1. Trang chủ
  2. » Khoa Học Tự Nhiên

99 Lecture 1CS 1813 – Discrete Mathematics

11 189 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 11
Dung lượng 3,32 MB

Nội dung

Lecture CS 1813 Discrete Mathematics Learning Goals Lesson Plans and Logic Rex Page Professor of Computer Science University of Oklahoma EL 119 Page@OU.edu CS 1813 Discrete CS 1813 Discrete Mathematics Learning Goals  Apply mathematical logic to prove properties of software  Predicate calculus and natural deduction  Boolean algebra and equational reasoning  Mathematical induction  Mathematical induction  Mathematical induction  Understand fundamental data structures  Sets  Trees  Functions and relations  Additional topics e! r o l a g s f proo e!  Graphs  Counting  Algorithm Complexity CS 1813 Discrete lor proofs ga e! ofs galor pro lore! proofs gagalore! proofs ore! proofs gal 100s of input s Why Proofs? input signal s Key presses Mouse gestures Files Databases … software computatio n > 2100s output of signal possibilitie s s Images Sounds Files Databases … Software translates input signals to output signals A program is a constructive proof of a translation But what translation? Proofs can confirm that software works correctly Testing cannot confirm software correctness Practice with proofs improves software thinking CS 1813 Discrete CS 1813 Discrete Mathematics Textbook and Tools Discrete Mathematics Using a Computer Cordelia Hall and John O’Donnell Springer-Verlag, January 2000  Tools provided with textbook  Download from course website for CS 1813  Hugs interpreter for Haskell  Download from course website  Haskell is a math notation (and a programming lang)  Reading assignments begin with Chapter  Read Chapter (Haskell) as needed, for reference  Haskell coverage JIT, like other math notations CS 1813 Discrete Formal Mathematical Notations Notations introduced as needed (JIT) H l as ke l  Logic a∧b, a∨b, a→b, ∀x.P(x), ∃ x.Q(x), …  Sets A ∪ B, A ∩ B, {x | x∈S, P(x)}, …  Sequences [x | x

Ngày đăng: 15/06/2017, 20:33

w