1. Trang chủ
  2. » Ngoại Ngữ

Analytical and Comparative Study for Solar Thermal Cooling and Photovoltaic Solar Cooling in the MENA Region

126 470 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 126
Dung lượng 6,46 MB

Nội dung

Analytical and Comparative Study for Solar Thermal Cooling and Photovoltaic Solar Cooling in the MENA Region By Younis Yousef Abidrabbu Badran A Thesis Submitted to the Faculty of Engineering at Cairo University and Faculty of Electrical Engineering and Computer Science at Kassel University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Renewable Energy and Energy Efficiency Faculty of Engineering Cairo University Giza, Egypt Kassel University Kassel, Germany March, 2012 Analytical and Comparative Study for Solar Thermal Cooling and Photovoltaic Solar Cooling in the MENA Region By Younis Yousef Abidrabbu Badran A Thesis Submitted to the Faculty of Engineering at Cairo University and Faculty of Electrical Engineering and Computer Science at Kassel University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Renewable Energy and Energy Efficiency Reviewers Supervisors Prof Dr Adel Khalil Dr.-Ing Norbert Henze Prof Dr Albert Claudi Dipl.-Ing Siwanand Misara Member Faculty of Engineering and Computer Science Kassel University Member Group of Engineering and Measuring Technology Fraunhofer Institute IWES, Kassel, Germany Member Mechanical Power Engineering Department Faculty of Engineering, Cairo University Systems Engineering and Grid Integration Department Head of group Engineering and Measuring Technology Fraunhofer Institute IWES, Kassel, Germany March, 2012 Analytical and Comparative Study for Solar Thermal Cooling and Photovoltaic Solar Cooling in the MENA Region By Younis Yousef Abidrabbu Badran A Thesis Submitted to the Faculty of Engineering at Cairo University and Faculty of Electrical Engineering and Computer Science at Kassel University in Partial Fulfillment of the Requirements for the Degree of Master of Science in Renewable Energy and Energy Efficiency Approved by the Examining Committee: Prof.Dr Adel Khalil, Thesis main Advisor Prof Dr Albert Claudi, Thesis main Advisor Dr Sayed Kaseb, Member Faculty of Engineering Cairo University Giza, Egypt Kassel University Kassel, Germany March, 2012 Acknowledgements First and foremost I would like to thank God This work could not have been possible without the help of many people who supported my work I would like to show my gratitude to my family in Palestine for their continued love, encouragement over the years of my education This thesis is dedicated to them I am heartily thankful to my supervisor Dipl.-Ing Siwanand Misara from Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) in Kassel, who has guided and supported me in every phase of this thesis from the initial to the final level and enlightened the work with his vast knowledge on the subject Deepest gratitude to my supervisor from Cairo university, Professor Dr Adel Khalil for his support and giving me the chance to carry out this research It has been a pleasure to work with this professor who has a high scientific competence and professionalism In addition I would like to thank my supervisor from Kassel university, Prof Dr.-Ing Albert Claudi for his available advice in this study Thanks to Dr.-Ing Michael Krause from Fraunhofer Institute of Building Physics - Kassel(IBP), who has guided and supported me especially in the TRNSYS simulation and the thermal air-conditioning cooling design in this study I am grateful to Mr Salah Azzam and Mr Firas Alawneh from The Higher Council for Science and Technology National Center (NERC) in Jordan, who supported me in getting the meteorological measurement data for Aqaba city Thanks to the German Academic Exchange Service (DAAD) for their financial assistance which made it possible for me to pursue the REMENA master program and this study Thanks to my teachers, friends and staff of the REMENA master program and IWES Fraunhofer Institute in Kassel for encouraging me during my work IV Abstract In this thesis, a comparison and analyses of solar thermal and solar photovoltaic (PV) air-conditioning technologies for a Typical Single Family House (TSFH) in two different MENA climates, Aswan-Egypt and Aqaba-Jordan, are performed The building cooling demand is firstly obtained from annual building simulation in TRNSYS software Based on these simulation results, three scenarios are designed in order to compensate the TSFH’s annual cooling demand in each selected climate These scenarios are solar thermal air-conditioning with storage (absorption chiller), PV air-conditioning without storage and PV air-conditioning with storage The cooling compensation is simulated by Matlab-Simulink for each scenario TRNSYS simulations for Aswan-TSFH and Aqaba-TSFH respectively demonstrate that the maximum cooling load demand during summer season are: 13.9 kW and 15.3 kW; the annual cooling energy demands are: 44,330 kWh/year and 43,490 kWh/year which represents 97.5 % and 96.3 % of the total annual energy consumption (heating and cooling) On the other hand, Matlab-Simulink demonstrates that the total annual percentage of cooling energy compensation (direct plus storage) difference between the PV and thermal with storage scenarios does not exceed % in both cases However, differences exist between the two scenarios The performance of daily direct cooling compensation by the PV air-conditioning scenarios is more efficient than in the thermal air-conditioning scenario The direct cooling compensation percentage for the AswanTSFH and the Aqaba-TSFH respectively are 39.3 % and 35.8 % for the PV airconditioning scenarios and 30.8 % and 30.9 % for the thermal air-conditioning scenario The compensation by the storage are 10.7 % and 7.3 %, by the PV air-conditioning with storage scenario and 20.1 % and 11.9 %, by thermal air-conditioning with storage scenario for the two cases respectively The PV air-conditioning scenario with storage behaves and compensates the cooling demand better than the solar thermal air-conditioning with storage scenario and needs less storage to cover the same amount of cooling load demand However, the storage system in the PV air-conditioning scenario is minor and the direct compensation is major That is vice versa in the thermal air-conditioning scenario This research can be extended to compare and analyze the scenarios in terms of primary energy, economic analysis and different buildings Moreover, the future cost reduction by learning curves of both technologies can influence the economic feasibility V Contents Acknowledgements iv Abstract v List of Figures ix List of Tables xii List of Symbols xiii List of Abbreviations xvi Introduction 1.1 Background 1.2 Objectives and Boundary Conditions 1.3 Thesis Structure Determination of the Reference Building in MENA Regions 2.1 Reference Location Climates 2.1.1 Meteorological Data for Reference Locations 2.2 Reference Building 2.2.1 Architecture Design 2.2.2 Facade Stricter 10 2.2.2.1 Wall Construction 10 2.2.2.2 Windows 11 2.2.3 Internal Gain 11 2.2.4 Air Change Condition 12 2.2.5 Cooling and Heating Set Points 12 Reference Building Thermal Cooling and Heating Load Simulation 13 3.1 TRNSYS Software Simulation Environments 13 3.2 Description of the Simulation 14 3.2.1 Type 56 Mathematical Description 14 3.2.2 TSFH Modeling with Type56 and TRNBuild 16 3.2.3 TSFH Modeling with Type56 and TRNStudio 18 3.3 Thermal Cooling Load Simulation Results and Analysis of Results 21 VI 3.3.1 The Annual Energy Consumption 21 3.3.2 The Performance of Cooling Load 23 Solar Air-Conditioning Technologies 26 4.1 Solar Photovoltaic Air-Conditioning Technology 26 4.2 Solar Thermal Air-conditioning Technology 27 Solar Air-Conditioning Scenarios Design and Simulation 29 5.1 Matlab-Simulink Simulation Environments 29 5.2 Solar PV Air -Conditioning Scenarios 30 5.2.1 System Components and Design 30 5.2.2 Systems Simulation and Methodology 37 5.2.2.1 PV air-conditioning Without Storage Scenario 38 5.2.2.2 PV Air-conditioning with Storage Scenario 40 5.3 Solar Thermal Air-conditioning Scenario(absorption chiller) 41 5.3.1 System Components and Design 41 5.3.1.1 Solar Thermal Heating System 42 5.3.1.2 Absorption Chiller 47 5.3.3 System Simulation and Methodology 52 Simulation Results and Analysis for Solar Air-Conditioning Scenarios 58 6.1 Solar Photovoltaic (PV) Air-conditioning Scenarios 58 6.1.1The Influence of a Direct Cooling production 59 6.1.2 Excess of Cooling Production and External Back-up Cooling for a Battery Design 63 6.1.3 Annual Cooling Energy Compensation Analysis 65 6.1.3.1 PV Air-conditioning Without Storage Scenario 66 6.1.3.2 PV Air-conditioning With Storage Scenario 67 6.2 Results and Analysis for Solar Thermal Air-conditioning Scenario 69 6.2.1 The Influence of Cooling Production 69 6.2.2 Annual Cooling Energy Compensation Analysis 74 VII 6.2.2.1 Excess Cooling Production and External Back-up Cooling Loads 74 6.2.2.2 Annual Cooling Energy Compensation 76 6.2.2.3 Solar Fraction 79 6.3 Thermal Air-conditioning Scenario Versus PV Air-conditioning Scenarios 81 6.3.1 The Direct Cooling Production Load Performance 81 6.3.2 Annual Cooling Compensation Energy Percentage 87 Conclusions and Future Research 90 7.1 conclusions 90 7.2 Future Research 94 References 95 Appendices 102 Appendix A: Schematic vapour compression cycle 102 Appendix B: Solar Photovoltaic module data sheet 102 Appendix C : Inverter data sheet, [45] 103 Appendix D:Description of Wet Cooling Tower, [37] 104 Declaration 105 VIII List of Figures Figure 2.1: Annual distribution of horizontal global solar radiation for Aswan and Aqaba cities, [16], [17] Figure 2.2 Annual distribution of ambient air temperatures for Aqaba and Aswan cities, [16], [17] .6 Figure 2.3:Annual distribution of ambient air relative humidity in Aswan and Aqaba cities, [16], [17] Figure 2.4: sketch of Typical Single Family House(TSFH) in MENA regions plan, [20] .9 Figure 3.1: Zones of TSFH model in TRNBuild 16 Figure 3.2: Aswan-TSFH model (Type 56) with all the required components and connections in TRNStudio 18 Figure 3.3: Aqaba-TSFH model (Type 56) with all required components and connections in TRNStudio 19 Figure 3.4: Yearly cooling and heating energy demand for the Aswan-TSFH and AqabaTSFH 21 Figure 3.5: Monthly cooling and heating energy demand in (kWh) for the Aswan-TSFH and Aqaba-TSFH 22 Figure 3.6: Yearly Cooling and heating demands distribution(kW) for the Aswan-TSFH 23 Figure 3.7:Yearly Cooling and heating demands distribution in (kW) for the AqabaTSFH 24 Figure 3.8: Weakly Cooling load demand distribution in (kW) for the Aqaba-TSFH and Aswan-TSFH 25 Figure 4.1 :Basic structure of PV air-conditioning systems, [2] 26 Figure 4.2 :Basic structure of heat driven and desiccant air-conditioning systems, [2] 27 Figure 5.1: Schematic flow diagram for solar PV air-conditioning without storage 31 Figure 5.2: Schematic flow diagram for solar PV air-conditioning with storage 31 Figure 5.3: The dimensions of a typical single family house (TSFH) - roof area (1) for PVarray installation 34 IX Figure 5.4: Solar thermal air-conditioning system scenario, coupling of an absorption chiller with a solar heating system 42 Figure 5.5: Schematic diagram for an absorption chiller for chilled water production, [37] 47 Figure 6.1: PV air-conditioning cooling production along the year for Aswan-TSFH 59 Figure 6.2: PV air-conditioning cooling production along the year for Aqaba-TSFH 59 Figure 6.3: Solar-PV air-conditioning cooling production in Summer week for AswanTSFH 60 Figure 6.4: Solar-PV air-conditioning cooling production in Summer week for AqabaTSFH 61 Figure 6.5: Solar PV air-conditioning cooling production in winter week for AswanTSFH 61 Figure 6.6: Solar PV air-conditioning cooling production in winter week for AqabaTSFH 61 Figure 6.7: PV air-conditioning without storage scenario, Excess cooling production and external back-up cooling loads for Aswan-TSFH 63 Figure 6.8: PV air-conditioning without storage scenario, Excess cooling production and external back-up cooling loads for Aqaba-TSFH 64 Figure 6.9: yearly cooling energy compensation by the solar PV air-conditioning system with and without storage scenarios for the Aswan-TSFH and Aqaba-TSFH 65 Figure 6.10: Monthly cooling energy compensation by solar PV air-conditioning system with and without storage scenarios for Aswan-TSFH and Aqaba-TSFH 66 Figure 6.11: Solar thermal air-conditioning cooling production along the year for Aswan-TSFH 69 Figure 6.12: Solar thermal air-conditioning cooling production along the year for AqabaTSFH 70 Figure 6.13: Solar thermal air-conditioning cooling production in summer week for Aswan-TSFH 71 Figure 6.14: Solar thermal air-conditioning cooling production in summer week for Aqaba-TSFH 72 X Applied Thermal Engineering, Volume 31, Pages 3358-3368, Issue 16, November 2011, contents lists available at Science Direct Website, www.sciencedirect.com [8] Francesco Calise 2011, High temperature solar heating and cooling systems for different Mediterranean climates: Dynamic simulation and economic assessment, DETEC, University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy, contents lists available at Science Direct Website, www.sciencedirect.com [9] Hans-Martin Henning, Solar assisted air-conditioning of building-an Overview, Applied Thermal Engineering, 27 (2007)1734-1749, contents lists available at Science Direct Website, www.sciencedirect.com [10] N Hartmann, C Glueck b, F.P Schmidt, Solar cooling for small office buildings: Comparison of solar thermal and photovoltaic options for two different European climates, a University of Stuttgart, Institute of Energy Economics and the Rational Use of Energy (IER) , Renewable Energy 36 (2011) 1329e1338, December 2010, contents lists available at Science Direct Website, www.sciencedirect.com [11] Jamal O Jaber, Prospects of energy savings in residential space heating, Energy and Buildings 34 (2002) 311–319, Department of Mechanical Engineering, Hashemite University, Zarqa, Jordan, 13 August 2001, contents lists available at Science Direct Website, www.sciencedirect.com [12] Doppelintegral GmbH, in: INSEL Users Manual (2009), 8th ed., MS Windows, Stuttgart, Germany, 2009 [13] Samar Jaber, Salman Ajib, Thermal and economic windows design for different climate zones, Energy and Buildings 43 (2011) 3208–3215, 16 August 2011, Technical University of Ilmenau, Department of Thermodynamics and Fluid Mechanics, Ilmenau, Germany, contents lists available at Science Direct Website, www.sciencedirect.com [14] Egypt, mission, Country-Profiles, This paper is available at this link, http://images.rca.org/docs/mission/country-profiles/Egypt.pdf 96 [15] Aswan, Egypt, Aswan overview, Aswan Weather, Asia rooms Website, last visit 05.02.2012,http://www.asiarooms.com/en/travel-guide/egypt/aswan/aswanoverview/aswan-weather [16] Weather data for Egypt, Africa, Building Technologies Program, Energy Plus Energy Simulation Software, Energy efficiency & renewable Energy, U.S Department of Energy website, http://apps1.eere.energy.gov/buildings/energyplus/weatherdata_about.cfm [17] Mr Salah Azzam and Mr Firas Alawneh, Meteorological measurement data for Aqaba city, The Higher Council for Science and Technology National Center (NERC), Amman , Jordan [18] Population and Housing Census, Department of Statistic DOS, Jordan, 2004 [19] Samar Jaber, Salman Ajib, Optimum design of Trombe wall system in Mediterranean region, Ilmenau University of Technology, Department of Thermo and Fluid Dynamics, P.O Box 100565, 98648 Ilmenau, Germany,25 April 2011, contents lists available at Science Direct Website, www.sciencedirect.com [20] Samar Jaber, Salman Ajib, Optimum, technical and energy efficiency design of residential building in Mediterranean region, Ilmenau University of Technology, Department of Thermo and Fluid Dynamics, P.O Box 100565, 98648 Ilmenau, Germany, 22March 2011, contents lists available at Science Direct Website, www.sciencedirect.com [21] Thermal insulation code (2009), Ministry of Public Work and Housing , Amman, Jordan [22] MASDAR ENERGY DESIGN GUIDELINES (MEDG) VERSION 2.0 Office & Residential (2010), MASDAR (Abu Dhabi Future Energy Company) Page 66 , 2010 97 [23] ASHRAE 90.1 standard (2007), American society of Heating Refrigerating and Airconditioning Engineers, Page.5-14 2007 [24] ASHRAE, Handbook Fundamental (2005), American Society of Heating, Refrigerating and Air-conditioning Engineers, 2005 [25] S.A Klein, et al., , TRNSYS A Transient System Simulation Program, Solar Energy Laboratory, University of Wisconsin, Madison, 2006 [26] Energy modelling and building physics resource base, Software, TRNSYS, University of Cambridge, http://www-embp.eng.cam.ac.uk/software/trnsys [27] TRNSYS 16: A TRaNsient System Simulation program – Volume Getting Started Solar Energy Laboratory, University of Wisconsin-Madison, 2009 [28] Petrus Tri Bhaskoro and Syed Ihstham Ul Haq Gilani,Transient Cooling Load Characteristic of an Academic Building, using TRNSYS, SCENCE ALERT, An open ACESS Publisher, February 23, 2011 Contents lists available at : http://scialert.net/fulltext/?doi=jas.2011.1777.1783&org=11 [29] TRNSYS Group, TRNSYS 16 manual, 2003, http://www.aiguasol.coop/files/file463.pdf, [30] Mitalas, Arseneault, FORTRAN IV Program to Calculate z-Transfer Functions for the Calculation of Transient Heat Transfer Through Walls and Roofs, Division of National Research Council of Canada, Ottawa [31] Wang, S.K., Handbook of Air-conditioning and Refrigeration 2nd Edn., McGrawHill, New York, ISBN-13: 978-0070681675, 2000 [32] Cengel and Boles, Thermodynamics: An Engineering Approach 5th Edn., McGrawHill, New York, 2008 98 [33] TRNSYS 16 manual, a TRaNsient SYstem Simulation program, Volume to volume 9,Using the Simulation Studio [34] Eicker, Ursula, Solar Tehchnology for Buildings, JohnWiely& Sons Ltd, USA, 2003 [35] Nada Mekki, Application of absorption solar air-conditioning Technology depending on climate and building standard, Energy and semiconductor Research Laboratory, Department of physics, Faculty of Mathematics &Science ,Carl Von Ossietzky University ,Oldenburg/F.R Germany, 2008 [36] Duffie, John A and William A Beckman, Solar Enginnering of Thermal processes, 3d edition, Published by John Wiely &Sons Inc., Hobokev, New Jersey, 2006 [37] Marc Delorme,Reinhard Six, Sabrine Berthaud, PROMOTING SOLAR AIR CONDITIONIN, Technical overview of active technique, ALTENER Project Number 4.1030/Z/02-121/200 [38] Paul Bourdoukan, Task 38 Solar Air –Conditioning and Refrigeration, Description of simulation tools used in solar cooling, New developments in simulation tools and models and, their validation Solid desiccant cooling, Absorption chiller, A technical report of subtask C, Deliverable C2-A ,Date: November 9, 2009 [39] Lindholm T (2003a) Inneklimat Komfortkyla Evaporativ och sorptiv kylning Göteborg: Department of building services engineering, Chalmers, 2003 [40] Gordon J.,Choon Ng (2000) High-efficiency solar cooling Solar energy Vol 68 No 1,pp 23-31 ISSN:0038-092x, 2000 [41] Filipe Mendes L., Collares-Pereira M Ziefler F., Supply of cooling and heating with solar assisted absorption heat pumps: an energetic approach International Journal of Refrigeration Vol 21, No 2, pp 116-125 ISSN: 0140-7007, 1998, contents lists available at Science Direct Website, www.sciencedirect.com 99 [42] ASHRAE, 2000 , HVAC Systems and Equipment (SI edition) Atlanta: American Society of Heating Refrigerating an Air-conditioning Engineers, Inc (2000 ASHRAE ,HANDBOOK),2000 [43] NICOLAM PEARSALL and ROBERT HILL, PHOTOVOLTIC MODULES SYSTEMS AND APPLICATIONS, 25/04/01 , Northumbria Photovoltaic Applications Center, University Of Northumbria at Newcastle [44] Leonics Company , home page ,Support , How to Design Solar PV System, last visited homepage, 11/2012 http://www.leonics.com/support/article2_12j/articles2_12j_en.php [45] Inverter data sheet Characteristic, jul6, 2011, last visit in 26/01/2012 http://www.wholesalesolar.com/pdf.folder/inverter%20pdf%20folder/XantrexXWspe cs.pdf [46] Al-Salaymeh, Al-Hamamre, Sharaf, Abdelkader, a Technical and economical assessment of the utilization of photovoltaic systems in residential buildings: The case of Jordan, December 2009, contents lists available at Science Direct Website, www.sciencedirect.com [47] Prod Dr.-Ing.Mohamed Ibrahem, Estimation the battery capacity (Ah), module photovoltaic II, REMENA master program, Kassel university, Germany, 2011 [48] M Alonso Garcı´a-,J.L Balenzategui, Technical note, Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations, Renewable Energy 29 (2004) 1997–2010, 23 March 2004, contents lists available at Science Direct Website, www.sciencedirect.com [49] E Skoplaki, J.A Palyvos,On the temperature dependence of photovoltaic module electrical performance: A review of efficiency/power correlations, November 2008, contents lists available at Science Direct Website, www.sciencedirect.com 100 [50] Hining ,H.-M(Ed): Solar-Assisted Air – Conditioning in Building –A Handbook for planners.Springer-Verlag/wien, 2004 [51] U.S Department of Energy, Sitting Your Solar Water Heating System's Collector, U.S Energy efficiency & renewable, http://www.energysavers.gov , last visit 05.01.2012 [52] Schüco Premium V Flat plate Solar collector, Solar flat plate technical data sheet ,Schüco Company USA L.P, www.schuco-usa.com [53] KWB Germany ,hot water storage tank, KWB Deutschland – Kraft und Wärme aus Biomasse GmbH, Branch office, South Königsberger Straße 46, D-86690 Mertingen, www.kwb.at [54]ASHRAE, in: Ventilation and Acceptable Air Quality in Low-rise Residential Buildings Standard, American Society of Heating, Refrigerating and Air-conditioning Engineers, 2004 [55] Agrawal,Shyam K.,2002, Applied Thermo sciences Principles &Applications, Viva Books Private Limited, New Delhi [56] Solar-assisted heating and cooling of buildings: technology, markets and perspectives by Björn Nienborg, 2010-02-0, solar magazine, http://www.solarserver.com [57] Duffie, John A and Beckman, William A.,1991, Solar Engineering of Thermal processes, 2nd edition , John Wiely &Sons Inc.,USA, 1991 [58] Solar collector :Different type and fields of application, Knowledge Solar CollectorsSolar Server forum for solar energy webpage, last visit 02.01.201, http://www.solarserver.com 101 Appendices Appendix A: Schematic vapour compression cycle Figure A: Schematic vapour compression cycle, [2] Appendix B: Solar Photovoltaic module data sheet Taken from SCHOTT solar COMPANY in Germany 102 Appendix C: Inverter data sheet, [45] 103 Appendix D: Description of Wet Cooling Tower, [37] According [37]‘‘see (Fig A1), The basic function of a cooling tower is to ensure a good heat and mass transfer between the cooling water stream and ambient air Thus, the hot water enters the upper part of the cooling tower, where it is evenly distributed across the tower by a spraying system To increase the effective contact surface between water and air, there is additional filling material installed inside the cooling tower At the bottom of the tower, the cooled water is collected again in a reservoir To ensure sufficient air-flow through the tower, a fan is installed that either forces entering air into the tower or sucks discharge air at the outlet Additional installations for water treatment and blow-down are required for all cooling towers to replace the evaporated cooling water and to prevent fouling.’’ Figure D: Schematic drawing of an open type wet cooling tower, [37] 104 Declaration I, Younis Yousef Badran, declare that this master thesis is my own genuine work and has not been submitted in any form for another degree or diploma at any university or other institute of tertiary education Information derived from the published and unpublished work of others has been acknowledged in the text and a list of references is given in the bibliography March 5, 2012 Kassel, Germany Signature : 105 ‫الملخص‬ ‫إن الزيادة في الطلب على المكيفات الهوائية الكهربائية المستخدمة لتبريد المباني تؤدي إلى زيادة استهالك مصادر‬ ‫الطاقة األولية غير المتجددة بشكل كبير‪ ‬حيث تعتبر منطقة الشرق األوسط وجنوب إفريقيا من أكثر مناطق العالم‬ ‫استهالكا" للطاقة بواسطة هذه المكيفات‪ ‬فعلى سبيل المثال‪ :‬إن ما نسبته ‪ %۰۳‬من الطاقة الكهربائية المستهلكة في‬ ‫جمهورية مصر العربية هي طاقة مستهلكة بواسطة هذه المكيفات وذلك بسبب ارتفاع درجات الحرارة وزيادة نسبة‬ ‫اإلشعاع الشمسي على مدار السنة في هذه المنطقة‪ ‬وبما أن هناك تكنولوجيا حديثة تقوم على إستخدام الطاقة الشمسية‬ ‫إلنتاج الهواء البارد لتكييف المباني فبالتالي تعتبر هذه التكنولوجيا الجديدة الحل الجذري لهذه المشكلة في تلك المناطق‪ ‬إن‬ ‫هناك نوعان من هذه التكنولوجيا الجديدة‪ ،‬النوع األول يقوم على استخدام الطاقة الشمسية الحرارية لتسخين المياه بواسطة‬ ‫األ لوا‬ ‫المجمعة لشأشعة الشمسية‪ ،‬ومن ثم تحويل هذه الطاقة الحرارية إلى طاقة تبريد وذالك باستخدام تكنولوجيا‬ ‫اإلمتصاص‪ ‬أما النوع الثاني فهو تحويل الطاقة الشمسية الضوئية الى طاقة كهربائية بواسطة األلوا الشمسية الضوئية‬ ‫لتشغيل المكيفات الهوائية المستخدمة لتبريد المباني‪.‬‬ ‫إن هذه الرسالة تقدم دراسة تحليلية ومقارنة بين نظام التبريد بواسطة الطاقة الشمسية الحرارية ونظام الطاقة‬ ‫الشمسية الضوئية في منطقة الشرق األوسط وشمال إفريقيا‪ ‬حيث طبقت هذه الدراسة على نموذج للبيت العائلي الواحد‬ ‫الشائع في هذه المنطقة ضمن مناخ مدين تي أسوان في مصر والعقبة في األردن‪ ‬وقد تمت هذه الدراسة على ثالث مراحل‬ ‫‪ :‬المرحلة األولى وقد تم فيها عمل محاكاة لحساب طاقة التبريد المستهلكة لهذا البيت على طول السنة في كل منطقه وذلك‬ ‫بواسطة استخدام البرنامج الحاسوبي (‪ (TRNSYS‬بواسطة إدخال بيانات سنوية لشأرصاد الجوية خالل ساعات سطوع‬ ‫الشمس التابعة لكل منطقة باإلضافة الى إدخال البيانات المعمارية واإلنشائية التفصيلية المتبعة لتصميم وبناء المنازل في‬ ‫تلك المناطق‪ ‬أما المرحلة الثانية فتمت بناء" على مخرجات ونتائج الخطوة األولى والتي تتمثل في تصميم ثالث‬ ‫سيناريوهات من أنظمة التكييف بواسطة الطاقة الشمسية لتغطية طاقة التبريد المستهلكة للبيت‪ ‬وهذه السيناريوهات ‪،‬‬ ‫األول نظام التبريد بواسطة الطاقة الشمسية الضوئية بدون نظام تخزين الطاقة (البطاريات) ‪،‬أما النظام الثاني بنفس النظام‬ ‫األول ولكن مع نظام تخزين للطاقة (البطاريات)‪ ،‬أما السيناريو الثالث فهو نظام تبريد بواسطة الطاقة الشمسيه الحرارية‬ ‫مع نظام تخزين (خزان مياه ساخنة)‪ ‬والمرحلة الثالثة تمثلت بعمل محاكاة بواسطة برنامج حاسوبي (‪Matlab-‬‬ ‫‪ )Simulink‬لحساب طاقة التبريد المزودة من قبل كل سيناريو من أجل تغطية استهالك البيت‪ ‬وخالل عمل هذه المحاكاة‬ ‫تم إدخال بيانات سنوية لشأرصاد الجوية خالل ساعات سطوع الشمس التابعه لكل منطقة‪.‬‬ ‫إن المحاكاة األولى أظهرت أن الكمية السنوية لطاقة التبريد المستهلكة في البيت لكل من منطقتي أسوان والعقبة على‬ ‫التوالي هي ‪ ٤٤۳۳۰‬كيلو وات‪/‬سنة ‪ ٤۳٤۹۰،‬كيلو وات‪/‬سنة باإلضافة لذلك فإن أقصى قدره يصل لها االستهالك في‬ ‫البيت في كل منطقه هي ‪۳۳.۹‬كيلو وات ‪۳٥ ۳ ،‬كيلو وات على التوالي‪ ‬حيث تشير هذه األرقام إلى أن النسبة المئوية‬ ‫لطاقة التبريد من مجمل الطاقة المستهلكة في البيت (التدفئة والتبريد) على النحو التالي ‪.% ۹٦ ۳ ، % ۹٧ ٥‬‬ ‫وب المحصلة فإن هذه األرقام تثبت وتبين أن كمية االستهالك لطاقة التبريد المستهلكة كبيرة مقارنة مع طاقة التدفئة‬ ‫المستهلكة وأن نظام التبريد مهم لهذا النمط من البيوت في هذه المناطق‪.‬‬ ‫إن نتائج المحاكاة الثانية أظهرت أنه ال يوجد فرق كبير بين السيناريو الثاني والثالث من ناحية المجموع السنوي‬ ‫الكلي للنسبة المؤيه المتمثلة في تغطية طاقة التبريد المستهلكة للبيت حيث أن فرق النسبه ال يتجاوز ‪ ۳۱‬في كال‬ ‫المنطقتين‪ ‬لكن هناك فروقات تمثلت في أن األداء اليومي للتغطية المباشرة للتبريد المستهلك بواسطة السيناريوهين األول‬ ‫والثاني (نظام التبريد بواسطة الطاقة الشمسية الضوئية) أفضل مما هو عليه في السيناريو الثالث (نظام التبريد بواسطة‬ ‫الطاقة الشمسية الحرارية)‪ ‬وأن النسبة المئوية السنوية لتغطية التبريد الم ستهلك بشكل مباشر عندما يكون أي نظام بدون‬ ‫مخزن لكل من بيت أسوان و العقبة على التوالي هي ‪ %۳٥.۸ , %۳ ۹ ۳‬بواسطة السيناريو األول أوالثاني (التبريد‬ ‫بواسطة الطاقة الشمسية الضوئية) و ‪ ۳۰۱.۹، %۳۰.۸،‬بواسطة السيناريو االثالث (التبريد بواسطة الطاقة الشمسية‬ ‫الحرارية)‪ ‬كما أن النسبة المؤية السنوية لتغطية التبريد بواسطة مساهمة نظام التخزين لكل من حالة أسوان والعقبة على‬ ‫التوالي هي ‪ % ٧.۳ ، %۳۰.٧‬في السيناريو الثاني و ‪ %۳۳ ۹ ، % ۰۰.۳‬في السيناريو الثالث‪.‬‬ ‫إن خالصة هذه النتائج تظهر أن السيناريو الثاني (نظام التبريد بواسطة الطاقة الشمسية الضوئية مع نظام التخزين)‬ ‫أفضل وذلك من ناحية تغطية التبريد المستهلك مقارنة مع السيناريو الثالث (نظام التبريد بواسطة الطاقة الشمسيه‬ ‫الحرارية مع نظام تخزين) إضافة إلى أنه أقل احتياجا لنظام التخزين لتغطية نفس الكمية من طاقة التبريد المستهلكة‪ ‬أي‬ ‫أن نظام التخزين في نظام التبريد بواسطة الطاقة الشمسية الضوئية يعتبر من حيث األهمية والكفاءة في المرتبة الثانية‬ ‫بينما التغطية للتبريد المستهلك بشكل مباشر يعتبر في المرتبة األولى‪ ‬بينما في نظام التبريد بواسطة الطاقة الشمسية‬ ‫الحرارية يعتبر عكس ذلك‪.‬‬ ‫دراسة تحليل ومقارنه للتبريد بواسطة الطاقة الشمسية الحرارية والطاقة الشمسية‬ ‫الضوئية في منطقة الشرق االوسط وشمال افريقيا‬ ‫إعداد‬ ‫يونس يوسف عبد ربه بدران‬ ‫رسالة مقدمه إلى كلية الهندسة في جامعة القاهرة‬ ‫و إلى كلية الهندسة وعلم الحاسوب في جامعة كاسل‬ ‫كجزء من متطلبات الحصول على درجة الماجستير‬ ‫في الطاقة المتجددة وكفاءة الطاقة في منطقة الشرق االوسط وشمال افريقيا‬ ‫تحت اشراف‬ ‫د‪.‬عادل خليل حسن خليل‬ ‫د‪ ‬كالودي ألبرت‬ ‫أستاذ دكتور بقسم هندسة القوى الميكانيكية‬ ‫كلية الهندسة‬ ‫جامعة القاهرة‬ ‫أستاذ دكتور بقسم الهندسة الكهربائية‬ ‫كلية الهندسة وعلم الحاسوب‬ ‫جامعة كاسل‬ ‫كلية الهندسة‪ ،‬جامعة القاهر‬ ‫كلية الهندسة وعلم الحاسوب‪ ،‬جامعة كاسل‬ ‫الجيزة‪ ،‬جمهورية مصر العربية‬ ‫كاسل‪ ،‬ألمانيا‬ ‫آذار‪۲۳۰۲،‬‬ ‫دراسة تحليل ومقارنه للتبريد بواسطة الطاقة الشمسية الحرارية والطاقة الشمسية‬ ‫الضوئية في منطقة الشرق االوسط وشمال افريقيا‬ ‫إعداد‬ ‫يونس يوسف عبد ربه بدران‬ ‫رسالة مقدمه إلى كلية الهندسة في جامعة القاهرة‬ ‫و إلى كلية الهندسة وعلم الحاسوب في جامعة كاسل‬ ‫كجزء من متطلبات الحصول على درجة الماجستير‬ ‫في الطاقة المتجددة وكفاءة الطاقة في منطقة الشرق االوسط وشمال افريقيا‬ ‫يعتمد من لجنة الممتحنين ‪:‬‬ ‫د‪.‬عادل خليل حسن خليل‬ ‫المشرف الرئيسي‬ ‫أستاذ دكتور بقسم هندسة‬ ‫القوى الميكانيكية‬ ‫كلية الهندسة‬ ‫جامعة القاهرة‬ ‫د‪ ‬كالودي ألبرت‬ ‫المشرف الرئيسي‬ ‫أستاذ دكتور بقسم الهندسة‬ ‫الكهربائية‬ ‫كلية الهندسة وعلم الحاسوب‬ ‫جامعة كاسل‬ ‫د‪ ‬سيد أحمد كاسب‬ ‫عضو‬ ‫أستاذ مساعد دكتور بقسم‬ ‫هندسة القوى الميكانيكية‬ ‫كلية الهندسة‬ ‫جامعة القاهرة‬ ‫كلية الهندسة‪ ،‬جامعة القاهرة‬ ‫كلية الهندسة وعلم الحاسوب‪ ،‬جامعة كاسل‬ ‫الجيزة‪ ،‬جمهورية مصر العربية‬ ‫كاسل‪ ،‬ألمانيا‬ ‫آذار‪۲۳،‬‬

Ngày đăng: 10/12/2016, 10:01

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w