1. Trang chủ
  2. » Giáo án - Bài giảng

Corporate finance chapter 08 contents

18 376 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 18
Dung lượng 99,5 KB

Nội dung

Chapter Contents • Using Present Value Formulas to Value Known Flows • The Basic Building Blocks: Pure Discount Bonds • Coupon Bonds, Current Yield, and Yield-toMaturity • Reading Bond Listings • Why Yields for the same Maturity Differ • The Behavior of Bond Prices Over Time Bond Prices Rise as the Interest Rates Fall • Write the PV of the fixed income security as the sum terms j      PV = ∑ pmt j *     1+ i   j =1  n       = pmt1 *  + pmt * + + pmt *     n −1  + i + i + i       n −1   + pmt n *   + i   n US Treasury Yiled Curve, Jan 97 7.50 Annualized Yield (%) 7.00 6.50 6.00 5.50 5.00 4.50 10 15 Years to Maturity 20 25 30 Pure Discount Bonds • The pure discount bond is an example of the present value of a lump sum equation we analyzed in Chapter • Solving this, the yield-to-maturity on a pure discount bond is given by the relationship: F = P (1 + i ) n  F n ⇒ i =   −1 P Pure Discount Bonds F = P (1 + i ) n  F n ⇒ i =   −1 P • In this equation, – P is the present value or price of the bond – F is the face or future value – n is the investment period – i is the yield-to-maturity Pure Discount Bonds n F  10000  i =   −1 =   − = 5.41% P  9000  N I PV PMT FV ? 5.41% 9,000 -10,000 Bonds Trading at Par • Bond Pricing Principle #1: (Par Bonds) – If a bond’s price equals its face value, then its yield-to-maturity = current yield = coupon rate Proof: n n   pmt       P= 1−  + F      i  1+ i   1+ i  & P=F ⇒    n  pmt    n  pmt    P 1 −  = − ⇒ P = =F      + i    i  1+ i   i   First Solution Method 960 890 810 (1000 + 100) P= 100 + 100 + 1000 1000 1000 P = $1076.00 Second Solution Method 1  1,000  i0,1 =   − = 4.17%  960  i0, 2  1,000  =  − = 6.00%  890   1,000  i0,3 =   − = 7.28%  810  100 100 1000 + 100 P= + + 1.0417 1.0600 1.07283 P = $1,075.91 The YTM of the Coupon Bond N I PV ? -1076 100 7.10% 10 PMT FV 1000 n n  x         + f   &i > 0&n > 0& x > ⇒  p = 1 −  i  1+ i    + i     x    n  x (1 + i ) −  p i = =  n ( ) p + i − f − ( f − p)  p (1 + i ) n −  ( ) (  ( f − p)  & 1 − > 0 n p (1 + i ) −   ( ) 11 )       n n    x        + f   &i > 0&n > 0& x > ⇒  p = 1 −  i  1+ i    + i     1    −  = (1 + i ) − n  −  ⇒  x i  x i  p   f  () ()  1  1  −n    = (1 + ytm)   − −  current yield ytm   coupon yield ytm  12 Yield Relationships 0.2 0.18 0.16 coupon_y current_y y_t_m 0.14 Yield 0.12 0.1 0.08 0.06 0.04 0.02 600.00 800.00 1000.00 1200.00 Price 13 1400.00 1600.00 1800.00 Yield Relationships Yield 0.13 coupon_y current_y y_t_m 0.11 0.09 0.07 800.00 1000.00 Price 14 1200.00 Two Yield Curves (Pure Discount) 9.00% 8.00% Yield to Maturiry 7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00% 0.00% 10 15 Years to Maturity 15 20 Dymanic Yield Curve 8.00% 7.00% Yield to matutiry 6.00% 5.00% Current 5-year 10-year 15-Year 20-Year 4.00% 3.00% 2.00% 1.00% 0.00% 10 16 to maturity years 15 20 Interest Rates 9.00% 8.00% Rate 7.00% 6.00% spot 5.00% long_forward 4.00% 3.00% 2.00% 1.00% 0.00% 10 17 Years 15 20 20-Year Bond Value Over Time 1060 1040 1000 980 960 940 920 20 15 10 Time to Maturity 18 Value 1020 [...]... i  x i  p   f  () ()  1 1  1 1  −n    = (1 + ytm)   − −  current yield ytm   coupon yield ytm  12 Yield Relationships 0.2 0.18 0.16 coupon_y current_y y_t_m 0.14 Yield 0.12 0.1 0 .08 0.06 0.04 0.02 0 600.00 800.00 1000.00 1200.00 Price 13 1400.00 1600.00 1800.00 Yield Relationships Yield 0.13 coupon_y current_y y_t_m 0.11 0.09 0.07 800.00 1000.00 Price 14 1200.00 Two Yield Curves

Ngày đăng: 16/11/2016, 17:17

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN