1. Trang chủ
  2. » Giáo Dục - Đào Tạo

OnLuyenTheoCauTrucDeThiMonToan-Phan02

30 276 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 9,38 MB

Nội dung

OnLuyenTheoCauTrucDeThiMonToan-Phan02OnLuyenTheoCauTrucDeThiMonToan-Phan02OnLuyenTheoCauTrucDeThiMonToan-Phan02OnLuyenTheoCauTrucDeThiMonToan-Phan02OnLuyenTheoCauTrucDeThiMonToan-Phan02OnLuyenTheoCauTrucDeThiMonToan-Phan02

CHI DAN Xet dau tarn thuTc h(x) = 2x^ - 3x - 5, c6 h(x) = Oc^x = - l , x = - 2 5 h(x) > vdi X < - hoac x > — ; h(x) < vdi - < x < — Xet tLfcmg tir vdi tam thufc g(x) = 4x^ - 19x + 12 ta lap diigfc bang sau : X + ^ _ h(x) g(x) + g(x) = 4x2 - 19x + 12 + h(x) = 2x' - 3x - -1 0 - J r - - + + - 0 ^ + - + - + + TCf bang xet dau ta ket luan : f(x) > vdi X e (-oo; -1) u ' v4' 5^ u (4; 2y +oo) rs ^ 3^ f(x) < vdi X e f(n) = vdi X = - , X = f(n) khong xac dinh vdi n = —, x = 4 5x +phifong > t r i n h va bieu d ib) 4x + < tren true so 18.a) 2x2 Giai- bat l n x^ tap+ nghiem HI DAN a) Xet dau tam thufc ve trai : fix) = 2x2 _ 5x + A = 52 - 16 > 0, fix) = Xj = - = , X2 fix) > (f(x) cung dau vdi 2) vdi x < - hoac x > Vay tap nghiem 1] 2; + c o ) Bieu dien tap cua bat phirong t r i n h la: T = { -00; — I 2_ nghiem tren true so' (phan true so khong bi danh cheo) ^ ] » « f ^ • b) Lam nhiT cau a) Tap nghiem T = (-3; -1) -3 -1 32 S TS Vu The Hi^u - Nguygn VTnh CSn 19 Giai he bat phifofng trinh va bieu dien tap nghiem tren true so : (I) x' + x - > (1) x'-5x +4 Tarn thufc theo bien m : A(m) = -3m^ - 46m - 15 c6 cac nghiem : m i = -15, A = (2m + - 4(m + 4)(3m + 1) > < m2 = - — CO gia t r i diiong (trai dau vdi - ) vdi -15 < m < - — 3 Ket luan : Phirong t r i n h (1) c6 hai nghiem neu -15 < m < - - b) Neu m = phirong trinh (2) c6 dang : 5x + = c6 mot nghiem fm ^ PhUOng trinh (2) v6 nghiem neu \ ^ ' ^ • [A = (m + l ) ' - ( m - ) ( m - l ) < A = -7m^ + 38m - 15 c6 gia t r i am (cung dau vdi - ) neu m lay gia t r i ngoai khoang hai nghiem la : m.^ ^ — va m2 = 21 DS : m < — hoac m > Tim cac gia t r i cua tham so m de bat phufong t r i n h x^ - (3m - i)x + 3m - > (1) dutJc nghiem dung vdi moi x thoa man I x I > CHI DAN Tarn thufc fix) = x^ - (3m - l)x + 3m - c6 biet thufc A = (3m - 1) - 4(3m - 2) = 9(m - 1)' • Neu m = 1, A = 0=:> f(x) > Vx e R, f(x) = o x = 1, do f(x) > Vx: > Hoc 6n luy?n theo CTDT mfln Todn THPT S 33 22 Neu m vi => f ( x ) = x i = 1, x = m - Vdfi m < t h i m - < tap nghiem cua (1) la: ( - o o ; 3m - 2) u ( ; +oo) De X cho x | > thuoc t a p n g h i e m t h i p h a i c6 - < m - c^O < m < Vdfi m > t h i 3m - > tap nghiem cua (1) la: ( - o o ; 1) u (3m - 2; +oo) De t h o a m a n yeu cau b a i t o a n t h i p h a i c6 3m-2 af (-1) = 4[4 + (3m + 1) - m - 2] > af (2) = 4[16 - 2(3m + 1) - m - 2] > , S 3m + l -1 < —= < 2 -3 < m < - < m + < 16 m > — 12 m < — - m + 12 > m ' + m + 33 > 2m + > 23 12 — < m < — T i m cac gia t r i cua t h a m so m de phirong t r i n h (m - 2)x^ - 2mx + m - = (1) CO h a i n g h i e m thoa m a n dieu k i e n - < X i < < X £ TS Vy Th6' H^fu - NguySn Vinh CJn 34 CHI DAN - < x i < < X2 o af (4) = (m - 2)(10m - 35) < af (-6) = (m - 2)(50m - 75) > c>2 o m < t a xet them biet thufc A = (m + 1)^ - 4m = (m - 1)^ S „ m+1 „ m-3 o\ 2= 2= < (vi m < 2) 2 Vdi m = ta CO nghiem kep x i = X2 = < Vdi m < va m ^ t h i X i < X < 25 Giai, bien luan theo tham so m he bat phiTOng t r i n h (I) x ' - (m + l)x + 2(m - 1) < (1) x' - (m + 2)x + 3(m - 1) > (2) CHI DAN Tam thu-c ve trai (1) la : fix) = x^ - (m + l ) x + 2(m - 1) = o X = m - hoac x = • Neu m - < o m < t h i (1) c6 tap nghiem • Neu m - > Tj = [m - 1; 2] m > t h i nghiem cua (1) la : Ti = [2; m - 1] • Neu m = t h i T i = 121 Xet tam thufc ve trai cua bat phtTcfng trinh (2) : g(x) = x^ - (m + 2)x + 3(m - 1) c6 cac nghiem x = m - l v a x = • Neu m < tap nghiem cua (2) la : T2 = (-00; m - 1] u [3; +co) • Neu m > tap nghiem cua (2) la : T2 = ( - c o ; 3] u [m - 1; +00) • Neu m = : T2 = {3} Tap nghiem T = T i n T2 cua he (I) nhif sau : + Neu m < t h i (I) c6 nghiem chung nhat x = m - + Neu < m < t h i T = [2; m - 1] + Neu m = t h i (I) c6 hai nghiem chung T = {2; 3} + Neu m > t h i T = [2; 3] u !m - 1} HQC va 6n luy?n theo CTDT m6n Toan THPT SS 35 §4 PHlIC(NG T R I N H , B A T P H U C I N G T R I N H CHlfA D A U GIA TRI T U Y E T DOI KIEN THLfC Phx:ifofng t r i n h chtfa d a u g i a t r i t u y ^ t d o i La phucfng t r i n h t r o n g bieu thufc cua no c6 chufa a n n a m t r o n g dau gia t r i tuyet do'i Vt : I 2x - 1 - 3x = Dudng l o i g i a i phirong t r i n h a neu l a diTa t r e n d i n h nghia a > -a neu a < ta phan chia tap xac d i n h t h a n h nhufng tap nho de thay the bieu thufc c6 gia t r i tuyet doi bkng bieu thufc khong c6 gia t r i tuyet doi ti/cfng diTOng Dac b i e t : | A(x) | = | B(x) i o (A(x)f = (B(x)f' B a t phu:cifng t r i n h chtfa d a u g i a t r i t u y $ t d o i Cac phtrong t r i n h don g i a n chufa dau gia t r i tuyet doi : M o t so t i n h chat cija gia t r i tuyet doi can n h d k h i g i a i bat phuong t r i n h chufa dau gia t r i tuyet doi a.b I fix) I < g(x) - g ( x ) < fix) < g(x) c) I f(x) I > g(x) b) I fix) I < I g(x) I « a) o f ' ( x ) < g'(x) fix) < - g ( x ) hoSc fix) > g(x) -a a a + b + BAI TAP 26 G i a i cac phuong t r i n h : - 2x = (1) b) X + a CHI DAN X + a) Theo d i n h nghia I x + (A) (1) « (B) 2x + vdi - ( x + 4) v d i X > X < 3x - = (2) -4 -4 Jlx + ) - x = X > -4 - ( x + 4) - 2x = -4 X < 63 TS Vu Thg Hi^u - Nguyln VFnh CJn 36 -x + = _ (B) o x = - ; r-3x-4 =7 = > v nghiem X < -4 -4 Vay phuong t r i n h (1) c6 nghiem nhat x = - b) De CO bieu thufc khong chufa gia t r i tuyet doi ttrcrng duong ta lap bang sau (A) < X > "2 X 2x + -2x - 2x + 2x + 3x- -3x + Bieu thufc (2) -5x - = - X Nghiem X = — (loai) X = (loai) -3x + 3x - +5=3 5x + = X = — (loai) Vay phiiong t r i n h (2) v6 nghiem (theo bang c6 nghia la vdi x < — thi (2) CO bieu thufc : - x - l = = > x = khong thuoc khoang nen loai) -2 27 Tuong tir nhir vay, ta loai x = va x = — Giaix cac phiTOng t r i n h : ^-x 2x-4 = ( ) b ) x ' + 6x + + x^ - a) =30(2) CHI DAN a) x ^ - x = « x = 0; x = l , x - = o x = x^ - X x^-x -x^ + x vdi X < vdi < 2x - vdi 2x- -2x + vdi X < X > X < hoac x >1 Ta lap bang de d i theo doi X x^-x 2x- -00 x^ - X -2x + -x^ + -2x + Bieu thufc (1) x^ - 3x + = -x^ Nghiem 3±V5 (loai) X X + x^ - x^-x X -2x + +00 2x - 4 = x^ - 3x + = x^ + - +Vs 3±V5 — - — (loai) Hoc X - 4=3 - + V29 6n luyOn theo CTDT mSn Toan THPT S 37 Phifdng t r i n h (1) c6 cac nghiem : X j = - i + Vs _ _ - + V29 X b) Ta lap bang sau : X -00 -4 x'^- Ix^-ll -2{x^ + 6x + 8) 2|x^ + ex + 8l 2(x2 + x + 8) B i e u thiifc (2) 3x^ + 12x + 15 = 30 -2 -1 2(x^ + Gx + x^ - -x2-12x-17=30 2(x^ + 6x + g -x^ + (c) +CO 2(x^ + 6x + 8) x^ - (d) (e) Nghiem (c) o _^ ^2x + 15 = 30 (d) x^ + 12x + 17 = 30 (e) 3x2 _^ -^2x + 15 = 30 TCr cac phirong t r i n h cac khoang ta t i m dtfoc cac nghiem cQa (2) la : X = - , X = Giai cac phirong t r i n h : 2x-l -3x = b) 2x - X + =6 28 a) c) x - x = x - CHI DAN b) X = va X = — c) X = 1, X = ±3 a) X = 11 29 Giai cac bat phuong t r i n h va bieu dien tap nghiem tren true so a) | x - l | < (1) b) i'2x+*l| > ' (2) CHI DAN a) (1) - < 3x - < - < 3x < « — < X < 2x + l > p3 2x + < - b) (2) •/W/MW/////////////, x < -2 -2 x>l Giai bat phuong t r i n h va bieu dien tap nghiem tren true so' _|x2 - x - f < x - (1) 30 CHI DAN (1) o-(3x-3)0, g(x)>0' B a t phu!ofng t r i n h chufa c a n thiJc Dang CO b a n cua b a t phiTOng t r i n h chura can bac h a i f (x) > a) g(x) < 4Ux)>gix) g(x) > • f(x) > [g(x)]^ f (x) > b) V f O O < g ( x ) ojg(x)>0 f (x) < [ g ( x ) ] ' De g i a i cac b a t phiTOng t r i n h chufa cSn thufc, t a dtfa r a cac dieu k i e n xac d i n h r o i luy thCra m o t each t h i c h hop cac ve cua b a t phiTOng t r i n h de g i a m d a n cac dau can thufc, d a n d a n dtTa t d i b a t phifong t r i n h , he bat phufong t r i n h k h o n g chuTa cSn thufc Cung c6 t h e dat cac a n p h u hoSc b i e n l u a n cac ve cua b a t phuong t r i n h de t i m n g h i e m BAITAP 31 a) G i a i cac phiTOng trinh : x - V2x + = (1) b) V3x + - V x - = CHI D A N a) (1) V2x + = X - x-4 >0 2x + - ( x - f Hgc vJ On luy§n theo CTBT m6n To^n THPT S 39 < X > x ' - lOx + = b) ( ) o V3x + = + V x - c ^ o 9(x - 3) = (x - If 32 X > -irx = C:>X = 3Vx-3 = x - 3x + = + x + V x - x>3 x-3>0 o x^ - l l x + 28 = Vx e R Dat t = V e x ' - x + vdi t > 0, ta c6 : x^ - 2x = 7-t' va phirang t r i n h (1) dan den t = -1 +t =0 (loai) t =7 o Vex' - 12x + = t > 6x' - 12x + = t ' ex^ - 12x + = 49 c:> xi,2 = ± V s b) Nhan xet : x^ - 3x + = Dat t = x^ - (2) (2)o 33 3x + 3, ta \ + - > Vx X CO : G R 00 Do : (1) 4-x> N/X-2 + V4-X 34 Giai cac phuong t r i n h : a) ^ / ^ - ^ / I ^ = l (1) CHI = ox x' - x + l l = =2 b) ^/^r75+^x + 6- = fe + l l (2) DAN a) Cdc/i i : Lap phUdng hai ve (1) ta difoc : ( D o (x + 34) - (x - 3) - 3^x + 34.^/^r^[^x + 34 - ^ x - ] = (Ap dung hang dang thuTc : (a - b)^ = a^ - b^ - 3ab(a - b)) ( D o ^(x + 34)(x - 3) = 12 o (x + 33)(x - 3) = 1728 "x = 30 o x ^ + 31x - 1830 = o x = -6l' Cdch : DSt an so phu u = ^x + 34, v = ^ x - ta c6 : (1) o u - V = 1, u^ = 37 = (u - v)^ = u^ - 3uv(u - v) o = 37 - 3uv => uv = 12 u + (-v) = Ta dilgfc he phirong t r i n h u ( - v ) = -12 u va - V la nghiem cua phifcfng t r i n h - X - 12 = o Xi = - , X2 = ^x + 34 = '^x + 34 = -3 x = 30 hoac o X 61' ^/^r^ = ^/^r^ = -4 b) Dat u = ^x + 5, V = ^x + ta thay u^ + v^ = 2x + 11 Suy (u + v f = + v^ + 3uv(u + v) => 2x + 11 = 2x + 11 + 3uv(u + v) o uv(u + v) = o ^x + 5.^x + 6.^2x + l l = =0 o ^x + = ^2x + l l = 35 x = -5 o x = -6 X 11 = Giai, bien luan theo tham so m cac phifOng t r i n h : a) Vx + m + V x - m = V2m (1) CHI b) Vx^ - 2mx + + = m (2) DAN a) DK : m > • Ne'u m = t h i (1) c6 nghiem x = X > m >0 • Neu m > 0(1) o X 2x + 2Vx^ - m ^ = 2m o HQC > m >0 4^ m =m- X 6n luygn theo C T D T mOn Toan T H P T 41 45 G i a i bat phuong t r i n h : ^^^^^^^ + V^T^ > 4=^ (D Vx - Vx ^ (Trich de thi tuyen sinh DH khoi A - 2004) CHI DAN D K X D : x ^ - 16 > 0, X - > 0x > (1) » V2(x' - ) + x - > - x X >4 (A) fV2(x' - ) > 10 - 2x < X > 10-2x4 10-2x>0 (B) 46 X >4 2(x'-16) >(10-2x)' He (A) CO n g h i e m : x < 5, he (B) c6 n g h i e m 10 - ^/34 < x < Tap n g h i e m cua (1) l a : x > 10 - V34 G i a i bat phifofng t r i n h : a) V5x - - Vx - > V2x - b) (1) (Trich de thi tuyen sinh DH khoi A - x + l + Vx' - x + l >3V^ 2005) (2) (Trich di thi tuyen sinh DH khoi B - 2012) CHI DAN a) D K X D : 5x - > 0, X - > 0, 2x - > c:> X > B i n h phiidng h a i ve (1), chuyen ve t h i c6 : x> X > (1) « X + >V2(x-l)(x-2) [(x + 2f > ( x ' - 3x + 2) X > x ' - lOx < o < X < 10 b) D K X D : x > , x ^ - x + l > c : > < x < 2-S Ta CO X = l a m o t n g h i e m cua (2) X e t X > 0, chia h a i ve cho \fx t h i diroc : V x + hoSc x > + Vs Vx +Jx+—- >3 V X Dat t = Vx + 4= t h i X + i - t^ - t h i (2) c6 dang : Vx X t +Vt^-6>3 Vt'-6>3-t t > G i a i bat phtfOng t r i n h : V x + > — t a duoc < V x < —, hoSc Vx > Vx 2 Suy r a t a p n g h i e m cua (2) l a : < x < — hoSc x > 4 HQC V§ 6n luy§n theo CTDT mfln Jo&n THPT El 47 §6 HE PHUCfNG TRINH NHIEU AN KIEN THLfC H $ phi^ofng t r i n h b a c n h a t h a i a n , b a a n a) H e phuong t r i n h bac n h a t h a i a n (x va y) c6 dang: (I) ajX + b i y ^ C j a X + b y = C2 K i hieu D = (1) (2) = aib2 - a2bi goi la d i n h thufc cila he ( I ) b2 - C2 a2 C: b2 C2 b, Ci = Cib2 - - aiC2 - C2bi a2Ci Quy tdc Crame G i a i he phifcfng t r i n h bac n h a t Neu D he (I) CO nghiem nhat (xo; yo) xac dinh bdi cong thijfc D.,y Xo = D ' _ yo = D - N e u D = 0, ^ hoac Dy ;^ h e ( I ) v6 n g h i e m - N e u D = Dx = Dy = he ( I ) c6 v6 so n g h i e m l a t a p n g h i e m cua phiiong t r i n h : aix + b i y = C i hoac ciia a X + b y = C2 b) Gidi he phiiang trinh bac nhat hai an bdng phuang phdp thi + b j y = c, (1) Cho he phiiong t r i n h : ( I ) - aiX [aaX + \y = C2 (2) T r e n cung m o t m a t phSng t o a Oxy, ve cac dirorng thSng (di) c6 phiiOng t r i n h (1) v a duTcfng t h a n g ( d ) c6 phtfcfng t r i n h (2) K h i t o a (xo; yo) ciaa giao d i e m (di) v a ( d ) l a n g h i e m cua he ( I ) N e u (di) v a ( d ) giao he (I) c6 n g h i e m n h a t N e u d i // d2 he (I) v6 n g h i e m Neu d i v a d trCing nhau, he (I) c6 v6 so n g h i e m Toa m o i d i e m cua (di) (hay ( d ) ) l a m o t n g h i e m BAI TAPi 47 G i a i cac he phtfofng t r i n h sau: a) ( I ) 2x - 3y = - x-2 b) ( I I ) 3x + y = I2-X + y=7 + 5y - 48 S TS Vu Thg' Hi;u - Nguyen Vinh CSn CHI D A N a) A p dung quy tac Crame cho he ( I ) -3 -4 D = = 11 ^ 0, = -4 Dx -3 = 11, = 22 = ^ 2 ^ —i D 11 11 N g h i e m n h a t cua he ( I ) l a (1; 2) Xo = D — b) Dieu k i e n xac d i n h ox ^ DSt X = t h a y vao ( I I ) t a X dxsgc he phuong t r i n h bac n h a t v d i X va y [ (ir) 3X + y - - X + 5y = X - A p dung quy tSc Crame cho he ( I D t a difcJc y = 48 G i a i , b i e n l u a n theo t h a m so m he phiTcfng t r i n h (I) 32 17 23 17 81 32 23' y = 17 X = 6mx + (2 - m)y = (m - l ) x - m y = CHIDAN Ta t i n h d i n h thufc cua he ( I ) D = 6m 2-m m -1 - m = -Gm^ - (m - 1X2 - m) = -5m^ - 3m + D =0» - m ^ - m + = « m = - l hoSc m = + Neu m = - , D = 0, Dx = - ;t he ( I ) v6 n g h i e m 22 + N e u m = - , D = 0, Dx = ^0 he ( I ) v6 n g h i e m 5 + N e u m ^ -1, m ^ —, D = - m ^ - m + ^ 0, he ( I ) c6 n g h i e m n h a t (xo; yo) v d i , 2-m m +4 D - m Xo = D D 5m^ + 3m - 6m m-1 9m+ D -5m^ - 3m + • Hoc 6n luy§n theo CTDT mfln Jo&n THPT 49 49 Giai cac he phiTcrng trinh: X 2y _ 29 x + y + 15 a) (I) 2x y x + y + 15 X + 2y + 3z = 10 b) (II) 2x + y - z = l l 3x - 2y + z = (1) (2) (3) CHI DAN a) DKXD: x ^ - , y ^ - DM X = x + Y = y + thi (I) trd thanh: X + 2Y = 29 15 (D _8_ X - Y = 15 Ap dung quy tSc ^Crame , cho ^he =(I')2 ta^ tinh difdc X = —, Y = — Giai y+1 ^ x +2 Vay (3; 2) la nghiem cua he (I) X + 2y + 3z = 10 (1) b) (II) J2x + y - z = l l (2) 3x - 2y + z = (3) Nhan phiicrng trinh (1) v6i - dem cong vao phiTcfng trinh (2) Lai nhan phifong trinh (1) vdi - cong vao phifOng trinh (3) thi dufdc x + 2y + 3z = 10 (1') (II)i - y - z = -9 (2') - y - z = -24 (3') Lai tiep tuc nhan phiTOng trinh (2') cua (II)i vdfi - , cong vao phifong trinh (3') thi diTcfc x + 2y + 3z = 10 x = (11)2 - y - z = -9 y = 48z - 48 z = l ta c6 the lap rieng bang cac he Ghi chu: De thuc hien phep giai tren so cua he (II) va thiTc hien nhtr sau: 'I 10^ ^1 10^ 10^ -1 11 —> -1 -7 -9 -1 -7 -9 6; 48 48j 10 -8 -8 -24; 13 -2 50 E3 TS Vu The' HiAi - Nguyen Vinh C5n Mpt so phxiofng t r i n h h a i a n d a n g d a c b i $ t a) He gom mot phiiang trinh bdc hai, mot phiiong trinh ax + by + c = (1) (I) [ A x ' + Bxy + C y ' + D x + Ey + F = (2) bdc nhdt G i a i he (I) b k n g phLrong phap the b) He phiiong trinh dot xiing loqi I L a he phufdng t r m h co dang < l g ( x , y ) = (2) Trong f(x, y) va g(x, y) la cac bleu thufc doi xufng doi v i cac bien x, y Cdch giai: D a t a n so phu S = x + y, P = xy Dieu k i e n can va du de he c6 n g h i e m la - P > rf(x,y) = (1) c) He phiiong trinh doi xiing loai H: ( I I ) fly,x) = (2) Cdch giai: Di/a viec g i a i he ( I I ) ve g i a i he: (F) d) Phuang trinh (III) 'f(x,y)-f(y,x) =0 f(y,x) = dang cap fi(x,y) = gi(x,y) (1) f2(x,y) = g , ( x , y ) (2) T r o n g m i phuong t r i n h cua he l a m o t dSng thiJc cua cac da thufc dang cap cung bac Cdch giai: G i a i he ( I I I ) v d i x = hoSc v d i y = V d i x ;t dat y = k x hoSc v6x y dat x = k y r o i khuf a n de doi ve g i a i phirong t r i n h m o t a n BAI TAP 50 G i a i , b i e n l u a n theo t h a m so m he phi/cfng t r i n h 3x + 5y = 13 (1) (I) x ' + y ' = m (2) CHI DAN TCf (1) X = l i z ^ y The vao (2) t h i diroc \ 13-5y + y ' - m = o 52y^ - 130y + 169 - m = (2') B i e t thufc cua (2'): A' = 65^ - 52(169 - 9m) = m - 4563 4563 39 • Neu m < 468 = — , A' < 0, (2') v6 n g h i e m => (I) v6 n g h i e m HQC va 6n luy§n theo CTBT mOn Tcrin THPT S 39 Neu m = — , A' = 0, (2') c6 n g h i e m kep y = — => x = — ' 4 He (I) CO n g h i e m [9 5^ 4' Neu m > — t h i (2') c6 h a i n g h i e m y i = • ' n g h i e m cua he ( I ) 51 G i a i he phiTOng t r i n h xy + X 52 tCr suy r a h a i + y = 11 x V + xy^ = 30 (Trich de thi vdo DHGTVT - 2000) CHI DAN Dat X + y = S, x y = P, t a c6: fS + P = 11 S.P = 30 S v a P l a n g h i e m cua phtrong t r i n h : X =5 X =6 x +y= [xy = hoac X - I I X + 30 = +y= xy = G i a i cac he t r e n t a difoc cac n g h i e m (2; 3), (3; 2), ( ; 5), (5; 1) 3y = 52 G i a i he phtfong t r i n h : (I) 3x = y^+2 x^ + (Trich de thi tuyen sinh DH khoi B - 2003) CHI DAN TCr cac phifdng t r i n h cua (I) suy r a x > 0, y > 3xV = y' + '3xV = y ' + (I)« 3xy(x - y) = y^ - x^ ^ y ' x = x^ + x V = y^ + x-y = 3xV = y ' + C5> (x - y)(3xy + x + y) = 3x'-x'-2 = (A) 3x'y = y ' + 3xy (A)c^ + X (B) +y=0 x = y = y =X TCr dieu k i e n x > 0, y > Suy r a : 3xy + x + y > 0, do he (B) v6 n g h i e m V a y he (I) c6 n g h i e m n h a t x = y = 52 a TS Vij Thg' HUu - Nguyen Vinh CSn X y - +- = a y X 53 G i a i v a b i e n l u a n theo t h a m so a h e phtfcfng t r i n h (I) x +y = (Trich CHI de thi tuyen DHQG Hd Nqi khoi B - 1997) DAN D K : x y ^ 0, t a c6: < +y X < = axy x +y =8 (x + y ) ' = (a + 2)xy x +y = fS = - P > t a c6: (I) c^l (a + ) P = 64 Dat S = X + y , P = x y , d i e u k i e n • sinh N e u a = - he v6 n g h i e m = • N e u a ^ - , t a c6: « a+2 ^—^ > a+2 a < - hoac a > K h i X , y l a h a i n g h i e m c u a p h i i O n g t r i n h : z 64 - 8z + X = a +2 4+4 tufc l a y =4 - = zi,2 = ± a-2 x =4 - a +2 hoSc a-2 y =4+4 'a + a-2 a +2 a-2 a +2 a-2 a +2 + Vdi - < a < he v6 nghiem 2x 54 G i a i h e p h i / o n g t r i n h : + l y (I) (1) ^ X 2y + - = X y (Trich CHI de thi tuyen sinh (2) vdo DHQG Hd Noi khoi B - 1999) DAN C o n g v e vdfi v e , r o i trCr v e v d i v e t a dUOc: ^ x +y 3(x + y ) 2(x + y ) + = — xy xy o/ Y 2(x - y ) + _ xy II- ^(V - xy f (x + y ) V J < Y^ (X + -y) V ^1 = J xy ^ = xyj T i f r u t r a diigc h e p h i i o n g t r i n h sau: HQC va 6n luyen theo CTBT m6n Toan THPT 53 x +y =0 x - y =0 X +y =0 (loai) xy 1- — = xy v6 n g h i e m 1- xy = x - y =0 xy x = ^/2; y = - V X = - V ; y = V2 x =l , y - x =-l, y = - l ' 55 G i a i he phi/dng t r i n h : a) ( I ) (2) x ' + x y + y ' = 17 (1) x ' + x y + y^ = 1 b) ( I I ) x^-y^=7 (1) x y ( x - y ) = (2) CHI D A N a) V e t r a i c u a ( ) v a ( ) h e ( I ) l a cac d a thufc d a n g c a p b a c d o i v d i x , y R o r a n g vdfi x = h o a c y = h e ( I ) v n g h i e m G i a sijf X x'(3 + 2k + k ' ) = l l 0, d a t y = k x t a dixac: (1') x ' ( l + k + k ' ) = 17 ( ' ) C h i a v e vdfi v e (1") v a (2') t h i difotc k' + 2k+ 11 4k2 - 3k - 10 = ^ k = - - h o a c k = 3k' + 2k + 17 5 T h a y k = - — t a dtfoc y = — x , p h i f o n g t r i n h ( ) t r d t h a n h • 3x2 _^ x — x 16 -X = 11 X = ±4^3 +5^/3 T h a y k = t a se t i m dtTcfc x = ± , y = ± (4V3 N h i r v a y h e ( I ) c6 n g h i e m l a : -5V3 -4V3 5V3 ' , ( ; 2), (-i;-2) b) N h a n x e t rSng x = k h o n g n g h i e m diing he ( I I ) V d i x ;t 0, d a t y = k x t h i h e ( I I ) t r d t h a n h x ' ( l - t = ' ) = (1') (ID _f3 n ^ = - =:> t ' - t + = t(l - t) x ' t ( l - t ) = (2') => t = h o a c t = L a m t u o n g tii cau a) t a dtroc h e ( I I ) c6 h a i n g h i e m l a ( - ; - ) v a ( ; 1) C h o h e phucfng t r i n h vdi t h a m so m (I) (2) x^ + y ' + x y = (1) x ' - y', + m ( x + y ) = X - y +m V(Ji g i a t r i n a o c u a m t h i h e ( I ) c6 d u n g n g h i e m 54 E J TS Vu The Huu - Nguyen Vinh C$n CHI DAN (Do (x - y)(x + y) + m(x + y) = x - y + m 2 o x ' +[xy+' + y xy - =-30 o(A) hoSc (B) r ( x - y + m)(x + y - 1) = '^^ x^ + y^ + xy = X- y +m= x^ + y^ + xy = I x ' + y ' + xy = He (A) CO hai nghiem (2; -1) va (-1; 2) De he (I) c6 dung nghiem thi he (B) phai c6 nghiem trung vdi cac nghiem cua he (A) hoSc v6 nghiem Ro rang vdi moi m he (B) khong the c6 nghiem trung vdi cac nghiem cua he (A) Vay can t i m gia t r i cua m de he (B) v6 nghiem (B)o = [3x' + 3ax + a ' - = 0(2') PhucJng trinh (2') v6 nghiem neu A = 9a^ - 12(a^ - 3) < o a < -2V3 hoac a > 2>/3 MOT SO HE PHl/dNG TRINH DAI SO KHAC 57 Giai he phirong t r i n h : (I) CHI DAN (Do x^ + y + x^y + xy^ + xy = — (1) x ' + y ' + x y ( l + 2x) = - (2) (Trich de thi tuyin sink DH kiwi A - 2008) x^ + y + xy(x^ + y) + xy = —(x^ +y)^ + xy = - - Dat x^ + y = u, xy = V ta diroc he u + uv + v = — u'^ + V = — fu = u^ - u - uv = i u + V= — u U^ + U + u + V= 1- =0 + V= Hpc (A) u u' + u + - = u^ + V= (B) — 6n luy§n theo CTDT mSn Toan THPT El 55 (A)o + y =0 xy = - X (B) J5 \ 25 Vl6 +y = xy = - - He ( I ) CO h a i n g h i e m 58 G i a i he phirong t r i n h : ( I ) o X = 1, y = — y _J25 16 va (2) x^ + 2xy = 6x + (1) x" + x V + xV^ = 2x + (Trich de thi tuyen sinh DH khoi B - 2008) CHI DAN \2 3x + (x^ + xy)^ = 2x + (Do xy = 3x + - - x ' = 2x + (1') xy = 3x + - (2') x =0 (1') - (x^ + 12x^ + 48x + 64) = o x(x + 4)^ = X = -4 V i x = k h o n g n g h i e m dung (2') n e n k h o n g la n g h i e m cua he ( I ) 17 V d i X = - t a dirge y = — V a y he ( I ) c6 n g h i e m n h a t 59 G i a i he phtfong t r i n h : xy + X + = 7y a) ( I ) xY + xy + = 13y2 (x + y)^-4 + l -4; ' 17 j (1) (2) (Trich de thi tuyen sinh DH khoi B (1) x(x + y + 1) - = b) ( I I ) =0 2009) (2) (Trich de thi tuyen sinh DH khoi D - 2009) CHI DAN a) V d i y = k h o n g n g h i e m dung he ( I ) , do chia cac phtfong t r i n h cua y y X X + — + — = he oho y ?t t h i dugc X x ^ + -— h+ ^- = 13 y 56 y Ea 15 Vu Thg' H\ju - Nguyin Vinh CSn Dat a n phu x + — = u, — = v t a diroc: • y y u +V=7 u + V =7 u ^ - v = 13 X + + u - 20 = — = X H — 4, V = u = -5, v - -5 = y Giai cac he u = t h i dtrcfc x = l , y = — v a x = 3, y = [y l a cac n g h i e m cua he ( I ) , b) Dieu k i e n xac d i n h x ;t 0, he ( I I ) c6 the v i e t t h a n h Dat u = x(x + y ) t a ducJc he u + u + X = u^ + x^ = X ^ o X = (u + x)^ - 2xu = X ^ x(x + y) + X x^(x + y)^ + = X ' = u +x=3 ux - u va X l a cac n g h i e m cua phiicfng t r i n h : - 3z + = x =2 x =l hoac u = x(x + y) = u = x(x + y) = o X = 1, y = hoSc x = 2, y = — 60 Giai he phirang t r i n h : ( I ) x V - x y ' + y ' - 2(x + y) = (1) xy(x^ + y ' ) + = (x + y)^ (2) (Trich de thi tuyen sink DH khoi A - 2011) CHI DAN TCr phi/0ng t r i n h (2) cua he (I) t a c6: (2)c^ xyix^ + y^) + = x^ + y^ + 2xy o (x^ + y^ - 2)(xy - 1) = TCr he (I) tiicfng dirong v d i hcfp cua h a i he phiTcfng t r i n h x V - x y ' + y ' - ( x + y) = (A) (I)c^ i xy =1 x V - x y ' + y ' - 2(x + y) = (B) (1) (1) y^-2 + Thay x = - vao (1) t h i diicfc 3y' - 6y + - = ^ y^ = y • y TCr 3uy he (A) c6 cac n g h i e m ( ; 1), ( - ; - ) + Thay = x^ + y^ vao (1) ta diTcfcSxV - 4xy^ + 3y^ - (x^ + y^)(x + y) = 2y^ - 5xy2 + x V - x^ = (*) H Q C vk 6n luy$n theo CTDT m6n Toan THPT 57 - V d i X = 0, y = la n g h i e m ciia {*) nhiTng k h o n g l a n g h i e m ciia he (B) V(5i X ;^ 0, d a t y = k x t h i d\iac x^(2k^ - 5k^ + k - 1) = => k = — hoSc k = V d i k = t a t i m difcfc cac n g h i e m cua he (B) t r u n g v d i cac n g h i e m cua he (A) XTA- - 1 ^ ^ 2V10 ^ Vio Vcfi k = - t a dtfoc X = ± —, y = ± V a y t a p 2n g h i e m •cua he ( I ) l a : - ^ a;lU-l;-lj2VlO Viol f 2VIO yflO x = ^ - x ' - x + 22 = y + y ' - y 61 G i a i h e phiTcfng t r i n h : (I) 2 x +y -x+y=— (1) (2) (Trich de thi tuyen sinh DH khoi A CHI DAN X e t phuong t r i n h (1) cua he t a c6: ( D o (x - If - 12(x - 1) = (y + if - 12(y + 1) (x - 1)^ - 12(x - 1) = (y + (DoCD { \ X 2012) - 12(y + 1) A2 y ^ - + — = (2-) TCf (2') suy r a : - < x - - < va - < y + - < 2 1 hay — < x - l < — va — < y + l < — •^ 2 ^ X e t h a m so fTt) = t^ - 12t t r e n doan f (t) = 3t^ - 12 < V t 2' 3 ta thay [-2; 2] e Vay h a m so f i t ) = t^ - 12t n g h i c h b i e n t r e n cua he (!') t a c6: ( x - If - ( x - l ) = (y + ) ' - 12{y + l ) o x x = y + (*) The (*) vao (2') cua he ( D t a difoc \ 2' 3 V i vay tLf (1') = y + A2 y +— + ^ ^"2 = y = -— ho&c y = - — • 3] (1 w TCr suy r a cac n g h i e m cua he ( I ) l a : 58 l ^ (2, 2j 2y ' I ' TS Vu Thg Huu - Nguyin Vinh C$n 62 Giai cac he phiTdng t r i n h : (x + y) + a) xy; = b) = 49 (x^ + y^) + - „ X xy(x + l)(y + 1) = 12 y j x + xy + y ^ - l d) \xy(x + y) = -2 CHI x + y + x^ + y^ = x^ + y^ + xy = x*+yU xY = 21 DAN a) Tap nghiem \ 7-3V5^ ' 1; T + aVs 7-3V5 + ; 3V5 ; b) Tap nghiem (-3; -2), (-3; 1), (2; -2), (2; 1), (-2; -3), (1; -3), (-2; 2), (1; 2) c) Tap nghiem ( - ; 2), (2; - ) , ( - ; - ) d) Tap nghiem (1; 2), (2; 1), ( - ; - ) , (-2; - ) 63 Giai cac he phtfcfng t r i n h : X a) + xy + y = b) y + yz + z = z + zx + X CHI X = + y = 2xy + yz = 2y + zx = 2x DAN a) Tap nghiem (1; 0; 4), (-3; - ; - ) b) Tap nghiem (1; 1; 1) X + my - m = 64 Cho he phiTOng t r i n h : (I) x' + y' - X = (1) (2) a) Tim cac gia t r i cua m de he (I) c6 hai nghiem phan biet b) Goi (xi; y j , (X2; y ) la hai nghiem cua he da cho, hay chiJng minh (X2 - xi)^ + (y2 - yi)^ < Dau = xay k h i nao CHI DAN a) Phifofng t r i n h (2) cua he bieu dien diicjng trbn tam —; ban kinh V2 / - phtrong t r i n h (1) bieu dien diTdng thang DS: < m < ^ b) m = - H Q C va 6n luygn theo CTDT mfln Toan THPT 59 CHUYENilll.PHMlRilllfilJGIIIC KIEN THlfC C a c gia tri Ivfofng giac ciia goc (cung) Ixfofng giac T r e n diidng t r o n lufcfng giac l a y d i e m M D a t a = (OA, O M ) So goc Itfong giac (OA, O M ) bang so cung A M K h i cosa = OP, s i n a = OQ tana = sma cot a = cos a cos a sma Cac gia t r i cosa, sina, t a n a , cota l a cac gia t r i Itfong giac cua goc a hay cung a Ta c6: sin(a + k27r) - sina, k e Z A(1;0) cos(a + k.2n) = cosa t a n ( a + krc) = t a n a cot(a + k n ) = cota C a c gia tri li^cfng giac c u a mpt so cung dac bi$t Goc a (30°) 7t n (45°) 71 2 V2 V3 2 V3 71 (60°) 73 sina cosa tana cota 1 (90°) 271 (120°) 371 571 72 V3 (150°) (135°) -73 KXD 73 2 2 V3 V3 3 2 73 72 -1 -1 C a c gia tri lu'oTng giac ciia cac goc c6 l i e n quan dac a) Goc do'i 60 S 73 -73 bi^t : •> cot(-a) = - c o t a tan(-a) = -tana cos(-a) - cosa sin(-a) = - s i n a TS Vu Thg' Hi;u - Nguygn Vinh Can b) Gdc bit sin(7r - a) = s i n a tan(7i - a) = - t a n a cos(7t - a ) = - c o s a cot(7t - a) = - c o t a c) Gdc han n sin(7i + a) = - s i n a tanCn + a) = t a n a d) Gdc phu cos(7i + a) = - c o s a cot(7t + a ) = cota sin — - a = cos a cos — a = s i n a ; n - a = cot a tan 71 cot a = tana 71 e) Gdc hon — sin ' 71 ^ - cosa cos ' 71 > " " n = - cota cot tan a + — C a c c o n g thufc Ixfofng g i a c C o n g thufc lifofng g i a c cof b a n a) sin^a + cos^a = 71 + T: 2j - - tan a Va b) tana.cota = a c) + tan^a = a ;t — + k i ^ cos^ a = -sma ?t k— 2 (a ;t k n , k e Z) sm a C o n g thuTc c p n g cos(a + b) = cosacosb - sinasinb cos(a - b) = cosacosb + sinasinb sin(a + b) = sinacosb + cosasinb sin(a - b) = sinacosb - cosasinb tan a + tan b tan a - tan b tan(a + b) = tan(a - b) = - t a n a t a n b + t a n a t a n b cot a cot b - cot a cot b + cot(a + b) = cot(a - b) = cot a - c o t b cot a + cot b d) + cot^a = C o n g thufc n h a n d o i cos2a = cos^a - sin^a = 2cos^a - = - 2sin^a sin2a = 2sinacosa tan a tan2a = - tan^ a cot2a = cot' a - cot a HQC fin luy§n theo CTDT mfin Toan THPT EH 61

Ngày đăng: 03/04/2017, 18:34

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w