1. Trang chủ
  2. » Mẫu Slide

tích phân từng phần

21 246 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 21
Dung lượng 507 KB

Nội dung

NEWTON-LEIBNITZ Kiểm tra cũ: Câu hỏi : a) Tính nguyên hàm b) Từ tính I = x sin x dx J = x sin x dx Gii u = x du = dx a) ặt b) Ta có dv = sin xdx v = cos x I = x cos x + cos xdx = x cos x + sin x + C J = ( x cos x + sin x) | = Câu hỏi 2: a) Tính cos xdx ;( x cos x) dx , b) Từ tính J = x sin xdx Gii a) có cos x d x = sin x | =0 , ( x cos x ) d x = ( x cos x ) | = 0 , ( x cos x ) dx = (cos x x sin x)dx = cos xdx + ( x sin x)dx b) Có 0 0 ( x sin x)dx = ( x cos x), dx cos xdx = x sin xdx = 0 Ta có: (u ( x)v( x)) = u ( x)v( x) + u ( x)v ( x) , , , b b b a a a (u ( x)v( x)), dx = u , ( x)v( x)dx + u ( x)v , ( x)dx b b a a u ( x)v , ( x)dx = (u ( x)v( x)) |ba u , ( x)v( x)dx Công thức trờn gọi công thức tính tích phân phần viết dới dạng: b b a a b u d v = ( uv ) | a vdu PHNG PHP TCH PHN TNG PHN NH L : Nu hai hm s u=u(x) v v = v(x) cú o hm liờn tc trờn [a;b] thỡ: b b u ( x)v ( x)dx = (u ( x)v( x)) | v( x)u ( x)dx , b a a , a b Hay b udv = (uv) | vdu b a a a V D1 Tớnh tớch phõn I1 = x.e x dx Gii du = dx u= x t x x dv = e dx v = e Ta cú: I1 = x e = xe Vy x x1 -e e dx x x I1 = = (e - ) - (e - ) = NHN XẫT Hm s f(x) P ( x )e x t u(x) P ( x) d(v(x)) x e dx V D1 Tớnh tớch phõn I1 = x.e x dx Gii du = dx u= x t x x dv = e dx v = e Ta cú: I1 = x e = xe Vy x x1 -e e dx x x I1 = = (e - ) - (e - ) = V D Tớnh I = xcosxdx Gii du =dx u = x v =sinx dv = cosxdx t Ta cú: I = x cos xdx = x sin x sin xdx 0 = xsinx + cosx = -1 NHN XẫT Hm s f(x) P(x)cosx t u(x) d(v(x)) P( x) cosxdx Vớ d Tớnh cỏc tớch phõn e I = x.ln x dx 1 d u = d x u = lnx x d v = x d x x v = 2 e e 2 e x x e x I = ln x dx = 2 x 1 e = + 4 NHN XẫT Hm s f(x) P(x)lnx t u(x) d(v(x)) lnx P (x)dx Vớ d Tớnh cỏc tớch phõn I = e cos xdx x e I = x ln x dx T NHNG V D TRấN ,TA SUY RA CCH T u V v TRONG TCH PHN TNG PHN NH SAU: ẹaởt d(v(x)) Hm s f(x) t u(x) P(x)sinax P(x) Sinaxdx P(x)cosax P(x) Cosaxdx P(x)lnx Lnx P(x)dx P(x)eax P(x) eaxdx eaxsinbx eax(hoaởc sinbx) Sinbxdx eaxcosbx eax(hoaởc cosax) Cosbxdx Dựng tớch phõn hai ln vi u=eax [...]... dụ 3 Tính các tích phân e I 3 = ∫ x.ln x dx 1 1  d u = d x u = lnx  x  ⇒ d v = x d x   2 x v =  2 2 e e 2 2 2 e x x 1 e x I 3 = ln x − ∫ dx = − 2 2 x 2 4 1 1 2 e 1 = + 4 4 1 NHẬN XÉT Hàm số f(x) P(x)lnx Đặt u(x) d(v(x)) lnx P (x)dx Ví dụ 4 Tính các tích phân 1 I 4 = ∫ e cos xdx x 0 e I 5 = ∫ x 2 ln x dx 1 TỪ NHỮNG VÍ DỤ TRÊN ,TA SUY RA CÁCH ĐẶT u VÀ v TRONG TÍCH PHÂN TỪNG PHẦN NHƯ SAU: Ñaët... NHƯ SAU: Ñaët d(v(x)) Hàm số f(x) Đặt u(x) P(x)sinax P(x) Sinaxdx P(x)cosax P(x) Cosaxdx P(x)lnx Lnx P(x)dx P(x)eax P(x) eaxdx eaxsinbx eax(hoaëc sinbx) Sinbxdx eaxcosbx eax(hoaëc cosax) Cosbxdx Dùng tích phân hai lần với u=eax ... u ( x)v , ( x)dx = (u ( x)v( x)) |ba u , ( x)v( x)dx Công thức trờn gọi công thức tính tích phân phần viết dới dạng: b b a a b u d v = ( uv ) | a vdu PHNG PHP TCH PHN TNG PHN NH L : Nu

Ngày đăng: 06/12/2016, 10:18

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN

w