Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 418 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
418
Dung lượng
18,81 MB
Nội dung
Topics in Applied Physics Volume 27 Topics in Applied Physics Founded by Helmut K V Lotsch Dye Lasers 2nd Edition Editor: F P SchPfer 23 Optical Editor: Data Processing D Casasent Laser Spectroscopy of Atoms and Molecules Editor: H Walther 24 Acoustic Editor: Surface Waves A A Oliner Numerical and Asymptotic in Electromagnetics Editor: 25 Laser Beam Propagation Editor: I W Strohbehn interactions on Metal Editor: R Gomer Techniques R Mittra Surfaces Picture Processing and Digital Filtering 2nd Edition Editor: T S Huang Optics Editor: T Tamir Light Scattering in Solids Editor: M Cardona Laser Speckle and Related Editor: J C Dainty 10 Transient Electromagnetic Editor: L B Felsen I Digital Editor: in the Atmosphere 26 Photoemission in Solids I General Principles Editors: M Cardona and L Ley MSssbauer Spectroscopy Editor: U Gonser Integrated Applications Phenomena Fields in Solids II Case Studies 27 Photoemission Editors: L Ley and M Cardona 28 Hydrogen Editors: in Metals G Al&Id Basic Properties and J Viilkl 29 Hydrogen in Metals Application-Oriented Editors: G Alefeld 30 Excimer Lasers II Properties and J VBlkl Editor: Ch K Rhodes 31 Solar Energy Conversion Physics Aspects Editor: Solid-State B Seraphin 32 Image Reconstruction from Projections Implementation and Applications Editor: G T Herman Picture Analysis A Rosenfeld I2 Turbulence 2nd Edition Editor: P Bradshaw 33 Electrets 13 High-Resolution Laser Editor: K Shimoda Spectroscopy Editor: G M Sessler 34 Nonlinear Methods Editor: S Haykin of Spectral 14 Laser Monitoring of the Atmosphere Editor: E D Hinkley 35 Uranium Editor: 15 Radiatonless Processes in Molecules and Condensed Phases Editor: F K Fong 36 Amorphous Semiconductors Editor: M H Brodsky I6 Nonlinear Infrared Generation Editor: Y.-R Shen 37 Thermally Stimulated Editor: P Briunlich 17 Electroluminescence Editor: I8 Ultrashort Light Pulses Picosecond Techniques Editor: S L Shapiro 19 Optical Editor: and Infrared R J Keyes 22 X-Ray Editor Electrolytes and Applications Detectors 20 Holographic Recording Editor: H M Smith 21 Solid J I Pankove Materials Editor: Optics Applications : H.-J Queisser S Geller to Solids Analysis Enrichment S Villani Relaxation 38 Charge-Coupled Devices Editor: D F Barbc in Solids Photoemission in Solids II Case Studies Edited by L Ley and M Cardona With Contributions by Y Baer M Campagna M Cardona W D Grobman H H/Schst S Htifner E E Koch C Kunz L Ley R.A Pollak P Steiner G K Wertheim With 214 Figures Springer-Verlag Berlin Heidelberg NewYork 1979 Dr Lothar Ley Professor Dr Manuel Cardona M a x - P l a n c k - l n s t i t u t fiir Festk~Srperforschung, H e i s e n b e r g s t r a / e D - 0 S t u t t g a r t 80, Fed Rep of G c r m a n y ISBN 3-540-09202-1 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-09202-1 Springer-Verlag New York Heidelberg Berlin Library of Congress Cataloging in Publication Data Main entry under title: Photoemission in solids (Topics in applied physics ; v 26-27) lncludes bibliographies and index Contents : General principles Case studies Photoelectron spectroscopy Solids-Spectra Photoemission ] Ley, Lothar, 1943 , H Cardona, Manuel, 1934 QC454.P48P49 530.4'1 78-2503 This work is subject to copyright All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, reuse of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks Under § 54 of the German Copyright Law, where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher O by Springer-Verlag Berlin Heidelberg •979 Printed in Germany The use of registered names, trademarks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relewmt protective laws and regulations and therefore free for general use Monophoto typesetting, offset printing and bookbinding: Briihlsche UniversitS.tsdruckerei, Lahn-GieBen 2153/3130-543210 Preface This book constitutes the continuation of Volume 26 of the series Topics in Applied Physics (Photoemission in Solids I) In the first volume we discussed the general principles underlying the phenomena of photoemission and photoelectron spectroscopy, including a brief review of the experimental techniques Such topics as the general formal theory of photoemission, the three-step model, the theory of photoionization cross sections, one-electron excitations and phenomena beyond the one-electron approximation were treated by some of the leading specialists in the field The emphasis of the present volume lies on the discussion of photoelectron spectra of specific families of materials and the information that can be obtained from such spectra about their electronic structure The largest contribution, Chap 2, refers to semiconductors It contains extensive background discussion on the band structures of the most common types of semiconductors The vast amount of knowledge accummulated for these materials, due in part to their practical applications, makes them ideal to exemplify the methodology and the scope of photoelectron spectroscopy Successive chapters cover transition metals and their compounds, rare earths, organic molecular crystals of the type which show characteristic solid-state effects and, last but not least, simple metals In addition, Chap discusses photoemission experiments for which the use of synchrotron radiation is of the essence For convenience of the users we have reproduced in this volume the periodic table with work functions and the table of binding energies which already appeared in TAP 26 The range of information obtained with photoelectron spectroscopy is so wide that this book should be of interest to both students and practitioners of solid-state physics interested in the electronic structure of solids While it would be impossible to compile an exhaustive materials bibliography within the space limitations of the volume (such compilation would anyway make the volume rather dull), we believe enough references are included to help the research worker muddle his way through the literature of specific types of solids We have found the task of editing these volumes an extremely rewarding experience The exchange of ideas and reformation with the various authors has been rather intensive We thank them all once more for their cooperation and patience We would also like to thank again the colleagues of the institutions to whom we owe our expertise in the field, the Max-Planck-Institut ffir Festk6rperforschung, the Deutsches Elektronen-Synchrotron (DESY), and the University of California, Berkeley We should also thank the staffs of various vI Preface companies involved in the manufacturing of photoelectron spectrometers, especially those whose equipment we use Without them the enormous development which has taken place in the field within the past ten years would not have been possible Stuttgart, December 1978 Lothar Ley Manuel Cardona Contents Introduction By L Ley a n d M C a r d o n a 1.1 Survey of Previous V o l u m e 1.2 C o n t e n t s o f Present V o l u m e References Photoemission in Semiconductors By L Ley, M , C a r d o n a , a n d R.A Polhlk (With 97 Figures) 2,1 B a c k g r o u n d 2.1.1 H i s t o r i c a l S u r v e y I1 13 2.2 Band S t r u c t u r e o f S e m i c o n d u c t o r s 2.2.1 T e t r a h e d r a l S e m i c o n d u c t o r s 2.2.2 S e m i c o n d u c t o r s with an A v e r a g e of Five Valence Electrons per A t o m 2.2.3 Selenium, T e l l u r i u m , and the VzVI C o m p o u n d s 2.2.4 T r a n s i t i o n M e t a l D i c h a l c o g e n i d e s 11 2.3 M e t h o d s C o n a p l e n m n t a r y to P h o t o e l e c t r o n S p e c t r o s c o p y 2.3.1 O p t i c a l A b s o r p t i o n , Reflection, a n d M o d u l a t i o n S p e c t r o s copy 2.3.2 C h a r a c t e r i s t i c Electron Energy Losses 2.3.3 X - R a y E m i s s i o n S p e c t r o s c o p y 2.4 V o l u m e P h o t o e m i s s i o n ' A n g u l a r I n t e g r a t e d E D C ' s from Valence Bands 2.4.1 B a n d - S t r u c t u r e R e g i m e : G e r m a n i u m 2.4.2 X P S R e g i m e : T e t r a h e d r a l S e m i c o n d u c t o r s 2.4.3 X P S R e g i m e : IV-V1 C o m p o u n d s 2.4.4 Partial D e n s i t y of Valence States: C o p p e r a n d Silver H a l i d e s ; C h a l c o p y r i t e s ' T r a n s i t i o n M e t a l , R a r e E a r t h , and Actinide Compounds 2.4.5 L a y e r S t r u c t u r e s : T r a n s i t i o n M e t a l D i c h a l c o g e n i d e s 2.4.6 L a y e r S t r u c t u r e s : SnS2, SnSe2, Pbl2, G a S , G a S e 2.5 P h o t o e m i s s i o n a n d D e n s i t y of C o n d u c t i o n States 2.5.1 S e c o n d a r y Electron Tails 2.5.2 Partial Yield S p e c t r o s c o p y 2.6 A n g u l a r Resolved P h o t o e m i s s i o n from the Lead Salts 15 15 28 30 32 40 40 43 45 47 51 55 62 67 72 75 78 79 79 80 viii Contents 2.7 A m o r p h o u s S e m i c o n d u c t o r s 2.7.1 T e t r a h e d r a l l y C o o r d i n a t e d A m o r p h o u s S e r n i c o n d u c t o r s a) A m o r p h o u s Si a n d G e b) A m o r p h o u s I I I - V C o m p o u n d s 2.7.2 A m o r p h o u s S e m i c o n d u c t o r s with an Average of Five Valence Electrons per A t o m 2.7.3 A m o r p h o u s G r o u p VI S e m i c o n d u c t o r s 2.7.4 G a p States in A m o r p h o u s S e m i c o n d u c t o r s 2.8 lonicity 2.8.1 An lonicity Scale Based o n Valence Band Spectra 2.8.2 Binding Energy Shift a n d Charge Transfer 2.9 P h o t o e m i s s i o n Spectroscopy of S e m i c o n d u c t o r Surfaces 2.9.1 S e m i c o n d u c t o r Surface States 2.9.2 Silicon Surface States a) P h o t o e m i s s i o n from Si (111 ) x I a n d x Surfaces b) E l e c t r o n i c S t r u c t u r e T h e o r y o f S i ( l l)Surfaces 2.9.3 Surface States of G r o u p I I I - V S e m i c o n d u c t o r s 2.9.4 Surface C h e m i s t r y of S e m i c o n d u c t o , ' s - - S i ( l l l ) : H a n d Si(ll 1):Sill 2.9.5 Interface States: M e t a l - S e m i c o n d u c t o r Electrical Barriers References Unfilled Inner Shells: Transition Metals and Compounds By S Hi.ifner (With 25 Figures) 3.1 Overview 3.2 T r a n s i t i o n Metal C o m p o u n d s 3.2.1 The H u b b a r d Model 3.2.2 Final State Effects in P h o t o e m i s s i o n Spectra a) Salellites b) Multiplet and C r y s t a l - F i e l d Splitting 3.2.3 T r a n s i t i o n Metal Oxides a) M n O , C o O , N i O : Mort I n s u l a t o r s b) VO2: A N o n m e t a l - M e t a l T r a n s i t i o n c) ReO3: A Typical Metal 3.2.4 Miscellaneous C o m p o u n d s 3.2.5 The C o r r e l a t i o n Energy U 3.3 d-Band Metals: I n t r o d u c t i o n 3.3.1 The N o b l e M e t a l s : C u , Ag, Au 3.3.2 The F e r r o m a g n e t s : Fe, Co, Ni 3.3.3 N o n m a g n e t i c d - B a n d Metals 3.4 Alloys 3.4.1 Dilute Alloys: The F r i e d e l - A n d e r s o n M e d e l 3.4.2 C o n c e n t r a t e d A l l o y s : T h e C o h e r e n t Potential A p p r o x i m a t i o n 3.5 Intermetallic C o m p o u n d s 3.6 S u m m a r y , O u t l o o k References 85 87 87 100 104 111 114 118 121 126 130 131 133 135 141 148 151 154 158 173 173 176 176 t77 177 179 183 183 188 189 191 191 192 194 200 205 206 206 210 212 212 213 Contents Unfilled Inner Shells: Rare Earths and Their Compounds By M Campagna, G K.Wertheim, and Y Baer (With 35 Figures) 4.1 B a c k g r o u n d 4.1.1 Where Are t h e f Levels Located? 4.1.2 Multiplet Intensities Versus T o t a l Photoelectric Cross Sections at 1.5 keV 4.1.3 R e n o r m a l i z e d A t o m Scheme and T h e r m o d y n a m i c s 4,1.4 Multiplei and Satellite Structure in P h o t o e m i s s i o n from Core Levels O t h e r than 4/" 4.2 T e c h n i q u e s 4.2.1 T h e Need of High R e s o l u t i o n ira R a r e - E a r t h Studies 4.2.2 Sample P r e p a r a t i o n a) Pure Metals b) Chalcogenides, Borides, a n d Alloys 4.3 Results 4.3.1 Metals a) Identification of the O u t e r m o s t Levels b) The Light Rare Earths c) T h e H e a v y Rare Earths d) C e r i u m e) The 4,1 P r o m o t i o n Energy 4.3.2 C o m p o u n d s a n d Alloys: Stable 41" C o n f i g u r a t i o n s a) R a r e - E a r t h Halides b) C h a l c o g e n i d e s and Pnictides c) P h o n o n B r o a d e n i n g in E u O d) I n t e r a t o m i c Auger T r a n s i t i o n s ira R a r e - E a r t h Borides e) R a r e - E a r t h l n t e r m e t a l l i c s 13 4s a n d 5s M u l t i p l e t Splittings g) Spectra of 3d and 4d Electrons of R a r e - E a r t h Solids h) 4.1 and 4d B i n d i n g Energy : A t o m Versus Solid 4.3.3 I n t e r m e d i a t e Valence (IV) C o m p o u n d s a) T h e I n t r a - A t o m i c C o u l o m b C o r r e l a t i o n Energy U~rr 4.4 C o n c l u s i o n s and O u t l o o k References IX 217 217 217 218 221 226 227 227 228 228 229 229 229 229 230 233 235 237 237 237 238 243 245 249 250 251 253 254 257 257 258 Photoemission from Organic Molecular Crystals By W D G r o b m a n a n d E.E Koch (With 14 Figures) 5.1 Some E x p e r i m e n l a l Aspects of P h o t o e m i s s i o n from O r g a n i c Molecuhtr Crystals 5.1.1 C h a r g i n g Effects 5.1.2 Secondary Electron B a c k g r o u n d 5.1.3 Electron A t t e n u a t i o n Length (Escape Depth)2~(E) 5.1.4 V a c u u m R e q u i r e m e n t s 5.1.5 Effects of the T r a n s m i s s i o n F u n c t i o n of the Electron Energy Analyzer 5.2 Band F o r m a t i o n in Linear Alkanes 261 262 262 264 264 265 265 266 X Contents 5.3 A r o m a t i c H y d r o c a r b o n s 5.3.1 Acene r g a n o m e t a l l i c Pheny[ C o r n p o u n d s 5.3.3 A n t h r a c e n e 5.4 P h o t o e m i s s i o n I n d u c e d by Exciton A n n i h i l a t i o n 5.5 P h o t o e m i s s i o n from Biological Materials 5.5.1 P h t h a l o c y a n i n e s 5.5.2 Nucleic Acid Bases 5.6 Valence Orbital Spectroscopy of M o l e c u l a r O r g a n i c C o n d u c t o r s 5.6.1 Valence Bands of TTF-TCNQ and Related C o m p o u n d s 5.6.2 Valence Bands of(SN)., 5.6.3 T h e Absence of a F e r m i Edge m P h o t o e m i s s i o n Spectra of O r g a n i c "'Metals" 5.7 Core O r b i t a l S p e c t r o s c o p y of O r g a n i c M o l e c u l a r Crystals 5.7.1 Solid-State Effects on Core Levels in Charge Transfer Salts 5.7.2 Core Level Spectroscopy a n d Charge Transfer in T T F - T C N Q 5.7.3 C o n c l u s i o n s References Synchrotron Radiation: Overview By C K u n z (With 33 Figures) 6.1 Overview 6.2 Properties of S y n c h r o t r o n R a d i a t i o n 6.2.1 Basic E q u a t i o n s 6.2.2 C o m p a r i s o n with O t h e r Sources 6.2.3 E v o l u t i o n of S y n c h r o t r o n Sources 6.3 A r r a n g e m e n t of E x p e r i m e n t s 6.3.1 L a y o u t of L a b o r a t o r i e s 6.3.2 M o n o c h r o m a t o r s 6.4 Spectroscopic T e c h n i q ues 6.4.1 Spectroscopy of Directly Excited Electrons 6.4.2 Energy D i s t r i b u t i o n Curves (EDC) 6.4.3 C o n s t a n t F i n a l - S t a t e Spectroscopy (CFS) 6.4.4 C o n s t a n t Initial-State Spectroscopy (CIS) 6.4.5 A n g u l a r Resolved P h o t o e m i s s i o n (ARR ARPES) 6.4.6 S e c o n d a r y Processes 6.4.7 P h o t o e l e c t r o n Yield Spectroscopy (PEYS) 6.4.8 Yield Spectroscopy at O b l i q u e Incidence 6.5 Applications of Yield S p e c t r o s c o p y 6.5.1 A n i s o t r o p y in the A b s o r p t i o n Coefficient of Se 6.5.2 Investigation of Alloys 6.5.3 Investigation of Liquid Metals - 6.6 Experiments Investigating O c c u p i e d a n d E m p t y States 6.6.1 Valence Bands in R a r e - G a s Solids 6.6.2 C o n d u c t i o n Band State from A n g u l a r D e p e n d e n t Photoemission 267 268 270 272 275 278 278 280 280 280 285 287 288 288 292 293 294 299 300 301 301 305 306 310 310 311 313 313 314 316 317 319 319 322 323 326 326 328 329 330 330 333 Additional References with Titles 387 Chapter D.T Clark: "ESCA Applied to Organic and Polymeric Systems", in: Handbook q! X-ray aml Ultraviolet Photoelectron Spectroscopy, ed by D Briggs (Heyden, London I977) Chap 6, p 211 J A Connor: "X PS Studies of Inorganic and OrganometalIic Compotmds', in : Handbook q/'X-rav and Ultraviolet Photoetectrm7 Spectroscopy, ed by D Briggs (14eyden, London 1977) Chap 5, p 183 D.T Clark: Some experimental and theoretical aspects of structure, bonding and reactivity of organic and polymeric systems as revealed by ESCA Phys Scr 16, 307 (1977) S Hashimoto, S Hino, K Seki, 14 Inokuchi: Anisotropic photoemission from oriented polyethylene Cllem Phys Lett 40, 279 (1976) K Seki, S Hashimoto, N Sato, Y 14arada, K lshii, H lnokuchi, J Kanbe: Vacuum-ultraviolet photoelectron spectroscopy of hexatriacontane (n-C3,HT,,) polycrystaI: a model compound of polyethylene J Chem Phys 66, 3644 (1977) J.J Pireaux, J Riga, R Caudano, J.J Verbist, Delhalte, S Delhalle, J.M Andr6, Y Gobillon: Polymer primary structures studied by ESCA and E14CO methods Phys Scr 16, 329 (1977) M Fujihira, 14 Inokuchi: Photoemission from polyethylene Chem Phys Lett 17, 554 (1972) D Betteridge, D.J Joyner, F Gruming, N.R Shoko, M.E.A Cudby, H.A Willis, T.E Attwood, L Henriksen: The analysis of polymer degradation products by UV-photoelectron spectroscopy Phys Scr 16, 339 (1977) J Riga, J.J Pireaux, J.J Verbist: An ESCA study of the electronic structure of solid benzene Valence levels, core level, and shake-up satellites Mol Phys 34, 131 (1977) J Riga, J.J Pireaux, R Caudano, J.J Verbist: Y comparative ESCA study of the electronic structure of solid acenes: benzene, naphthalene, anthracene, and tetracene Phys Scr 16, 346 (1977) F.E Fischer, S.R Kelemen, I4 P Bonzel: Adsorption of acetylene and benzene on the Pt(100) surface Surf Sci 64, 157 (1977) J.E Demuth: Initial-state shift of the carbon s levels of chemisorbed hydrocarbons on nickel Phys Rev Lett 40, 409 (1978) WR Salaneck: lntermolecu[ar relaxation energies in anthracene Phys Rev Lett 40, 60 (1978) W.R Salaneck, H.R Thomas: Energy-gain satellite structure in the C (1 s) X-ray photoemission spectra of organic macromolecules Solid State Commun 27, 685 (1978) S Hino, K Seki, H Inokuchi: Photoelectron spectra of p-Terphenyl in gaseous and solid slate Chem Phys Lett 36, 335 (1975) K Seki, 14 lnokuchi, N Sato, K Ishii: "'VUV-Photoelectron Spectroscopy of Hexatriacontane (n-C36Hv,,) in Solid and Gaseous Phases", in: 8th Mol Cryst Syrup Santa Barbara Calif., May 29-June 2, 1977 L Nemec, H.J Gaers, L Chia, P Delahay: Photoelectron spectroscopy of liquids up to 21.2 eV J Chem Phys 66, 4450 (1977) J Knecht, 14 B~issler: An ESCA-study of solid 2,4-hexadiyne-l,6-diol-bis-(toluenesulfonate) and its constituents before and after polymerization Chem Phys 33, 179 (1978) J.J Ritsko, P Nielsen, J S Miller: Photoemission from ferrocene, decamethylferrocene, and decamethylferrocene bis-(7,7,8,8-tetracyano-p-quinodimethane) J Chem Phys 67, 687 (1977) N.S Hush, A.S Cheung: Study of valence level splitting in a porphin type rc-cation dimer by He I photoelectron spectroscopy Chem Phys Lett 47, (1977) S Muralidharan, R.G Hayes: XPS studies of the valence electron levels of meta/lophorphyrins Chem Phys Lett 57, 630 (1978) H H6chst, A Goldmann, S Htifner, 14 Malter: X-ray photoelectron valence band studies on phthalocyanine compounds Phys Status Solidi (b/76, 559 (1976) H Malter: On the electronic molecular structure of the organic semiconductor copper phthalocyanine Phys Status Solidi (b) 74, 627 (1976) F.L Battye, A Goldmann, L Kasper: Ultraviolet photoelectron valence band studies on phthalocyanine compounds Phys Status Solidi (b) 80, 425 (1977) 388 Additional References with Titles M lwan, W Eberhardt, G Kalkoffen, E.E Koch, C Kunz: Photoemission studies on phthalocyanine compounds: cross section dependence of outer core levels Chem Phys Lett., in press (DESY preprint SR-78/04) J Berkowitz: Photoelectron spectroscopy of phthalocyanine vapors J Chem Phys., in press (preprint Nov 1978) M Iwan, E.E Koch: 3p-core threshold effects in photoemission from quasiatomic Ni in nickel-phthalocyanine (preprint Jan 1979) R.J Dam, C.A Burke, O.H Griffith: Photoelectron quantum yields of the amino acids Biophys J 14, 467 (1974) R.J Dam, K.F Kongslie, O.H Griffith: Photoelectron quantum yields of heroin, hemoglobin, and apohemoglobin Biophys J 14, 933 (1974) C.A Burke, G.B Birrelli, G.H Lesch, O.H Griffith: Depth resolution in photoelectron microscopy of organic surfaces The photoelectric effect of phthalocyanine thin films Photochem Photobiol 19, 29 (1974) R.J Dam, K.F Kongslie, O.H Griffith: Photoelectron quantum yields and photoelectron microscopy of chlorophyll and chlorophyllin Photochem Photobiol 22, 265 (1975) R.J Dam, K.K Nadakavukaren, O.H Griffith: Photoelectron microscopy of cell surfaces J Microsc 3, 211 (1977) D Bloor, G.C Stevens, P.J Page, P.M Williams: Photoelectron spectra of single crystal diacetylene polymers Chem Phys Lett 33, 61 (1975) G.C Stevens, D Bloor, P.M Williams: Photoelectron valence band spectra of diacetylene polymers Chem Phys 28, 399 (1978) C B Duk e, A Paton, W R Salaneck, H R Thomas, E W Plu tamer, A J Heeger, A G M acdiramid : Electronic structure of polyenes and polyacetylene Chem Phys Lett 59, 146 (1978) W.R Salaneck, J.W Lin, A.J Epstein: X-ray photoemission spectroscopy of the core levels of polymeric sulfurnitride (SN)~ Phys Rev B 13, 5574 (1976) H.J Stolz: ,,Gittcrdynamische und elektronische Eigenschaften von Polyschwefelnitrid (SN)x" Dissertation, Universit~it Stuttgart 1977 J Sharma, Z Iqbal: X-ray photoelectron spectroscopy of brominated (SN)x and $4N4 Chem Phys Lett 56, 373 (1978) K Seki, Y Kamura, J Shirotani, H Inokuchi: Absorption spectra and photoemission of amonium-TCNQ salt evaporated films Chem Phys Lett 35, 513 (1975) J.J Ritsko, A.J Epstein, W.R Salaneck, D.J Sandman: Surface electronic structure of tetrathiafulvalene-tetracyanoquinodimethane Phys Rev BIT, 1506 (1978) P Nielsen: Substrate dependent ionization and polarization energies of molecules: dibenztctr~thiafulvalene Solid State Commun 26, 835 (1978) J.A Riga, J.J Verbist, F Wudl, A Kruger: The electronic structure and conductivity of tetrathiotetracene, tetrathionaphtalene, and tetraselenotetracene studied by ESCA J Chem Phys 69, 3221 (1978) Subject Index Page numbers in italics refer to Photoemission in Solids I: General Principles, Topics in Applied Physics, Vol 26, ed by M Cardona, L Ley (Springer, Berlin, Heidelberg, New York 1978) Absorption coefficient 41 edge 14,41 index 41 Acenes 268 -, molecular orbitals 270 Alloys, concentrated 210 , dilute 206 -, minimum polarity model 206 - of transition metals 206 , virtual bound state model(Friedel-Anderson) Adenine 280 Adsorbates, alkali metals 43 -, synchrotron radiation experiments 343, 344 Ag 194~201 206 AIN 23, 120 - - 341, -, core line asymmetry 225,228 -, 4d subshell-photoionization cross sections 315 -, photoionization cross section 68 -, UPS spectra 199, 209 -, valence band spectra (XPS) 196 -, work function 19 AgBr 21,67-72 AgCI 21,67-72 -, band structure 22 -, partial density of states 71 Agl 23, 67-72 -, band structure 22 -, partial density of states 69 -, valence band spectra (XPS and UPS) 69, 70 Ag-O-Cs AgPd alloys 210 - , valence band spectra (XPS) 207 -, virtual bound state parameters 208 AgPt alloys, virtual bound state parameters 208 Ag2S 13 AI 9, 350, 149 -, core level spectrum 359, 363 -, oxidized UPS spectra 343 -, photoabsorption coefficient 149 -, plasmons 359-361,363 -, SXPS spectra (synchrotron radiation) 320 -, valence band spectrum 369 -, work function 39 -, yield spectrum and absorption spectra 323 Alkali halides 124, 74, 76, I78 metals 365, 366, - AISb 21 -, a m o r p h o u s 101 -, critical points 59 function 49 - , w o r k , XPS spectrum 57 A m o r p h o u s I II-V compounds 100-104 - group V semiconductors 104, 108 - group V] semiconductors 111-114 - semiconductors 41 Analysis, elemental concentration through core level intensities 80 Angular asymmetry parameter (cross sections) 81 Angular resolution 242 Angular resolved photoemission (ARP, ARPES) 319, 237 - - -, conduction band states 333-335 - in metals 258-262 - - - in semiconductors 249,254 259 - - - of surface states 139 - orbital information 249 , valence bands of semiconductors 80-85 Anodes 52 Anthracene 272 277 -, absorption spectrum 276 -, Frenkel exciton 272,273 -, M O calculations 273 -, photoemission spectrum 269, 273, 274, 276 -, angle resolved 274 Antifluorite structure 24 At, photoionization cross section 68 -, solid UPS spectra (synchrotron radiation) 332 Aromatic hydrocarbons 267 As, 104 -, a m o r p h o u s 105-107 390 Subject Index As, orthorhombic 107 , photoabsorption cross section 154, 155 -, Raman spectrum 105 -, valence band spectrum 106 As2S I I , , , As4S 4, valence band spectrum (X PS) 110 As2Se 86,111 AszTe 32, 86,111 A7 structure 96, 104, 107 Asymmetry, core lines 352, 353, 15 Au 194 200 202 -, 5d and 4.[ subshell photoionization cross sections 315 , angular resolved PES 251 , core lines 207 -, photoionization cross section (photoabsorption) 45, 146, 147, 153, 154 - standard 13 AuAg alloy 210 AuAI 212 AuzAI 212 AuAI 212, 75 , yield spectrum 328 AuCu alloys 210 Auger decay 78~80 processes, interatomic 245 249,80 - spectroscopy 9, 15,60 spectrum, Na 365 AuPd alloys, virtual bound state parameter 2O8 Auo.t Pto, 75 AuSn 75 AuSn4 75 Ba, photoabsorption cross section 157-159 -, photoionization t87-189 Be 350, 358 -, core level spectrum 357 - , d e n s i t y of states 366 -, plasmon 357, 360 -, valence band spectrum 366 Benzene, UPS spectrum 269, 271 Bethe lattice 94,95 Beyond the one-electron picture 165 105 -, a m o r p h o u s 105 , photoa bs orpt i on cross section 147, 148, B i , 153, 154 -, Raman spectrum 105 -, spin-orbit splitting 105 -, valence band spectrum (XPS) 106 Bil 77 Binary alloys, stability 51 Binding energies, 4.f and 4d electrons in rare earths 253, 254 , core levels 373, 60-70, 265 - in ionic solids 73 - - in semiconductors 126-129 -, 5s and 5p electrons in rare earths 236 Bi2S % 32 BizTe 32 Black phosphorus structure 29, 107 Bond orbital model (BOM) 17, 18, 93 Bonding charge 118, 130 Born-Oppenheimer a p p r o x i m a t i o n 177 Brillouin zone, fcc lattice 83 Bulk incoming wave state 112 outgoing wave components 11I, 12l, 123 Butane, UPS spectrum 267 - - Back-bound, Si 140, 142 , S i ( l l t ) : H 153 Background in photoemission spectra (inelastic tail) 193, 354 Band bending 128 133, 156, 24 - gap spectroscopy 319 structure calculations 15-36 , augmented plane waves (APW) 35, 44 - , bond, orbital model (BOM) I8, 22 - -, empirical pseudopotential method (EPM) 16, 19, 22, 25, 26, 29, 30 -, empirical tight-binding model (ETBM) t7 -, orthogonalized plane waves [OPW) 32 - ,co mp lex 90, 98 of semiconductors 15 - regime in photoemission, Ge 51 - , two-dimensional 32 39,255,256 tailing 115 -, photoemission spectrum a-Si 116 width, 3delectrons 191 - - - - - - CaB6 245 Calibration, energy 13 Catalysis, heterogeneous 153 Cd, core line asymmetry 228 Cd3As 24 Cdl 33 CdlnzS ~ 26 CdS 23 -, band structure 23 CdSe 23 CdSnAs 2, vatence band spectrum (XPS) Ce 235, 240, 252 -, 4J'orbitals 235 ,a-pha s e 237 -, ,,,-phase 237 -, ?,~e transition 235 -, halides 238 , photoionization cross sections 68, 157 , XPS spectrum 230, 237 60 Subject Index CcAs, X P S s p e c t r a 241,251,252 C E L 43 see Electron energy losses C c F 252 Ccntral field a p p r o x i m a t i o n 136 140 CeSb, X P S s p e c h - a 241.251 253 C F I79 C H 56, 179 , valence band s p c c t r u m (XPS) 267 Chalcopyritecompounds 24, 61, 70 C h a n n e l t r o n , channel plate 56 C h a r g e density waves ( C D W ) 36-38 • a m p l i t u d e 38 • c o m m e n s u r a t e 37 •- -, effect on core levels 38 , first-order phase t r a n s i l i o n s 38 ,incommensurate 37 39 , phase 38 , R a m a n effect 38 - transfer 126 C h a r g i n g , in organic c o m p o u n d s 262 • m p h o t o e m i s s i o n 262, 13, 17 C h e m i c a l p o t e n l i a l 33 shill 14, 60-75 of core levels of rare gases, i m p l a n t e d in noble metals 70 73 shift in a l l o y s 74, 75 Chemisorption 151,154,57 C l e a n i n g by milling, filing, b r u s h i n g 59 C l e a v a g e face, polar, n o n p o l a r 148 C l e a v i n g 58 Clusters, finite 98 C o 200, 179 , valence band s p e c t r u m [XPS) 20[ C o h e r e n t p o t e n t i a l a p p r o x i m a t i o n 210, 211 Cohesive e n e r g y 35, 36 C o m p a t i b i l i t y relations, z i n c b l e n d e - d i a m o n d 20 C o m p o u n d s , l III VI 24 -, I I - I V - V 24 , II3-V 24 • ll VI 19,23 -, I I - V I : valence band spectra (X PS) 57 • II1 V 19 • III V: valence band spectra (XPS) 57 -, I I I - V I I 28 , I l l - V l ~ 24 , IV VI 62 -, I V - V I : valence b a n d spectra 63 , V V I 30, 31 C o n f i g u r a t i o n interaction 14, 170, 182 186 - final state (FSCI) 182-186 - in the c o n t i n u u m (CSCI) 156, 182, 184, 187 -, initial state (ISCI) 182, 184, 189 391 C o n s e r w l t i o n OfklL 53, I2/, 239, 254 257 C o n s t a n t final state s p e c t r o s c o p y [CFS) 300• 314, 316, 317, 240, 260, 262 initial state s p e c t r o s c o p y (CIS) 2, 79, 300, 314, 317, 318 C o n t a c t p o t e n t i a l 4.13, 22 difference 150 Contamination 265,57,58 Contmuousrandomnelwork 87, 99 CoO 183 • UPS s p e c t r u m and partial d-, p - c o m p o n e n t s 182 • valence band s p e c t r u m ( X P S ) 188 C o o p e r i n i n i m u m 314, 315, 145, 156 Core excitons 337-339, - levels 60 , cross sections 8(I lifetime 79, 80 , line a s y m m e t r y 353, 201,202, 205 Imc s h a p e 353, 197 229 r e l a x a t i o n 14l, 152 shifts 121, 126, 127, 129,60 75 - ,effect of m o l e c u l a r p o l a r i z a t i o n 290, 291 in c h a r g e transfer salts 288, 289 in o r g a n i c m o l e c u l e s 288 293 -, p o t e n t i a l m o d e l 288, 289, 6t, 64-70 -, s i n g u l a r i t y index 353, 354, 202, 204• 226 • spectra of s i m p l e metals 357 364, 210-224 w i d t h 76~0, 208 217 , v i b r a t i o n a l c o n t r i b u t i o n 335, 76 p o l a r i z a t i o n 167 Correlation 16, 156, 18l 186 - e n e r g y 176, 191,224,35,36 - -, Ce 235 , i n t r a a t o m i c 257 -, intershell 250 , m t r a s h e l l 250 C o v a l e n t gap 121 Critical p o i n t s 52, 59, 65, 84, - -, i n l e r b a n d 41 Cr203 180 C H O , U P S spectra and partial d-, p-components 182,189 C H O 3, valence band s p e c t r u m (XPS) 181 C r o s s section, partial 68, 219, 271,367 -, p h o t o a b s o r p t i o n ( p h o t o i o n i z a t i o n ) 82, 83,136 I60 -, , accurate c a l c u l a t i o n s 149 159 , ,C, Si, G e 55,56 Crystal field splitting 179 Cs c o v e r a g e 87, 5, 17, 42, 43 C s P b B H 28 C s P b C I 28 392 Subject Index Cs3Sb photocathode 12,6 Cu 194 201,315,8,87 89 , angular resolved photoemission 199, 258 -, core line 223 ,densityofslates 175, 195 , photoionization cross section 68 • UPS spectrum 175, 195, 315, 87,89 , wllence band spcctrum (XPS) 175, 196, 197 • work function 38 CuBr 21,67 72 -, temperature effect on EDC 72 , wllcnce band spectrum (XPS) 71) CuCI 21,67 72 , valence band spectrum (XPS) 70 Cul 21,67 72 , valence band spectrum (XPS) 70 CuNialloys 206, 210 C'uo.c,2Ni0.,u, UPS spectrum 211 Cuo,,2Nio ~u, theoretical density of states 211 Cue 177, 192 , XPS spectrum 178 Cu20 177, 179, 192 , X P S s p e c t r a 178,185 CuF'd alloys, virtual bound state parameters 2(18 Cyclotron resonance 14 Cytosine 280 - - 1)angIing bond 48, 114, 131, 140, 142, 145 o n G a A s 148 151 on Si charge density i44 on Si density ofstates 146 l)ebye-Waller factor 81 Dedicated storage rings 309 Defect tetrahedral structures 24 Delayed absorption maximum 144, 146, 147 onset oftransitions 314 Density ofconduction states 42, 78 states 18, 88, 140 , cross section weighted 193, 221, 367, 368 ,joint 369, 86 -, one-dimensional 83, 198 - -,optical 41,42 • partial 46, 47, 50, 68 71, 73, 366 368 -,surface 137,140 143,145 147,150,194 DESY, experimental layout 312 synchrotron, intensity compared with other sources 306 , intensity distribution and brightness 304 Detailed balance theorems 123, 125 Diamond 11,/5 -, valence band spectrum(XPS) 56, 15 Dielectric constant 41 - -, longitudinal 44 - - - Dipole acceleration 130, /39 approximation expression 137, 138 Dipole layer (surface) 32, 33, 38 - length expression 139, 141 matrix element 138, 142 velocity expression 139 Direct transitions 53, 85• 87 Dispersion compensation 227, 12 Doniach-Sunjid shape 232, 240, 246, 355, 200, 206,232 Doping 133 DOR[S storage ring: intensity distribution and brightness 304 DOS see Density of states Double quantum photoemission 276, 277 Dy, density of valence states 233 , valence band spectrum (XPS) 228,231,233 DySb, valence band spectrum(XPS) 241 Eclipsed configuration 23, 26 EDJDOS see Energy distribution of joint density of states Effective electronlagnctic field 119, 127 indcpendenl particlc sytcm 110 Effusion method (work function) 3I Einstein's law 3,135 Electrochemical potcntial 16 Electron affinity 17 , for Si 133 Electron escape depth {mean free path) 354, 362, 367, 2, 3, 8, 55, 57, 81, 92, 122• 125, 192, 193, 247 in organic materials 264, 283 - for Si 49 - energy analyzers 9, 11, 55, 65, 241 244 , losses (CEL) 12, 40, 43 - , loss spectroscopy 132, 150 mean free path, see Electron escape depth momentum parallel to surface 81,239, 247 spectrometer, calibration 57 , resolution 193,227, 228, 56 storage rings 299 - synchrotrons 299 transport term iia pholocmission 174,85, 91 Eleclronegativity 119,48, 5l see also inside cover Electron-electron scattering 109 Electron-hole excitations 193, 350, 201, 202, 204 interaction effccts on core absorption 327 pair production 53 Elemental analysis, composition determinalion b y X P S 59, 60 - - - Subject Index Energy band structure see Band structure distribution curves (EDC) 314, 2, 84-89 o f j o i n t d e n s i t y o f s t a t e s ( E D J D O S ) 174 88, 23,~ gap 11 sum rule 175 transfer processcs{excitons) 275,339 Epitaxialfihns 63 Equivalent cores a p p r o x i m a t i o n 70 177 Er, UPS and XF'S spectra 233 252 ErB., valence band spectra (XPS) 248 ErSb, valence band spectra (XPS) 24i ESCA 10, 12 Escape depth see Electron escape depth funclion 85 Etlmne, wdcnce band spectrum (XPS) 267 Eu 225, 252 chalcogenides 217, 238 wdence band spectrum (XPS) 232 EuO 218,238,254 • valence band s p e c t r u m ( X P S ) 219 242• 76, 172 EuPI 252 EuRh 252 EuS 238 • U P S s p e c t r a 73,218 EuTe, XPS spectrum I72 EXAFS see Extended X-ray absorption fine structure Exchange energy 35,36,143 • K o h n - S h a m - G a s p a r 37 ,Slater 37, 143 splitting see Multiplet splitting Exciton annihilation (organics) 275 277 Excitonic shift in core hole absorption spectra 150, 337 Extended X-ray absorption fine structure (EXAFS) 86, 136, 329 IAex,els m rare earths 217.22I -I , J o ] l a n s s o n scheme 237 • promotion energy 225, 236 FC-2 98 Fe 21)0 202 169 , density of valence states 201 , soft X-ray emission spectrum 201 -, wdence band spectra 201 FeAI, absorption spectrum 329 FeAu alloys 210 FeCu alloys 210 FeF 181, 170 • valence band spectrum (XPS) 182 F%O, UPS spectra and parlial d-, p-components 182 Fermi edge, in organic metals 287 393 Icvcl 14• 10.40 • pinning 134,137•154 stir/ace• two-dimensional 37 Ferronmgnetic metals: Fe Co, Ni 200 Field emission 132 microscope 30 • photoassisled 4, 29.30• 129 Final state effects ill photoemission 78 177 188, 317• 333• 165 Flash evaporation 59 Floodgun•electron 13 Fluorescence yield 78 l:orm factor 89 Er:.lctionul parentage coefficients 181 221 223, 240• 167 Frank-Condon diagram for NaCI 336 principle 335• 336 76.77 F r e n k e l e x c i t o n , inanatlu-acence 271,273•277 GaAs 40, 4,~,' • a m o r p h o u s 100, 101 densities of states of model slruclules 101 • angular resolved PES 248 261 , b a n d slruclure 19, 20, 49 • critical points 59 • density of stales 150 • electrorefleclance 43 , LEED 148 • oxidation 343 • photoabsorption cross section 155 • photoemission spectrum 150 • reflectivity 42 -.surface 148 151 relaxation 148 149 ,valencc band spectrum (XPS) 57 58 122 • yield spectrum 150 Gallium photoabsorption cross section 154 155 G a N 23, 120 G a P 21 • a m o r p h o u s 100,101,104 EDC's 103 -, critical points 59 - oxidation 343 • work function 49 Gap, indirect or direct 40 Gap states• photoemission spectrmn of a m o r p h o u s Ge 117 • a m o r p h o u s s e m i c o n d u c t o r s 114 118 St, photoemission spectrum 116 I17 - , metal induced 155 GaS 26, 75 GaSb a m o r p h o u s 100 I01 • critical points 59 - valence band spectrum (XPSI 57 • work function 49 394 Subject Index GaSe 12.26, 75 • a n g u l a r r c s o l v e d PES 251.255,256 • band s t r u c t u r e 26 , c h a r g e d i s t r i b u t i o n 26 G a S e 24 Gd, X P S s p e c t r u m 232, 233 G d B u 246 G d B a 246 • valence band spcctl urn IX PS) 247,249 G d S 217, 238 • UPS s p e c l r u m 73 GdSb XPSspectrum 241,247 Ge 14,40.315,47 G e l I I 97,98 G e l V 97, 98 ,amorphous 87 100 density 89 dielectric c o n s l a n t 90,93 UPS d c r i w l t i v e s p e c t r u m 117 - valence band s p e c t r u m (XPS) 88 , band s t r u c t u r e 16, 18 • c h a l c o g e n i d e s 107 amorphous 107,108 , d e n s i l y of slates 88 , o x i d a t i o n 343 , p o l y t y p e s 97, 98 , UPS cesiated 54 • valence band spectrurn (XF'S) 56 , work funclion 49 G e H 56 G e e 86 GeS 67 GeS, nearest n e i g h b o r d i s t a n c e 125 GeSe 67 -, a m o r p h o u s 109 • nearest n e i g h b o r d i s t a n c e 125 H a l l cffect H e t e r o j u n c t i o n s 47 Heteropolargap 102 121 11[(2', calculated density o f w l l e n c e states 190 • valence band spectra (XPS) 190 I-[IS 34, 35 • wllence band spectrtun (X PS) 74 Hg, p h o t o a b s o r p t i o n cross section 154, /55 HgS, HgSe, HgTe, work function 49 He, valence band s p e c t r u m ( X P S ) 234 I lol:~,, valerlce band s p e c t r u m (XPS) 248 IJoS, valence band s p e c t r u m (X PS) 244 HoSb, valence band s p e c t r u m (XPS) 241,244 H u b b a r d gap, o f N i O , C o O , M n O 188 -, o f V O 189 model 176,192 H u m e - R o t h e r y rule 104 H u n d ' s rule 180, 181,225, 173 H u s u m i cactus lattice 94.95 H y b r i d i z a t i o n , t e m p e r a t u r e d e p e n d e n c e 72, - G e T e 29 • amorphous 108, 109 , c r i t i c a l p o m t s 65, 66 , nearest n e i g h b o r d i s t a n c e 125 UPS s p e c t r u m 108 , valence band s p e c t r u m ( X P S ) 109 G % T e j , 86 G%Te~_~, valence band spectra (XPS) 109 G l a s s e s 85, 86 G o l d e n rule 109, 125,140 G r a p h i t e 13, 179 , a n g u l a r resolved PES 255 , valence band s p e c t r u m (UPS) 270 G r a y lin 17 G r e e n ' s functions theory of p h o t o e m i s s i o n 109, 115 G r o u p V elements (As, Sb, Bi) 28,67 , valence band spectra (XPS) 106 - 13 Ilartree-Fock 187, 64, 65, 143, 150 166, 174 -Slaler central field w a v e f u n c t i o n s 143 t t c a t of formation 51 He-soul-co 76 HydrogenchemisorbedonSi(lll) density of states 153 s t r u c t u r e 152 - UPS spectra 153 I~lydrogenic a t o m 143 151-154 - - I m p u r i t y scattering, phase shirts 227 Ill, core level line s h a p e 228 on St(l l I) surface p h o t o e m i s s i o n spectra 156 - - band b e n d i n g 156 , p h o t o a b s o r p t i o n cross section 155 [nAs, a m o r p h o u s 101,103,104 • , critical p o i n t s 59 , valence band spectra 58 • work function 49 I n d e p e n d e n t particle reduction of p h o t o e m i s s i o n theory 109, 117, 119 Inelastic processes see P l a s m o n s Infrared c a t a s t r o p h e 179, 202 lnP, a m o r p h o u s 100,101 crilieal p o i n t s 59 -, valence band spectra 58 -, work function 49 InSb, a m o r p h o u s 100,101,103,104 - , c r i t i c a l p o i n t s 59 -, o x i d a t i o n 343 • valence band spectra 58 - , work function 49 - , S u h.icct Index Kohn anomaly 38 variational principle 156 Koopmans'states 226 theorem 65~57, 174 Koster-Kronigtransitions 79 Kramers-Kronig analysis 42 Krogmann salt 36 Kr 177 photoionization cross section 68 solid UPS spectra (synchrotron radiation) 332 K - T C N Q 282 UPS spectrum 281 K UPS spectra 369 work function 38 K-edge (X-ray emission) Li 215 • AI Mg 224 InSe, angular resolved photoemission spectrum 255,256 Insulator 11 lneTe 24 Intercalation 32 Interconfiguration fluctuations 235 Interface states 134,154 extrinsic 155 • metal-semiconductor 154 Interferencetermsinphotoionization 50 Intermediate valence (IV) 250, 254 lntermctallic compounds of transition metals 212 Internal conversion 10 In ternational ferences on amorphous scmiconduetors I3 semiconductors 13 Ioffe-Regel rule 93 Ion bombardment 59 Ionicchargcs 120•121,/74 gap 121 Ionicity 21.118 125 ,critical 123, 125 of octet compounds 124 , pressure depcndencc 125 scale 119 - based on XPS valence band spectra 121 , dielectric theory 119 -, Pauling 119 Ionization potential (photoemission threshold) 128, 133.17,25,49 Ion neutralization spectroscopy 132 lr, core line shape 229 Itinerant, electrons 192, 258 ferromagnet 202 - - Jellium model 33,34,43 Joint (optical) density of states 41, 86, 238 KBr valence band spectrum(XPS) 125 , work function 49 KCI, angular resolved photoemission 334 • CIS spectra 318 - valence band spectrum (XPS) 125 -, work function 49 K=Cr20 180 • valence band spectrum (XPSt 181 Keldysh formalism 109 Kelvin method 17,22 KF valence band spectrum (XPS) 125 -, work function 49 KI,CIS spectra 321 valence band spectrum (XPS) 125 - , w o r k function 49 395 - La 230 240 ka valence band spectrum (XPS) 230 halides 237• 238 • valence band spectra (XPS) 238 - RAPW calculation 230 LaB~, 246 - XPS spectrum 245 Langmuir 58 LaSb XPSspectrum 239.241.251 253 Layer compounds 26 32 48 72 75 251 253-255 Lead chalcogenides see PbS PbSe PbTe LEED see Low energy electron diffraction Li 76,211-214 • work function 39 LiF, absorption coefficient and penetration depth vs angle of incidence 325 ,coreexcitons 337 • cutoff 218 , refiectivity vs anglc of incidence 324 -, valence band spectrum (XPS) 183 • yield spectrum vs angle of incidence 325 Ligand chemical shift 1(14 Like-atom bonds 101 Linear alkanes 266 • valence band spectra (XPS) 267 Linewidth, phononcontribution 335, 15, 212, 215, 243 Liquid metals, yield spectra 329 Local density of states 99 Localized orbitals, photoemission 130 slates 114,118 Loncpairs 31,111 Long range order 86• 114 Low energy electron diffraction (LEED) 132, 135, 141 144, 148, 151, 9,55, 117, 241, 253 Lu 152 396 Subject Index Lu B,., valence band spectrum (XPS) Lz.~-X-ray edge, AI 223,224 , Mg 223 , Na 222 248 Madclungconstant 127 potcntial 62, 178 Mahan-Nozi6rcs-Dc Dominicis effect 40, 350, 198, 199 Many body features in photoemission 177 179, 193,352 354• 109, 117.165 perturbation theory 156 Mean free path, electrons see Electron escape deplh Metal non-metal transition: VO: 188 semiconductor interface 154 Metals, d-band 192 206 , free electron like 357 369 • organic 280 287 Methane s e e C H Mg 350 , core level spectra 358,359, 190, 218 , density of states 368 , plasmons 358 362 , valence band spectrum(XPS) 368 • work function 39 Mg2Ge 24 MgO (:Ni) 183 MgzPb 24 Mg2Si 24 ,energy bands 26 -, valence band spectrum (XPS) 62 , X-ray emission spectrum 62 MgzSn 24 Mg2X (X=Si, Ge, Sn, Pb) 61 ,dcnsity of valence states 26 Microcrystal model of amorphous phase 86 Microfields 30 Mixed valence in rare earths 254 257• 172 Mn 169 MnF 168, 170 MnO 180, 183 , UPS spectra and partial d-, p-components 182 Mo, angular resolved photoemission spectroscopy 261 , work-function 19 Mobility gap 114 Model densities of states for amorphous semiconductors 94, 96 Modulation spectroscopy 12,14,40 Monochromatization, X-rays 227, I5,53 Monochromators for synchrotron radiation 311 Mooser and Pearson plot 123 Mortals, ordinary MoS z 33, 34, 35,251.254 • UPS spectrum 73 MoTe 74 MoTe 2, UPS spectrum 73 Mottinsulator 176, 183 - t r a n s i t i o n , Ce 235,237 , VO 188 Multichannneldetector 51 Muhidetecting systems 244.245 Multipletsplitting 14, 166, 174 - in rare earths 220, 223, 226 234, 250• 171-173 , i n t e n s i t i e s a t l k e V 218,219 in transition rnctals 179 183, 167-170 structure 143 Na 350 , absorption coefficient (EXAFS) 147, 148 , core level spectra 358, 210 , density of states 366, 368 , yield spectrum, absorption spectrum for 2p transitions 330 Na2p linewidth vs temperature 337 • plasmons 358, 360, 361 , soft X-ray emission spectrum 365 • valence band spectra 365, 366, 368 , work function 38, 39 NaBr valence band spectrum(XPS) 125 NaCI 74, 77, 80 , constant final-stale spectra 338 ,coreexcitons 338 , surface core excitons 341 343 -, valence band spectrum (XPS) 125 , work function 49 NaF valence band spectrum(XPS) 125 Nal valence band spectrum(XPS) 125 , work ft, nction 49 Naphtalenc, UPS spectrum 269 -, vapor pressure 263 N b O 189 NbS2 34, 35 NbSe 2, UPS spectrum 73 Nb.lSn 212 Nd 230 • valence band spectrum (XPS) 230 NdB 246 • valence band spectrum (XPS) 247 NdBi, valence band spectrum (X PS) 244 NdS, valence band spectrum (X PS) 244 NdSb, valeece band spectrum (X PSI 244 Negative electron affinity 7, 25 Ne, solid, UPS spectra (synchrotron radiation) 332 Subject Index Ni 200, 202 205 • angular resolved photoemission spectroscopy 261 angular resolved photocmission spectroscopy, band dispersion 204 • bandwidth 202- 205 , core line 223 - correlation energy 177 • density ofwllence states 204 • valence band spectra (XPS} 204 NiAI absorption spectrum 329 NiO 176 179 183 187 • band-structure calculations 187 • UPS spectra and partial d- p-components 182 • UPS spectra with synchrotron radiation 186 • wllence bands 187 • XPS spectra 184, 185 NiS 176 Noble metals 194 200 Nonane, valence band spectrum (X PS'I 267 N o n d i r e c t t r a n s i t i o n s 83.92.314.262 Non-local pseudopolential 52 Occupied and en]pty stales in photoemission 33O One-dimensional singularities 48, 198 Optical absorption 12, 40 Organometallic phenyl compotmds 270 272 Orlhogonality catastrof, he 199 Orthogonalized plane waves {OPWl 16 O r t h o r h o m b i c s t r u c t u r e 107,111 Oxidation of AI synchrotrorl radiation spectroscopy 343 of Ge 52 Partial densities ofstatcs 12.67 72 186 366-369 Partial yield spectroscopy 79, 80 spectrum of GaAs 80 Passive electrons 185 Patches 1&20.21 Pb 106 , core levels 22,~ , work ftlnction 39 Pbl 33 • valence band spectra 76 PbS 28 , angular resolved spectra 47 ,critical ionicity 125 -points 65, 66 , valence band spectra 47, 63 PbSc, critical points 65, 66 • phase transition 126 , UPS spectra 63 397 PbTe• band structure 29 • critical points 65, 66 • phase transition 126 • valence band spectra 63, 65 Pd, core lines 232 -, valence band spectrum (XPS) and theoretical density of stales 201 , work function 19 PdAg alloys 207 - valence band spectra 207 , virtual bound state parameters 208 Pcierls transition 36 Pelticr effect 31 Penn model 123 Pentane wdence band spectrum (XPSI 267 Phase shift, Coulomb 141 shills 199.201 204 219 • s u m r u l e 199.219,226,227 Phononbrc, adening 335 337• 212.215 in EuO 243 Photoabsorption measurements 135 Photocathode, solar blind Photocathodes 6.7 Photoconduciivity, surface 132 Photoeffect surface Pholoeleclric cross seclioxls see Cross section effect -, surface vectorial 3.9 Photoelectron spectroscopy, complementary methods 40 Photoemission, angle resolved 80 85 199 204.4.9 237-263 - from surface 138 • f o r m a l t h e o r y 48, 105 131.252 254 from biological materials 278 280 - from organic rnolecularcrystals 262 of semiconductor surface 130 -, three-step model ,'~4 92 122 12& 247 threshold see Ionization potential , lime resolved 277 Photohole localization 287, 356 Pholoionization cross sections seeCross sections Pholoyield near threshold 22 26 Phthalocyanmes 278,279 (H 2, Mg, Pb Cu) UPS spectra 279 Physisorption 57 PinningofEvinSi 134,137 Plasmon frequm]cy 44 dispersion 355, 356 Plasmons 45, 89, 351 369• 175, 189-191 ,At 358 363,211 , Be 357, 360 and adsorbales 192 • energies 360 - - - 398 Subject Index Plasmons, GaAs 45 Ge 89 -,intrinsic extrinsic 191, 351, 352, 354 357, 201,207 , Li 211 • Mg 358 363, 190, 217 • Na 358 363,216 Si 89 -, surface 190, 356, 360, 363,367 • width 360 Polarization energy 74 shift 127,291 Polk model 87, 95, 98 density of states I00 Polytypes ofGc, Si 9% 98 Porphyrin 279 F'ositron annihilation 34 Potential model for core level shifts 127,69, 70 Propane, wflence band spectrum (XPS) 267 Pr, valence band spectrum (XPS) 230 Pseudopotenlial method 17, 246 Pt, core line 231 • valence band spectrum (XPS) and theoretical density ofstates 201 , , Quadratic response 106 Q u a n t i z e d d e s c r i p t i o n of radiation 114 Q u a n t u m efficiency (yield) 6, 27, 130 Racah method 221 Radial distribution function 86 Random phase approximation{RPA) 119,156 Rarcearth boridcs 245 249 - - , [ l i f e t i m c 249 , i n t e r a t o m i c A u g e r transitions 245 ,structure 245 , valence band spectra (XPS) 245, 247 249 chalcogenides 238 243 - fluorides 171 halides 237, 238 mtcrmetallics 249 ions, divalent 221 ,trivalcnt 221 metals 229 237,174 - pniclides 238-243 Rare earths, 3d and d e l e c t r o n s 251 253 - -, photoabsorptiou cross sections 158,, 159 trifluorides 234, 237, 238 Rare gas line source 52 solids 330 333 • valence bands 330 333 Rcferencingofbindingencrgics 128, 13 Reflectance, normal incidence 43 - Reflection and transmission amplitudes for photoen'dssion spectroscopy 125 Refractive mdcx 41 Rehltivistic dehybridization 105 Relaxation 37, 118, 174 energy 127• 267, 63, 64, 68, 69, 71,72, 118, 175-132 • 41electrons 226, 253 m anthracene 273 - , e x l r a a t o m i c 63,177 m free molecules 17,'~ in metals 180 , intraatomic 63,176 of k-conservation 92 processes 337 341 Renormalization energy 70, 71, 75 Renormalized atom scheme 22l, 225, 237 RcO 176, 189, 190 • calculated density of slates 190 , valence band spectrum (XPS) 190 Resolution 227, 52 Richardson plot 20 Rigid band model 36, 206 Rings• fivefold 97-99 , odd-,nembered 98, 100 , sixfold 95,96,98, 107 R-matrix theory 156 Rotating anodes 227 RusselI-Saunders coupling 221 S, monoclinic 111 , o r t h o r h o m b i c II1,112 • -, valence band spectrum (XPS) 113 -, Ss rings 112 Sample preparation 228,229, 57 Satellites 177 • charge transfer 177 , core levels 76,141,175 -, Kotani-Toyozawa 179 -,multielectron peaks 184, 185, 182 189 -, shake up/off 226, 252, 182-189 Sb 104 ~, a m o r p h o u s 105 R a m a n spectrum 105 , -, wdence band spectrum {X PS) 106 Sb2Se I l I Scattering time 53,90 92 Schotlky Barrier 134, 154-156 effect 21 Screening of core holes 204 see a/.so Relaxation Se 30, 86 , a m o r p h o u s 112 dielectric constant 90 valence band spectrum II0 - Subject Index • a n i s o t r o p y in a b s o r p t i o n coefficient 326, 327 •-, energy b a n d s 30 - • m o n o c l i n i c 31,113 valence band s p e c t r u m ( X P S ) 113 -, Ses rings 1 , 1 S e c o n d a r y electrons 79, 127• 264 , e n e r g y d i s t r i b u t i o n 85 in organic c o m p o u n d s 264 S e c o n d a r y e m i s s i o n processes 319,320 Self-energy of the electron 117 of the electron, i m a g i n a r y part 118 Semiconductors II • amorphous 85 118 surfaces 130 158 S e m i m e t a l s 11,104 Shake-off see Satellites S h a k e - u p see Satellites Short range o r d e r 87 Si 14 Sill 97,98 Si 2H-4, density of states 99 Si/ll 97, 98 Si, a m o r p h o u s 87 100 calculated density o f s t a t e s 91 dielectric c o n s t a n t 90, 92 fihns 89 wdencc band spectra 88, 92 valence band speclra, gap states I I6, 17 BC-8, density of states 99 • density of slates 88, 99 • electron affinity 133 -, ionization p o t e n t i a l ( p h o t o e m i s s i o n threshold) 133 134• 143, 46 o x i d a t i o n 343 -, p h o t o i o n i z a t i o n cross section 68 , p o l y t y p e s 97, 98 densities o f s t a t e s 99 -, ST-I 2, densities of states 99 surface, band b e n d i n g 138 , chcmisorbed hydrogen 151-154 - h y d r o g e n density of s l a t e s 153 -, p h o t o e m i s s i o n spectra 153 141,147 -, g e o m e t r y 142 and In p h o t o e m i s s i o n spectra 155 • p i n n i n g o f E v 137 , r e l a x a t i o n 142 states, c h a r g e density 144 ,densityofslates 145 147 - -, electronic theory , photoemission 136 138 140, 146, 147 stales, p h o t o e m i s s i o n , angle resolved 139 , unreconstructed 146 - - , - - , - - - - e L e c t r o n i c s t r u c t u r e 399 ,yicldspectrum 133• 135, 140 • vacancies 153 valence band s p e c t r a ( X P S ) 56, 88 , X-ray enlission s p e c l r u m 46 , w o r k function 133, 134, 143,49 SiC 23 S i l l 56 Simple metals 349 370, 34, 38 SiO, SiO 86 Slatcr integrals F and G 224 250 16¢~ Sm 225 240 252 173 • XPSspectrum 231,251 SINAI 173 Small angle s c a t t e r i n g 89 S m B , , v a l e n c e band s p e c t r u m ( X P S ) 247,251 SmS 237, 258 SmSb•XPSspectrum 239, 242• 251 SmTe X P S s p e c t r u m 239, 242 251 Sm~_~Y.,S 255 Sn, core levels 228 , p h o t o a b s o r p t i o n cross section 155 (SN)., 280, 285,287 , band d i s p e r s i o n 286 • band s t r u c t u r e 285 • UPS s p e c t r u m 286 - , a n g u l a r resolved 286 SnS 67 SnS 33, 75 SnSc 67 SnSe 75 • wdence band s p e c l r u m (XPS) 76 Snfe 29 • critical ionicity 125 critical p o i n t s 65, 66 -, valence band s p e c t r u m (XPS) 63 Space charge layer 132 134, 14 Spin-orbit s p l i t t i n g , , Bi 105 , core levels 43 , m r a r e c a r t h s 234 of 4d e l e c t r o n s 251 of virtual b o u n d states 208 , PbS, PbSc, PbTe 84 • reversal 21 Spin p o l a r i z a t i o n : bulk vs surface 203 in EuS 217 in Ni 202 • polarized p h o t o e m i s s i o n 257, 2,9 in E u O a n d Eu t ,Gd.,O 258 S p u t t e r i n g 58• 59 Staggered c o n f i g u r a t i o n 23 Step edges, S i s u r f a c c 138, 146 S t i c k i n g coefficient 58 S t o n e r - W o b l f a h r t model 200,202, 2(13 S t o r a g e rings and synchrc, trons a v a i l a b l e 308 • , - 400 Subjcct Index Structure fuelor 89 Sudden approximation 175 Sum rule, Lundquist 175,181 • Manne und Aberg t,W Superionic conduclors 21 S u rface chemistry ofsemicond uctors 151 effects a! threshold 26, 27 phase transitions 257• 46 photoelectric effect 3, 262 plasmons 130, 190 reconstruction 132 148,46 relaxation 46 48, 132, 14g resonance 131, 140, 129 sensitivity of photoemission 192 stnles 9, 14,44.47.51, 122• 12g • l l l - V c o m p o u n d s 14g 151 • effects in photoemission 12& 129 of GaAs 149 GaAs, density of slates 151) GaAs energy loss 150 GaAs, excitonic shift 150 GaAs UPS spectrum 150 GaAs, yield spectrum 150 of Si 133,134 Si, d e n s i t y o f s t a t e s 145 147 Si dispersion 139 £i, inflared spectroscopy 144 Si UPS speclrum 136, 13g 140 146 147 , synchrotron radiation cxpcrimenls 341 343 transition lerrn in photoernission 174, 126 Surfaces, semiconductor 130 150 SXPS, sofl X-ray photoemission spectra 174 Synchrotron radiation 43 44 51, 205, 218, 299 344 • angular emission pattern 301 , available or projected sources 308 309 • compared with olher sources 305 306, 9, 5 , , 262 its uses 299 • Inboratory layout 311 • m o n o c h r o m a t o r s 311,313 , polarization 302 • properties 301 305 • spectroscopic techniques 313 , TaC, calculated density of states 190 , valence band spectrum (X PS) 190 Tantalus I, Experimental Iayoul 31l "I'aS 35,39 • angular resolved UPS spectrum 253, 254 t.lPS spectrum 73 TaSc 38 • angular resolved UPS spectrum 254 • TbB, valencc band spectrum (XF'S) 247 Tb vulence band spectrum(XPS) 234 TCNQ molecular orbitaIculculation 281 UPS spectrum 281 Te 30 3I • a m o r p h o u s 112.113 • wtlence bund speclrum (XPS) 110 wflence band spectrum 110 Terrace site S i ( l l l ) 138.146 Tetracene UPS spectrum 263• 269 • wlpour pressure 263 TetrahedraI coordination, semiconductors 18 Tetraphenyl tm (Ph.~Sn) 271 • partial cross sections 271 • photoemission spectrum 271 Th B~, 246 • valence hand spectrum (XPS) 245 Theory of photoemission, independent particle model 105 131 Thermionic emission 4, 19, 10,~ Thermionicemitters T h o m a s - F c r m i r n o d e l 34 143 Three step model 351, ,'¢, 84 ,~>9,190 Thymine 280 Tight-binding method (LCAO) 17 TiO 2, wdence band spectrum (X PSI 185 TiS 35 , valence band spectra 73, 74 TiSe 35 • allgtll~lr resolved UPS spectrum 255 TICI 28 Tm 240, 252 • wflence band spectrum (XPS) 234 TmB,, valencc bands spectrum (XPS) 248 TmSb valence balms spectrum {XPS) 241 TmSe, valence band spectra 255 Transistor 14 Transitional metal, chlorides 188 compounds 176 191 diehalcogenides 32, 33, 36, 72 75 • stacking modifications 33, 34 fluorides 188 • oxides 183 191 metals 192 206,45, f67, 170 operator method 67 69 potential model 70 probabilily, dipole 7& 138 Transitions direct • indirect b; 25.26 Transmission probability 174./25 Trklecane valence band spectrum (XPS) 267 TSeF 285 • UPS spectrum 284 TTF, molecular orbitalcalculation 282 • U P S s p e c l r u m 281 284 Subject Index TTF-TCNQ 280,281•287 -, charge transfer 280• 281 • core level spectra 292• 293 • wtlence band spectrum 281 , valence charges, self-consistent calculation 291 Ultra high wlctmm 58 Unfillcd inner shells: rare carlhs and cornpounds 217 : transilion metal compounds UPS regime 174 tlrical 28(1 IJS, IJPS spectrum 73 173 Vacancies 114 • Sill I ) surface 153 Vacuum incoming w.qve components I11 state I I I , II2, 117, 121 level 16 Valence chargcs, effect of molccuhu pohuization 290, 291 Van Vleck expression fnr multiplel splitting 166,/69, 171 Vapor deposition 58,59 Vapor pressure, elements 59 Virtual bound stale parameters of transition metal alloys 208 VO= 176, 188 • valence band spectra (XPS) 183 Voids 89 114 Volume effects in photoemission 129, 131) Vohlme limit ofphotoemission 122 Volume p h o t o e m i s s i o n : a n g u l a r integrated 47 V3Si 212 W anguhu" resolved UPS spectrum 260, 261 Wigglers 307 Wigner-Seitz cells (sphcrcsl 32, 33, 35 radius 220 WO 189 Work function 3, 16 determination, break point of retarding potential curve 22 -, cMorimetric method 31 ,effusion method 31 • electron bcarn method 22 , field emission 29 , Fowler plot 24 • isochromat method 27 • Kelvin method 22 -, photoyicld near threshold 23 , thermionicemission 19 - - -, threshold of EDC 2~ -, lotal photoelectric yield 2,'¢ • semicondtlclors, insulators -,temperaturedependclmc -, theory 401 46 21.41, 42 32, 40 metals 44• 45 • volume dependence 41, 42 Wrong bonds 100, 11,)2 Wurtzite 23 • transition X~ cluslcr calculati(ms 34•~57 Xe in Ar• UPS spectra 333 Xe-doped Ar, yield speclra 340 No UPS spectra 340 Xe-likc ions 186 Xenon, photoionization cross section 68 144, 145• I52 155, 157 ,solid UPS spectra (synchrotron radiation) 332 XPS 10, t2 , ar~guhu- resolved /6,249 252 regime 51.62,67 174 X-ray absorption edge vibrational broadening 76 spectroscopy 10 edge 198 anomaly set, Mahml-NoziOrcsDe Dominicis effect threshold exponent 198, 199, 201, 204, 223 224 emission spectroscopy 40.45 47, 10 X-rays• monochron~atized 12 Yb 225, 240, 252 , wllence band spcctrum (X PSI 234, 256 YbAI3, valence band spectrum (X PSI 256 YbTe 243 Yield spectroscopy 80, 150,263 322 330 • applications 326 • oblique incidence 323 YM~ anodes(sourccs) 54 YS 243 • valence band spectrum IXPS) 244 Zn3As z 24 Z n G e P 24 • charge distributions 61 , density of valence states 25,60 , energy band strtlclure 25 • valence band speclrum (XPS) 60 ZnO 11.23 ZnS 23 ZnSe, valcncc band spcclrmnlXPS) 122 ZrC, calculated density of states 190 , valence band speclrum (XPS) 190 ZrS 34 ZrS=, valence band spectra 73, 74