vận hành CASCAD .72 4.3 Kết luận 83 KẾT LUẬN 84 TÀI LIỆU THAM KHẢO 85 PHỤ LỤC 86 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử DANH MỤC HÌNH VẼ Hình 1.1: Sơ đồ đơn giản nguyên lý phản ứng phân hạch Hình 1.2: Sơ đồ cấu trúc LPƯHN Hình 1.3: Sơ đồ công nghệ hai vòng tuần hoàn lò PWR Hình 1.4: Sơ đồ thùng lò PWR Hình 1.5: Các bó nhiên liệu lò PWR theo trường phái Phương Tây Nga 10 Hình 1.6: Thiết bị sinh kiểu đứng (phương Tây) kiểu ngang (Nga) 11 Hình 1.7: Sơ đồ công nghệ vòng tuần hoàn với lò nước sôi - BWR 12 Hình 1.8: Thùng lò nước sôi - BWR 13 Hình 1.9: Các bó nhiên liệu điềukhiển lò BWR 14 Hình 1.10: Các bó nhiên liệu kênh ngang lò PHWR 15 Hình 1.11: Sơ đồ công nghệ lò nước nặng PHWR 16 Hình 1.12 Các hệ lò phản ứng hạt nhân 17 Hình 1.13: Sơ đồ nguyên lý nhàmáy ĐHN dùng lò nước sôi cải tiến 21 Hình 1.14: Thùng lò nước sôi cải tiến ABWR .22 Hình 1.15: Thiết kế nhà lò AP1000 23 Hình 1.16: Bố trí NMĐHN dùng lò EPR .24 Hình 1.17: Thùng lò VVER-1000 loại AES-91 .26 Hình 1.18: Hệ cung cấp NMĐHN với lò VVER 27 Hình 1.19: Thanh nhiên liệu lò VVER 27 Hình 1.20: Hệthống thiết bị AES-2006 29 Hình 1.21: AES-2006 Novovoronezh .29 Hình 2.1: Sơ đồ khối nhàmáyđiện 32 Hình 2.2: Sơ đồ khối hệthống BWR 32 Hình 2.3: Sơ đồ khối hệ trao đổi nhiệt vòng sơ cấp lò PWR 33 Hình 2.4: Chuyển đổi lượng tản nhiệt trình hoạt động đầy tải 34 Hình 2.5: Hệthống tản nhiệt bảovệ 39 Hình 2.6: Hệthống làm mát hở .41 Hình 2.7 Tuần hoàn ao(hồ) làm mát 42 Hình 2.8: Sơ đồ tuần hoàn tháp giải nhiệt ướt (gió tự nhiên) 43 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 2.9 Sơ đồ tuần hoàn tháp giải nhiệt ướt (gió tự nhiên) 44 Hình 2.10: Sơ đồ trực tiếp làm mát khô 45 Hình 2.11: Làm mát khô gián tiếp 45 Hình 2.12: Sơ đồ hệthống làm mát tháp làm mát tự nhiên .46 Hình 2.13: Hệthống nối tiếp kết hợp làm mát khô ướt 47 Hình 2.14: Sơ đồ hệthống gián tiếp làm mát khô ướt kết nối song song 47 Hình 2.15: Sơ đồ hệthống kết nối song song khô trực tiếp ướt gián tiếp 47 Hình 2.16: Sơ đồ kết nối song song hệthống khô ướt gián tiếp .48 Hình 2.17: Sơ đồ nối tiếp kết nối với hệthống khô ướt gián tiếp 48 Hình 2.18: Sơ đồ kết nối với hệthống khô ướt bổ xung .48 Hình 2.19: Sơ đồ hệthống khô ướt kết nối song song 49 Hình 3.1 Đặc tính độ hệthống thay đổi giá trị đặt (a) .51 Hình 3.2 Các dạng đặc tính độ đơn điệu, 2- phi chu kỳ, 3- dao động 53 Hình 3.3 Sai số điều chỉnh bình phương hệthống theo kênh đặt (a) kênh nhiễu (b) 54 Hình 3.4 Sơ đồ hệthốngđiềukhiểnđiển hình 56 Hình 3.5 Sự phân bố nghiệm phương trình đặc tính hệthống 57 Hình 3.6 Cấu trúc điều chỉnh bền vững lý tưởng 60 Hình 3.7 Đường biên mềm mặt phẳng nghiệm 60 Hình 3.8: Đánh giá dự trữ ổn định theo điểm cắt đặc tính mềm parabol 62 Hình 3.9 Đặc tính mềm hệ hở với hàm truyền .63 Hình 3.10 Đặc tính mềm hệ hở với điều chỉnh bền vững thay đổi thành phần tích phân 66 Hình 4.1: Sơ đồ hệthống trao đổi nhiệt PHWR 68 Hình 4.2: Sơ đồ hệthốngđiềukhiển áp suất lò PHWR .69 Hình 4.3: Áp suất thay đổi theo thời gian .70 Hình 4.4: Sơ đồ khối hệthốngđiềukhiển 71 Hình 4.5 Đặc tính vận hành đối tượng áp suất .73 Hình 4.6 Đặc tính vận hành đối tượng áp suất .75 Hình 4.7 : Sơ đồ hệthốngđiềukhiển áp suất 76 Hình 4.8 : Sơ đồ hệthốngđiềukhiển áp suất 77 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.9 Đặc tính mềm hệ hở với trường hợp sở, xấu nhất, ngẫu nhiên 78 Hình 4.10 Đặc tính mềm hệ hở với trường hợp sở, xấu nhất, ngẫu nhiên 78 Hình 4.11 Đặc tính độ hệthống kín theo kênh đặt 80 Hình 4.12: Đặc tính độ hệthống kín theo kênh nhiễu .81 Hình 4.13: Sơ đồ khối hệthốngđiềukhiển có khử nhiễu .82 Hình 4.14: Đặc tính độ hệthống kín theo kênh nhiễu (có khử nhiễu) 82 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử DANH MỤC BẢNG Bảng 1.1: Các phần tử chính, vật liệu sử dụng chức chúng Bảng 1.2: Phân loại loại lò Bảng 1.3: Một số thông số loại lò PWR - 1160 MWe Bảng 1.4: Một số thông số loại lò BWR - 1100 MWe 13 Bảng 1.5: Một số yêu cầu phát triển hệ công nghệ lò 20 Bảng 1.6: Một số đặc trưng lò hệ 3+: 28 Bảng 1.7: Các thông số thiết kế loại VVER-1000 .30 Bảng 2.1: Chỉ số sử dụng nước nhàmáyđiệnnguyêntử 34 Bảng 2.2: So sánh tản nhiệt cho hiệu khác nhàmáy điện1000 MW (e) 36 Bảng 2.3: Giá trị lưu lượng nước làm mát an toàn 37 Bảng 2.4: Phân phối hệthống làm mát 40 Bảng 4.1 Áp suất thay đổi theo thời gian .70 HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử MỞ ĐẦU Ngày lượng hóa thạch ngày cạn kiệt cần phải có nguồn lượng để thay Dạng lượng thay cho nhiên liệu hoá thạch lượng mặt trời lượng từ sức gió Các dạng lượng cần phải phát triển, khai thác để sử dụng Tuy nhiên giá thành cao cần diện tích lớn nên dạng lượng cung cấp 10% tổng số lượng cần thiết Chính vậy, lượng mà nhân loại sử dụng lâu dài thời gian tới phải dựa vào lượng nguyêntử Mặc khác lượng nguyêntử có số ưu điểm so với nguồn lượng khác là: Đặc trưng lượng nguyêntử nguồn lượng sạch, không phát thải CO2, SOx, NOx gây ô nhiễm không khí Hơn nữa, Uranium phát điện với lượng nhỏ so với dầu nên có ưu điểm dễ vận chuyển bảo quản Ví dụ, để vận hành nhàmáyđiện công suất 1000 MW vòng năm phải cần tới triệu dầu, nhiên liệu Uranium cần vài chục Trong nhàmáyđiệnnguyên tử, nạp nhiên liệu vào lò phản ứng liên tục phát điện vòng năm mà không cần phải thay nhiên liệu Lượng chất thải phóng xạ phát sinh nhàmáyđiệnnguyêntử so với lượng chất thải công nghiệp thông thường, quản lý cách chặt chẽ, cất giữ bảo quản an toàn Chi phí xây dựng cho nhàmáyđiệnnguyêntử so với nhàmáy nhiệt điện tương đối cao Nhàmáyđiệnnguyêntử lựa chọn phương án thiết kế an toàn tối ưu Nó thiết kế để cho dù có phát sinh tai nạn không gây thiệt hại, tổn thất cho tất cư dân sống xung quanh Có thể nói nửa nhàmáyđiệnnguyêntử thiết bị an toàn Do đó, chi phí cao cho thiết bị đương nhiên Với nhu cầu thiết yếu lượng điện cho phát triển kinh tế nước ta, Chính Phủ phê duyệt dự án nhàmáyđiệnnguyêntử lắp đặt nước ta HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử tỉnh Ninh Thuận Đây công nghệ nước ta mà tương lai ta phải làm chủ công nghệ Trên sở hiểu biết định có nguyện vọng sâu nghiên cứu vấn đề Đó lý chọn đề tài luận văn là: Hệthốngđiềukhiểnbảovệnhàmáyđiệnnguyêntử (Control system of nuclear – power plan) Mục đích đề tài: - Tìm hiểu nguyên lý, phân tích đặc thù chu trình nhiệt nhàmáyđiệnnguyêntử - Xây dựng phương pháp chỉnh định bền vững hệthốngđiềukhiển áp dụng cho phần nhiệt nhàmáyđiệnnguyêntử Nội dung đề tài sâu nghiên cứu vấn đề sau: - Tổng quan nhàmáyđiệnnguyêntử - Hệthống trao đổi nhiệt nhàmáyđiệnnguyêntử - Phương pháp tổng hợp hệthống theo quan điểm bền vững - Tính toán chỉnh định hệthốngđiềukhiển công suất nhiệt vòng thứ cấp Trên sở khái niệm số dao động mềm phương pháp tối ưu hóa thuật toán vượt khe tác giả PGS.TSKH Nguyễn Văn Mạnh đề xuất Từ sở lý thuyết nêu số liệu thu thập tài liệu, luận văn đưa cách tính toán thử cho vòng điều chỉnh công suất tuabin vòng thứ cấp Toàn trình tính toán mô thực dựa phần mềm Cascasd tác giả PGS.TSKH Nguyễn Văn Mạnh HVTH: Lê Văn Hùng Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử CASCAD cho phép thiết kế hệthốngđiềukhiển bền vững tối ưu, Phổ biến trình công nghiệp Có thể dùng để mô hệ thống, cải tiến phận, thiết kế hệthống CASCAD cho phép nhận dạng mô hình hóa đối tượng bất định, tổng hợp cấu trúc hệ thống, tổng hợp điều chỉnh khử nhiễu, giải toán tối ưu hóa phương pháp vượt khe Kết tính toán liệu cấu trúc hệthống hàm truyền khâu Chất lượng thiết kế thể đồ thị đặc tính tần số, đặc tính độ đáp ứng hệthống theo kênh ứng với đầu vào đặt đầu vào nhiễu CASCAD cho phép mô thiết kế hệthốngđiềukhiển với cấu trúc tối đa tầng, tầng chứa khâu động học khâu dùng để mô bất định đối tượng Ngoài ứng với tầng có khâu đầu vào nhiễu, khâu đầu vào đặt để điềukhiểnhệthống nói chung 4.2.3 Xử lý số liệu vận hành CASCAD a) Nhận dạng đối tƣợng * Lấy xử lý số từ bảng Từ bảng số liệu thực nghiệm ta có đường cong đặc tính vận hành đối tượng điều chỉnh công suất nhiệt vòng thứ cấp nhàmáyđiệnnguyêntử O(s): 13, 4e 0,545 s O(s) (1 0, 276 s 0, 276 s ) HVTH: Lê Văn Hùng 72 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.5 Đặc tính vận hành đối tượng áp suất Nhận xét: Đường cong (mầu đen) đặc tính có dạng khâu quán tính bậc hai Vậy ta tiến hành mô hình hóa đối tượng theo khâu quán tính bậc hai có trễ b) Mô hình hóa đối tượng độ bất định đối tượng Trên phần mềm Cascad chạy chức tối ưu hóa để tìm hệ số b 0, a1, a2, Tr gần với đường đặc tính thực tế Chức lập trình theo thuật toán tối ưu hóa vượt khe nhiều đối số Trong trường hợp thuật toán thực biến số b0, a1, a2, Tr Sau mô hình hóa ta đường mầu đỏ hình 4.4 Từ ta có số b0=14,174; a1=0,259; a2=0,259; Tr =0,585 Ta đường cong mịn nằm sát với đường gấp khúc ban đầu Đây kết thuật toán đáp ứng độ đầu đối tượng với xung đầu HVTH: Lê Văn Hùng 73 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử vào xung bậc thang với đối tượng qua hệ số vừa tìm hàm truyền nhân bất định 14,174e0,585 s o ( s) (1 0, 259s 0, 259s ) Tiếp theo ta xác định độ bất định cho đối tượng Để xác định độ bất định cho đối tượng ta chuyển từ đặc tính thời gian sang đặc tính tần số tương đương - Hiệu chỉnh tần số Để số liệu đồ thị F(jw) dùng có hiệu cho toán nhận dạng đối tượng bất định, cần xác định miền tần số - chứa thông tin quan trọng chất động học đối tượng Đối với đối tượng công nghiệp, miền tần số thường có tần số thấp tương ứng với đoạn đồ thị F(jw) nằm phía trái-dưới đường thẳng phân giác góc thứ hai thứ tư Khi xác định miền tần số cách chỉnh đầu cuối đường cong F(jw), ta đoạn đường cong hình Số điểm đoạn thường chọn từ 10÷60 điểm Chọn tần số khảo sát =0,01÷10 giảm số điểm 10÷60 điểm để giảm khối lượng tính toán cho máy tính Mô hình nhân bất định (Udat) với b0 = 1,977; a1 = 0,072, a2 = 0,017; Tr = ( s ) 1,977 (1 0,072s 0,017 s ) Mô hình bất định: O( s ) O ( s ) ( s ) HVTH: Lê Văn Hùng 14,174e0,585 s 1,977 (1 0, 259s 0, 259s ) (1 0,072 s 0,017 s ) 74 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.6 Đặc tính vận hành đối tượng áp suất Ta thấy đường biên nhân bất định xấu phủ đường sai số mô hình đối tượng đạt yêu cầu Ta trở lại với sơ đồ cấu trúc Đối tượng O1 lúc nghi nhớ vào ô Mdat, độ bất định đối tượng ghi nhớ ô Udat Ta coppy ô Mdat vào khâu O ô Udat vào khâu A Đặt giá trị cho khâu F (b0=1),tín hiệu đầu vào z=1/s(b0=1, q=1) Giả thiết tín hiệu nhiễu với xung đầu vào z và O=O Như ta hoàn thành xong phần mô hình hóa đối tượng độ bất định cho đối tượng với việc đặt giá trị cho tín hiệu vào tín hiệu nhiễu Bước ta tổng hợp điều chỉnh cho đối tượng HVTH: Lê Văn Hùng 75 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.7 : Sơ đồ hệthốngđiềukhiển áp suất c) Tổng hợp điều chỉnh Sau tìm hàm truyền đối tượng ta tổng hợp điều chỉnh bền vững nguyên theo công thức R( s ) 1 O ( s) S PT Với = K. HVTH: Lê Văn Hùng 76 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.8 : Sơ đồ hệthốngđiềukhiển áp suất Ta thấy đặc tính mềm hệ qua điểm (-1,0) có nghĩa hệthống ổn định chưa có độ dự trữ ổn định Vì đối tượng có độ bất định nên đối tượng trạng thái đương biên mềm xấu không đảm bảo độ ổn định cho hệthống Sơ đồ hệthốngđiềukhiển áp suất thể hình 4.8, theo phân tích hệthốngđiềukhiển áp suất kiểu vòng có phản hồi Bộ điều chỉnh áp suất nhận với số dao động mc = 0.461 có dạng sau: R11 0,09 0,046.S 0,006.S 0,046 1 0,13.S S 0,511.S Với đặc tính mềm hệ hở thể hình 4.8, ta thấy đặc tính mềm không bao điểm (-1,j0) nên hệthống có tính ổn định bền vững HVTH: Lê Văn Hùng 77 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.9 Đặc tính mềm hệ hở với trường hợp sở, xấu nhất, ngẫu nhiên Nhưng ứng với đặc tính mềm ứng với trường hợp xấu (Hình 4.9) bao điểm (-1,j0) nên với điều chỉnh ta cần tiến hành tối ưu hóa điều chỉnh Hình 4.10 Đặc tính mềm hệ hở với trường hợp sở, xấu nhất, ngẫu nhiên HVTH: Lê Văn Hùng 78 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Với điều chỉnh tối ưu trên, đặc tính mềm ứng với trường hợp xấu không bao điểm (-1,j0) (hình 4.10), hệthống có tính ổn định bền vững chất lượng cao Bộ điều chỉnh tối ưu hệthốngđiềukhiển áp suất có dạng: 0,085 0,004.S 0,006.S R11 0,004 1 1,5.S S 0,047.S Bộ điều chỉnh có dạng điều chỉnh PID, điều chỉnh sử dụng phổ biến công nghiệp Các tham số điều chỉnh PID cho đối tượng áp suất: K=0,004; Ti=0,158; Td=0,129 d) Đánh giá chất lượng hệthống Chỉ số thời gian điều chỉnh cho phép đánh giá độ tác động nhanh hay chậm hệthốngđiều chỉnh tự động Giá trị lý thuyết thời gian điều chỉnh vô giá trị không phản ánh tốc độ tắt dần trình qua độ Vì thời gian điều chỉnh thực tế giá trị tối thiểu mà từ đại lượng điều chỉnh sai lệch không đại lượng > so với giá trị xác lập nó: h(t)-h()≤ với t ≥ tđ Trong xác định vùng không nhạy điều chỉnh Quá trình độ hệthống coi tắt hẳn sau thời gian điều chỉnh tđ Kể từ độ biến thiên đại lượng điều chỉnh không vượt khỏi vùng không nhạy điều chỉnh Trong thực tế thường xác định từ (3-10)% giá trị xác lập h() đại lượng điều chỉnh Trong trường hợp h()=0 xác định =(3-10)% giá trị định mức ví dụ theo giá trị tác động xung bậc thang Cùng điều kiện khác hệthống có thời gian điều chỉnh ngắn có chất lượng cằng cao 1) Theo kênh đặt Tiến hành xây dựng đặc tính độ hệthống theo kênh đặt ta thu kết sau: (hình 4.11) HVTH: Lê Văn Hùng 79 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.11 Đặc tính độ hệthống kín theo kênh đặt Thời gian điều chỉnh: Tq = 2,768 phút Độ sai lệch động cực đại: y(t)max = 1,212 Độ điều chỉnh: y (t ) max y (t ) 1, 212 100% 100% 21, 2(%) y (t ) Độ điều chỉnh nằm khoảng cho phép 10 50% Độ tắt dần dao động trình độ: 0,959 Chỉ tiêu tích phân bình phương: e2 (t ) 0,846 Đánh giá: Với tiêu chất lượng thu trên, thấy với điều chỉnh R11 trình điềukhiển đạt kết tốt với thời gian điều chỉnh ngắn, độ điều chỉnh nằm giá trị cho phép, hệthống tác động nhanh với thay đổi đầu vào HVTH: Lê Văn Hùng 80 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử 2)Theo kênh nhiễu Hình 4.12: Đặc tính độ hệthống kín theo kênh nhiễu Thời gian điều chỉnh: Tq = 7,843 phút Độ sai lệch động cực đại: y(t)max = 11,432 Độ điều chỉnh nằm khoảng cho phép 11, 432 100% Độ tắt dần dao động trình độ: 0.96 Chỉ tiêu tích phân bình phương: e2 (t ) 121, 229 Đánh giá: Với tiêu chất lượng thu trên, tín hiệu nhiễu có chiều hướng tiến bị dập tắt khoảng thời gian t = phút Thời gian tác động nhiều sai lệch cực đại không lớn Nếu muốn dập nhiễu nhanh ta tiến hành thiết lập thêm khử nhiễu e) Xây dựng khử nhiễu Để khử nhiễu cần thiết lập kênh song song với đường truyền tự nhiên Kênh điểm đo giá trị qua khâu khử C(s) đưa trái dấu vào đầu vào điều chỉnh tiết kiệm dễ thực công suất tín hiệu đòi hỏi không lớn HVTH: Lê Văn Hùng 81 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử Hình 4.13: Sơ đồ khối hệthốngđiềukhiển có khử nhiễu S C0 S b0 0,085.S C 2 R a1S a2 S a1S a2 S 0,518.S 0,076S Hình 4.14: Đặc tính độ hệthống kín theo kênh nhiễu (có khử nhiễu) HVTH: Lê Văn Hùng 82 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử 4.3 Kết luận: Với phần mềm CASCAD xây dựng tảng phương pháp tổng hợp hệthốngđiềukhiển bền vững chất lượng cao dựa khái niệm số dao động mềm, phương pháp nhận dạng mô hình hóa, phương pháp tối ưu hóa vượt khe, tính toán thiết kế điều chỉnh cho sinh vòng tuần hoàn thứ cấp với đối tượng áp suất vào tuabin Các điều chỉnh đảm bảo tính bền vững chất lượng cao với tiêu chất lượng mong muốn, thỏa mãn yêu cầu thiết kế vòng điều chỉnh thực điềukhiển công suất tuabin nhàmáyđiệnnguyêntử HVTH: Lê Văn Hùng 83 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử KẾT LUẬN Nội dung đề tài nghiên cứu “Hệ thốngđiềukhiểnbảovệnhàmáyđiệnnguyên tử” là: Các loại nhàmáyđiệnnguyên tử; Hệthống trao đổi nhiệt nhàmáyđiệnnguyên tử; Phương pháp tổng hợp hệthống theo quan điểm bền vững; Tính toán điềukhiển công suất nhiệt vòng tuần hoàn thứ cấp nhàmáyđiệnnguyêntử Năng lượng mà nhân loại sử dụng lâu dài thời gian tới phải dựa vào lượng nguyên tử, đặc trưng lượng nguyêntử nguồn lượng sạch, không phát thải CO2, SOx, NOx gây ô nhiễm không khí Nhiên liệu Uranium có kích thước nhỏ hàm chứa lượng lớn Vài chục Uranium có lượng tương đương với hàng triệu dầu Lượng chất thải phóng xạ phát sinh nhàmáyđiệnnguyêntử so với lượng chất thải công nghiệp thông thường Tuy nhiên đòi hỏi quản lý cách chặt chẽ, cất giữ bảo quản an toàn Nhàmáyđiệnnguyêntử phải lựa chọn phương án thiết kế an toàn tối đa Nó thiết kế để cho dù có phát sinh tai nạn không gây thiệt hại, tổn thất cho tất cư dân sống xung quanh Có thể nói nửa nhàmáyđiệnnguyêntử thiết bị an toàn Trong luận văn đưa cách tính toán thử cho vòng điều chỉnh công suất công suất nhiệt vòng tuần hoàn thứ cấp Phương pháp chỉnh định hệthống áp dụng cho nhàmáyđiệnnguyêntử thực tế Công nghệ điện hạt nhân vấn đề nước ta lần đề tài luận văn nhận nhiệm vụ nghiên cứu bước đầu vấn đề chắn nhiều thiếu sót Rất mong thầy, cô ngành, trường, khoa, bạn đọc có ý kiến đóng góp tạo điều kiện để luận văn hoàn thiện HVTH: Lê Văn Hùng 84 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử TÀI LIỆU THAM KHẢO Nguyễn Văn Mạnh (1994), Lý thuyết điều chỉnh trình nhiệt, Đại học Bách Khoa Hà Nội Nguyễn Văn Mạnh (2002), Tổng hợp bền vững tối ưu hệthốngđiềukhiển đối tượng bất định, Thôngbáo khoa học, Hội nghị toàn quốc tự động hóa lần V – VICA, Hà Nội Nguyễn Doãn Phước, Phan Xuân Minh (2000), Điềukhiển tối ưu bền vững, Nhà xuất Khoa học kỹ thuật, Hà Nội Nguyễn Văn Mạnh (1996), Tính toán hệthốngđiềukhiển bền vững nhờ đặc tính tần số mở rộng (tiếng Nga), Tạp chí Năng lượng Nhiệt, Matxcơva Nguyen Van Manh (1997), ”Assessing the stability margin of linear multivariable control systems in accordance with a ”soft” oscillation index”, Thermal Enginering, Vol 44, No 10, p 809-815 Nguyen Van Manh, Vo Huy Hoan (2006), The new method for synthesizing industrial robust control system, 1st South East Asian Technical University Consortium (SEATUC) Symposium John I Levenhagen (1999), HVAC Controls system design diagrams, McGraw – Hill, Singapore 8.Lunze J (1999), Robust multivariable feedback control, Prentice Hall, New York Tài liệu: IAEA_TECDOC – 1474 năm 2005 10 Báo cáo tóm tắt hệthống công nghệ nhàmáyđiện hạt nhân – Viện lượng nguyêntử Việt Nam tháng năm 2011 HVTH: Lê Văn Hùng 85 Hệthốngđiềukhiểnđiềukhiểnbảovệnhàmáyđiệnnguyêntử PHỤ LỤC HVTH: Lê Văn Hùng 86 ... ống bảo vệ hệ thống điều khiển bố trí phía vùng hoạt Điều cho phép điều khiển tự rơi vào vùng hoạt để dập lò cần thiết HVTH: Lê Văn Hùng Hệ thống điều khiển điều khiển bảo vệ nhà máy điện nguyên. .. Hình 4.7 : Sơ đồ hệ thống điều khiển áp suất 76 Hình 4.8 : Sơ đồ hệ thống điều khiển áp suất 77 HVTH: Lê Văn Hùng Hệ thống điều khiển điều khiển bảo vệ nhà máy điện nguyên tử Hình... Hùng 21 Hệ thống điều khiển điều khiển bảo vệ nhà máy điện nguyên tử - Sử dụng bơm tái tuần hoàn lò (giảm thiểu điểm vào thùng lò); - Các hệ thống an toàn số hóa, hệ thống logic điều khiển số