1. Trang chủ
  2. » Giáo án - Bài giảng

dethi vao thpt

32 280 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 32
Dung lượng 394,5 KB

Nội dung

Đề thi vào lớp 10 Hà Nam đề thi vào lớp 10 1994 - 1995 Bài 1: (1,5) a) Tính giá trị của biểu thức: 32 1 32 1 + + b) Cho A = 222 2 1 babab ba + với a > b Rút gọn rồi tính giá trị của biểu thức với b = 13 Bài 2: (2,5) Cho phơng trình x 2 + (2m 1)x + m 1 = 0 (1) a) Giải phơng trình với m = 2 b) Chứng tỏ phơng trình (1) luôn luôn có 2 nghiệm phân biệt với mọi giá trị của m. Bài 3: (4) Cho đờng tròn tâm O và đờng thẳng d, đờng kính AB của đờng tròn vuông góc với đờng thẳng d tại H (B nằm giữa O và H). M là một điểm bất kì trên đờng tròn không trùng với A, B. Các đờng thẳng AM, BM và tiếp tuyến tại M của đờng tròn cắt đờng thẳng d lần lợt tại D, C, I, AC cắt đờng tròn tại E. a) Chứng minh AMHC là tứ giác nội tiếp. b) Chứng minh tam giác ICM cân. c) Chứng minh AM, EB, CH luôn cắt nhau tại một điểm Bài 4: (1) Cho P = 2 32 2 2 + ++ x xx Với giá trị nào của x thì P đạt GTNN, hãy tìm GTNN đó. 1 Đề thi vào lớp 10 Hà Nam 1995 - 1996 1) (3đ). Rút gọn a) A = 2 15 120 4 1 )56( 2 1 2 + b) B = )2233( 12 22 3 323 + + + + c) C = 2 2 491 1694 x xxx + , Với x < 3 1 , x 7 1 2) (2,5đ). Cho Parabol y = 2 2 1 x (P) a) Vẽ đồ thị (P) b) Với m nào thì y = 2x + m cắt (P) tại 2 điểm A, B. Tìm tọa độ 2 giao điểm đó 3) (3đ) Cho (O), đờng kính AB. Trên OC lấy B. Vẽ (O) đờng kính BC. M là trung điểm của AB, qua M kẻ dây DE vuông góc với AB, DC cắt (O) tại I. a) ADBE là hình gì? Tại sao? b) Chứng minh I, B, E thẳng hàng c) Chứng minh MI là tiếp tuyến của (O) và MI 2 = MB.MC 4) (1đ). Cho 2 số x, y thỏa mãn x > y, x.y = 1. Tìm GTNN của yx yx + 22 2 Đề thi vào lớp 10 Hà Nam 1996 - 1997 Câu 1: (3đ) Cho hàm số y = x . a) Tìm tập xác định của hàm số b) Tính y biết: 1) x = 9, 2) x = 2 )21( c) Các điểm: A(16; 1) và B(16; -1) điểm nào thuộc đồ thị của hàm số, điểm nào không thuộc đồ thị của hàm số? Tại sao? d) Không vẽ đồ thị, hãy tìm hoành độ giao điểm của đồ thị hàm số đã cho và đồ thị hàm số y = x 6 Câu 2: (1đ) Xét phơng trình x 2 12x + m = 0 (x là ẩn số) Tìm m để phơng trình có 2 nghiệm x 1 , x 2 thỏa mãn điều kiện x 2 = x 1 2 Câu 3: (5đ) Cho đờng tròn tâm B bán kính R và đờng tròn tâm C bán kính R cắt nhau tại A và D. Kẻ các đờng kính ABE và ACF. a) Tính các góc ADE và ADF, từ đó chứng minh E, D, F thẳng hàng. b) Gọi M là trung điểm của BC, N là giao điểm của các đờng thẳng AM và EF. Chứng minh ABNC là hình bình hành. c) Trên các nửa đờng tròn đờng kính ABE và ACF không chứa điểm D, lần lợt lấy các điểm I và K sao cho góc ABI bằng góc ACK (điểm I không thuộc đờng thẳng NB, K không thuộc đờng thẳng NC). Chứng minh tam giác BNI bằng tam giác CKNvà tam giác NIK là tam giác cân. d) Giả sử R < R. Chứng minh AI < AK, MI < MK Câu 4: (1đ) Cho a, b, c là số đo của các góc nhọn thỏa mãn cos 2 a + cos 2 b + cos 2 c > 2. Chứng minh: (tga.tgb.tgc) 2 < 8 1 1997- 1998 3 Đề thi vào lớp 10 Hà Nam Câu 1: (3đ) Cho parabol y = x 2 và điểm A(1; 4) a) Điểm A(1; 4) có thuộc parabol y = x 2 không? tại sao? b) (d) là đờng thẳng đi qua A và có hệ số góc k. Lập phơng trình của đờng thẳng (d) - Với k = 2, hãy tìm tọa độ giao điểm của (d) với parabol y = x 2 - Chứng tỏ rằng với mọi giá trị của k, đờng thẳng (d) luôn cắt parabol y = x 2 Câu 2: (2đ) Giải các phơng trình: a) x 2 = x b) 462 =++ xx Câu 3: (4đ) Cho tứ giác ABCD nội tiếp đờng tròn tâm O. M là một điểm thuộc cung CD (cung không chứa đỉnh nào của tứ giác). E, F, G, H lần lợt là hình chiếu vuông góc của M trên đờng thẳng AB, BC, CD, DA. Chứng minh: a) M, G, D, H cùng nằm trên một đờng tròn. Xác định tâm của đờng tròn đó. b) Góc MHG và góc MEF bằng nhau c) ME.MG = MF. MH Câu 4: (1đ)Cho a, b, c là 3 số đôi một khác nhau thỏa mãn ma 2 + na + p = 0 mb 2 + nb + p = 0 mc 2 + nc + p = 0 Chứng minh: m = n = p = 0 1998 -1999 4 Đề thi vào lớp 10 Hà Nam Bài 1: (2đ): Rút gọn các biểu thức sau: 1) A = 12 223 12 1 + + 2) B = 2 3 2 32 Bài 2 (2đ): Giải các phơng trình sau: 1) 0112 =++ xx 2) 3x 2 +2x = 2 xxx ++ 1 2 Bài 3 (2đ): Trong mặt phẳng tọa độ Oxy cho Parabol (P): y = 2x 2 và đờng thẳng: y=kx + 4 + k. (k là tham số) 1) Tìm giá trị của k để đờng thẳng đi qua đỉnh của (P), gọi đờng thẳng trong trờng hợp này là (d). Tìm tọa độ giao điểm thứ 2 của (d) và (P). 2) Viết phơng trình đờng thẳng song song với (d) và tiếp xúc với (P) Bài 4 (4đ): Cho đờng tròn (O) và đờng tròn (O) cắt nhau tại A và B. Kẻ cát tuyến CAD (Ctrên đờng tròn O, D trên đờng tròn O). 1) Chứng minh các góc của tam giác BCD không đổi khi cát tuyến quay quanh điểm A. 2) Kẻ các đờng kính COC, DOD. Chứng minh A, C, D thẳng hàng. 3) Xác định vị trí của cát tuyến CAD sao cho đoạn thẳng CD là lớn nhất. ở vị trí CD lớn nhất hãy chứng minh diện tích tam giác BCD bằng 4 lần diện tích tam giác OAO 4) Biết bán kính đờng tròn (O), (O) lần lợt là r, r và góc OAO = 90 0 . Chứng minh: tg 22 '' 2 rrr rCDB ++ = 1999 - 2000 Bài 1 (3,5đ). 5 Đề thi vào lớp 10 Hà Nam 1) Rút gọn biểu thức: A = + + x x x x x x 1 . 1 1 1 1 2) Cho biểu thức: B = x x + 11 a) Tìm x để B có nghĩa b) Tìm giá trị lớn nhất và nhỏ nhất của B. Bài 2 (2,5đ): Cho phơng trình: x 2 + (2m 5)x n = 0 (x là ẩn). 1) Giải phơng trình khi m = 1 và n = 4 2) Tìm m, n để phơng trình có 2 nghiệm là 2 và -3 3) Cho m = 5. Tìm n nguyên nhỏ nhất để phơng trình có nghiệm dơng. Bài 3 (4đ): Cho tam giác ABC có 3 góc nhọn nội tiếp đờng tròn tâm O, 3 đờng cao AD, BE, CF của tam giác ABC cắt nhau ở H. Kéo dài AH cắt đờng tròn tại K, kéo dài AO cắt đờng tròn tại M. Chứng minh rằng: 1) MK // BC 2) DH = DK 3) HM đi qua trung điểm của BC 4) 9 ++ HF CF HE BE HD AD 2000 - 2001 (đề 1) Bài 1 (2đ): Rút gọn các biểu thức sau (với điều kiện các biểu thức đã cho là có nghĩa). 6 Đề thi vào lớp 10 Hà Nam 1) M = xyyx yx yx yx ++ 22 3322 2) N = 4444 ++ xxxx Bài 2 (2đ): Trong mặt phẳng tọa độ Oxy cho Parabol (P) có phơng trình y = x 2 và điểm A(-1;1) thuộc (P). 1) Viết phơng trình đờng thẳng (d) đi qua A với hệ số góc bằng 1. 2) Tìm tọa độ giao điểm thứ 2 của (d) và (P) (gọi giao điểm thứ 2 là B). Chứng minh tam giác OAB là tam giác vuông và tìm diện tích của tam giác này. Bài 3 (2đ). 1) Giải và biện luận bất phơng trình: 1 + x mx +m ; m là tham số 2) Giải phơng trình: 2x 4 x 3 2x 2 x + 2 = 0 Bài 4 (4đ): Cho góc xAy = 60 0 , vẽ đờng tròn tâm J tiếp xúc với 2 cạnh của góc ở D và E. Từ điểm M thuộc cung nhỏ DE (M khác D, M khác E) vẽ tiếp tuyến với đờng tròn (J), tiếp tuyến cắt 2 cạnh của góc xAy tại B và C (B ở giữa AD). 1) Tính góc DJE 2) Chứng minh BJM = BJD và tính góc BJC 3) Gọi P, Q lần lợt là giao điểm của JB, JC với DE. Chứng minh tứ giác CEJP nội tiếp và 3 đờng thẳng BQ, JM, CP đồng quy 4) Biết bán kính đờng tròn ngoại tiếp tam giác ABC bằng 6cm, tính bán kính đờng tròn ngoại tiếp tam giác MPQ. 2000 - 2001 (đề 2) Bài 1 (2đ). 1) CMR: H = ab baba 22 )()( + không phụ thuộc vào a, b (a, b khác 0) 7 Đề thi vào lớp 10 Hà Nam 2) CMR: K = 32)13(2 + là số nguyên Bài 2 (2,5đ): Trong mặt phẳng tọa độ Oxy cho đờng thẳng (d): y = 4x + k và Parabol (P) có phơng trình y = 2x 2 . 1) Tìm k để (d) tiếp xúc (P). Chỉ rõ tọa độ tiếp điểm 2) Tìm k để (d) cắt (P) tại 2 điểm A, B và cắt Oy tại M sao cho MA = 3MB. Bài 3 (1,5đ): Giải hệ phơng trình. =++ =+ 555 24277 xyyx xyyx Bài 4 (4đ). Cho tam giác ABC có AH là đờng cao, AD là phân giác trong. Gọi E, F lần lợt là hình chiếu của B và C trên AD. 1) Chứng minh: A, H, F, C cùng nằm trên một đờng tròn. 2) Chứng minh: ABC HEF và HD là phân giác của góc EHF 3) Giả sử góc A = 90 0 . a) Tính AD biết AB = c, AC = b b) Chứng minh BE + CF 2AD 2000 -2001 (đề 3) Bài 1 (2đ). 8 Đề thi vào lớp 10 Hà Nam 1) Tính: A = ( ) 2 3 24 4 1 32 2 1 2 + 2) Rút gọn: B = 2 2 91 144 x xxx + (với x < 3 1 , 2 1 x ) Bài 2 (2đ): Giải hệ phơng trình =+ = 23 32 yx yx , Từ đó suy ra nghiệm của hệ: = + + = + 2 1 31 3 1 12 n m n m , với m, n là ẩn số Bài 3 (2đ). Trong mặt phẳng tọa độ Oxy cho Parabol (P) có phơng trình y = -x 2 và điểm M(0; -2) 1) Viết phơng trình đờng thẳng (d) qua M với hệ số góc k (kR) 2) Chứng minh rằng đờng thẳng (d) luôn cắt parabol (P) tại 2 điểm phân biệt với mọi k. 3) Xác định k để đờng thẳng (d) cắt (P) tại 2 điểm A, B sao cho MA = 2MB (A là điểm có hoành độ âm). Bài 4 (4đ). Cho tam giác đều ABC nội tiếp đờng tròn (O,R), trên cung BC nhỏ lấy M, trên tia MA lấy D sao cho MD = MC. 1) Tính góc MDC 2) CM: BM = AD 3) Tính diện tích hình giới hạn bởi cạnh của tam giác và đờng tròn (O) theo R. 4) Từ M hạ MI, MH, MF vuông góc với AB, BC, CA. Chứng minh 3 điểm H, I, F thẳng hàng. 2001 - 2002 (đề 1) 9 Đề thi vào lớp 10 Hà Nam Bài 1 (1,5đ): Rút gọn M = + a a a a a 1 : 1 1 ; với a > 0, a 1 Bài 2 (2đ): trong mặt phẳng tọa độ Oxy cho đờng thẳng (D) có phơng trình: y=mx+1 (m R) 1) Tìm những giá trị của m để đờng thẳng (D): a) Đi qua điểm M(5;8) b) Vuông góc với đờng thẳng y = 2x 1 2) Tìm những giá trị của m để (D) tiếp xúc với (P) có phơng trình y = - 2 2 x và tìm tọa độ tiếp điểm. Bài 3 (2,5đ). 1) Cho phơng trình x 2 - 0 2 1 = a xa (a > 0) a) Giải phơng trình khi a = 1/4 b) Gọi 2 nghiệm của phơng trình là x 1 , x 2 . Chứng minh: x 1 4 +x 2 4 2+ 2 2) Tìm GTNN của biểu thức: P = 18902001 + mm ; với m R Bài 4 (4đ): Cho nửa đờng tròn tâm O bán kính R, đờng kính AB. Tiếp tuyến tại M bất kì trên nửa đờng tròn đã cho (M khác A, B) cắt các tiếp tuyến của đờng tròn tâm O tại A và B lần lợt ở C và D. 1) Chứng minh: góc MDO = góc MBO 2) Chứng minh: AC. BD = R 2 3) Gọi P, Q lần lợt là giao điểm của OC, OD với nửa đờng tròn đã cho. Tia AQ cắt tia BP tại K. Khi M chuyển động trên nửa đờng tròn đã cho thì K chuyển động trên một cung tròn. Hãy xác định cung tròn mà K chuyển động trên nó. 4) Gọi E, F lần lợt là giao điểm của OC với AM và OD với BM. Chứng minh tứ giác CEFD nội tiếp đợc đờng tròn. 2001 - 2002 (đề 2) 10

Ngày đăng: 29/06/2013, 01:26

Xem thêm

w