THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 30 |
Dung lượng | 540,13 KB |
Nội dung
Ngày đăng: 21/12/2016, 10:26
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
19. Ezquerro, J.A., Hernández, M.A.: On an application of Newton’s method to nonlinear opera- tors with w –conditioned second derivative. BIT 42, 519–530 (2002) | Sách, tạp chí |
|
||
24. He, J.S., Wang, J.H., Li, C.: Newton’s method for underdetermined systems of equations under the γ –condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007) | Sách, tạp chí |
|
||
29. Li, C., Wang, J.: Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the γ –condition. IMA J. Numer. Anal. 26(2), 228–251 (2006) | Sách, tạp chí |
|
||
44. Wang, X.H., Han, D.F.: Criterion α and Newton’s method under weak conditions. (Chinese) Math. Numer. Sin. 19(1), 103–112 (1997); translation in Chinese J. Numer. Math. Appl. 19(2), 96–105 (1997) | Sách, tạp chí |
|
||
1. Argyros, I.K.: On the Newton–Kantorovich hypothesis for solving equations. J. Comput. Appl.Math. 169, 315–332 (2004) | Khác | |||
2. Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two–point Newton–like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004) | Khác | |||
3. Argyros, I.K.: On the semilocal convergence of the Gauss–Newton method. Adv. Nonlinear Var. Inequal. 8, 93–99 (2005) | Khác | |||
4. Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007) | Khác | |||
5. Argyros, I.K.: On a class of Newton–like methods for solving nonlinear equations. J. Comput.Appl. Math. 228, 115–122 (2009) | Khác | |||
6. Argyros, I.K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities.Polimetrica Publisher, Milano (2009) | Khác | |||
7. Argyros, I.K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes. Surv. Math. Appl. 4, 119–132 (2009) | Khác | |||
8. Argyros, I.K., Hilout, S.: On the solution of systems of equations with constant rank deriva- tives. Numer. Algor. (to appear) doi:10.1007/s11075-010-9426-5 | Khác | |||
9. Argyros, I.K., Hilout, S.: Improved generalized differentiability conditions for Newton–like methods. J. Complex. 26(3), 316–333 (2010) | Khác | |||
10. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. With a Fore- word by Richard M. Karp. Springer–Verlag, New York (1998) | Khác | |||
11. Ben–Israel, A.: A Newton–Raphson method for the solution of systems of equations. J. Math.Anal. Appl. 15, 243–252 (1966) | Khác | |||
12. Ben–Israel, A., Greville, T.N.E.: Generalized inverses. Theory and Applications, 2nd edn.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, vol. 15. Springer–Verlag, New York (2003) | Khác | |||
13. Chen, P.Y.: Approximate zeros of quadratically convergent algorithms. Math. Comput. 63, 247–270 (1994) | Khác | |||
14. Dedieu, J.P., Kim, M–H.: Newton’s method for analytic systems of equations with constant rank derivatives. J. Complex. 18, 187–209 (2002) | Khác | |||
15. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math.Comput. 69, 1099–1115 (2000) | Khác | |||
16. Deuflhard, P.: A study of the Gauss–Newton algorithm for the solution of nonlinear least squares problems. Special topics of applied mathematics (Proc. Sem., Ges. Math. Datenver- arb., Bonn, 1979), pp. 129–150. North–Holland, Amsterdam–New York (1980) | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN