1. Trang chủ
  2. » Luận Văn - Báo Cáo

NGHIÊN CỨU MỘT SỐ KỸ THUẬT KHÔI PHỤC MẶT NGƯỜI BA CHIỀU TỪ SỌ

132 699 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 132
Dung lượng 6,55 MB

Nội dung

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ MA THỊ CHÂU NGHIÊN CỨU MỘT SỐ KỸ THUẬT KHÔI PHỤC MẶT NGƯỜI BA CHIỀU TỪ SỌ LUẬN ÁN TIẾN SĨ CÔNG NGHỆ THÔNG TIN HÀ NỘI – Năm 2013 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ MA THỊ CHÂU NGHIÊN CỨU MỘT SỐ KỸ THUẬT KHÔI PHỤC MẶT NGƯỜI BA CHIỀU TỪ SỌ Chuyên ngành: Khoa học Máy tính Mã số: 62 48 01 01 LUẬN ÁN TIẾN SĨ CÔNG NGHỆ THÔNG TIN NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS.BÙI THẾ DUY GS TAE – WAN KIM HÀ NỘI – Năm 2013 LỜI CẢM ƠN Để hoàn thành luận án, tác giả nhận giúp đỡ nhiệt tình tạo điều kiện nhiều người, sau tác giả xin phép bày tỏ lời cảm ơn chân thành: Tôi xin gửi lời cảm ơn chân thành sâu sắc tới hai thầy Bùi Thế Duy – Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội thầy Tae-wan Kim – Trường Đại học quốc gia Seoul, Hàn Quốc, người thầy tâm huyết tận tình hướng dẫn, động viên khích lệ, dành nhiều thời gian quí báu để định hướng cho trình tham gia khóa học hoàn thiện luận án Tôi xin gửi lời cảm ơn chân thành tới lãnh đạo trường Đại học Công nghệ, lãnh đạo Khoa Công nghệ thông tin, cảm ơn đồng nghiệp tạo điều kiện thuận lợi cho trình làm luận án Tôi xin gửi lời cảm ơn chân thành tới bạn đồng nghiệp phòng thí nghiệm Tương tác Người máy, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội, người bên động viên, góp ý, chỉnh sửa trình viết luận án Tôi xin gửi lời cảm ơn chân thành tới bác Nguyễn Trọng Toàn – Nguyên giám đốc Viện pháp y quân đội, người cung cấp số liệu có lời khuyên bổ ích giúp tiếp cận số liệu nhân trắc khuôn mặt hiệu để hoàn thành luận án Tôi xin gửi lời cảm ơn chân thành tới bạn Nguyễn Đình Tư – Phòng thí nghiệm Tương tác Người máy, Trường Đại học Công nghệ, Đại học Quốc gia Hà Nội, bạn Phạm Bá Mấy – Viện CNTT, Viện Khoa học Việt Nam nhiệt tình giúp đỡ trình triển khai thu thập số liệu can thiệp thông tin nhân trắc Tôi xin gửi lời cảm ơn đặc biệt tới anh Đặng Trung Kiên, người có dẫn, lời khuyên, động viên bổ ích thiết thực trình thực luận án Cuối cùng, xin gửi lòng ân tình tới bố mẹ, chồng Gia đình nguồn động viên truyền nhiệt huyết để hoàn thành luận án i LỜI CAM ĐOAN Tôi xin cam đoan: Bản luận án tốt nghiệp công trình nghiên cứu thực cá nhân, thực sở nghiên cứu lý thuyết, kiến thức kinh điển, nghiên cứu khảo sát tình hình thực tiễn hướng dẫn khoa học PGS TS Bùi Thế Duy GS TS Tae-wan Kim Các số liệu, mô hình toán kết luận án trung thực, giải pháp đưa xuất phát từ thực tiễn kinh nghiệm, chưa công bố hình thức trước trình, bảo vệ công nhận “Hội Đồng đánh giá luận án tốt nghiệp Tiến sĩ Công nghệ Thông Tin” Một lần nữa, xin khẳng định trung thực lời cam kết Tác giả: ii MỤC LỤC LỜI CẢM ƠN i LỜI CAM ĐOAN ii MỤC LỤC iii DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT vi DANH MỤC CÁC BẢNG vii DANH MỤC CÁC HÌNH VẼ viii MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Bối cảnh 1.2 Bài toán cách giải 1.3 Cấu trúc luận án .5 SỌ CHƯƠNG KIẾN THỨC CƠ BẢN VỀ DỰNG KHUÔN MẶT TỪ HỘP 2.1 Các cách tiếp cận dựng khuôn mặt từ hộp sọ 2.1.1 Dựng thủ công khuôn mặt từ hộp sọ .7 2.1.2 Dựng khuôn mặt từ hộp sọ với trợ giúp máy tính 2.2 Biểu diễn mô hình ba chiều khuôn mặt sọ 12 2.2.1 Mô hình hóa bề mặt khuôn mặt lưới đa giác 13 2.2.2 Mô hình hóa bề mặt khuôn mặt bề mặt tham số 14 CHƯƠNG DỰNG MÔ HÌNH BA CHIỀU CỦA SỌ TỪ ẢNH 16 3.1 Những nghiên cứu liên quan 17 3.1.1 Dựng mô hình ba chiều khuôn mặt từ ảnh 17 3.1.2 Các trích chọn đặc trưng ảnh 24 3.2 Thuật toán dựng mô hình ba chiều sọ từ ảnh 25 3.2.1 Thuật toán tính đặc trưng sọ ba chiều 27 3.2.2 Ảnh hưởng lỗi trượt lên đặc trưng sọ ba chiều cách khắc phục 30 3.2.3 Biến đổi mô hình ba chiều sọ mẫu RBF 34 iii 3.2.4 Đặc tính hội tụ độ phức tạp thuật toán 36 Thử nghiệm đánh giá 39 3.3 3.3.1 Tính lỗi trượt điều chỉnh đặc trưng sọ ba chiều 39 3.3.2 Đánh giá hiệu điều chỉnh đặc trưng sọ ba chiều dựa lỗi trượt 42 Kết luận chương 43 3.4 CHƯƠNG DỰNG MÔ HÌNH BA CHIỀU KHUÔN MẶT TỪ MÔ HÌNH BA CHIỀU CỦA SỌ 44 Những nghiên cứu liên quan 45 4.1 4.1.1 Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều sọ với trợ giúp máy tính 45 4.1.2 Các phương pháp đánh giá mô hình ba chiều khuôn mặt kết 49 4.2 Thuật toán dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều sọ 51 4.2.1 Các mốc đo, số đo sọ xác định độ dày mô mềm 54 4.2.2 Biến đổi mô hình ba chiều khuôn mặt mẫu RBF 57 4.2.3 Đặc tính hội tụ độ phức tạp thuật toán 62 4.3 Thử nghiệm đánh giá 65 4.3.1 Xác định công thức tính độ dày mô mềm 65 4.3.2 Dựng mô hình ba chiều khuôn mặt từ mô hình ba chiều sọ 66 4.4 Kết luận chương 69 CHƯƠNG TRÍCH CHỌN ĐẶC TRƯNG TỰ ĐỘNG TRÊN MÔ HÌNH BA CHIỀU CỦA SỌ 70 5.1 Những nghiên cứu liên quan 70 5.1.1 Trích chọn đặc trưng ba chiều dựa đa giác 70 5.1.2 Trích chọn đặc trưng ba chiều dựa điểm 71 5.2 Trích chọn đặc trưng 73 5.2.1 Phân đoạn liệu 74 5.2.2 Trích chọn điểm góc 79 5.2.3 Trích chọn cạnh 82 5.2.4 Đặc tính hội tụ độ phức tạp thuật toán 85 5.3 Kết thử nghiệm 87 5.4 Kết luận chương 89 iv CHƯƠNG KẾT QUẢ NGHIÊN CỨU VÀ BÀN LUẬN .90 KẾT LUẬN 92 DANH MỤC CÁC CÔNG TRÌNH KHOA HỌC CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN ÁN 93 TÀI LIỆU THAM KHẢO 94 PHỤ LỤC - HÌNH HỌC E-PI-PÔ-LA 103 PHỤ LỤC - BIẾN ĐỔI BỀ MẶT BA CHIỀU DỰA VÀO HÀM BÁN KÍNH CƠ SỞ 106 PHỤ LỤC - MỘT SỐ PHÉP TOÁN 110 PHỤ LỤC - CÁC SỐ ĐO NHÂN TRẮC .116 v DANH MỤC CÁC KÝ HIỆU VÀ CHỮ VIẾT TẮT VIẾT TẮT ABBFP (Angle Between Best Fit Polynomial) BFP ( Best Fit Polynomial) ESOD (Extended Second Order Difference) MC (Marching Cubes) MSE (Mean Square Error) PCA (Principle Component Analysis) RBF ( Radial Basic Function) SFM (Structure From Motion) SOD (Second Order Difference) TPS (Thin-Plate Spline) THUẬT NGỮ Hộp sọ Mô hình ba chiều sọ : Góc đa thức tốt : Đa thức tốt : Vi phân bậc hai mở rộng : Các khối liên kết : Trung bình sai phương : Phân tích thành phần : Hàm bán kính sở : Cấu trúc từ chuyển động : Vi phân bậc hai : Mảnh S-pline mỏng : Hộp sọ thật khai quật : Mô hình ba chiều bề mặt hộp sọ dạng lưới đa giác Mô hình ba chiều khuôn mặt : Mô hình ba chiều bề mặt khuôn mặt dạng lưới đa giác vi DANH MỤC CÁC BẢNG Bảng 3.1: Lỗi trung bình lỗi lớn điểm đặc sọ trưng ba chiều trước sau điều chỉnh 42 Bảng 4.1: Lỗi trung bình hai phương pháp .68 Bảng 6.1: Một số hàm bán kính sở 108 Bảng 6.2: Các số đo sọ 116 Bảng 6.3: Mốc đo độ dày mô mềm .116 Bảng 6.4: Công thức tính độ dày mô mềm theo phương pháp hồi qui tuyến tính 118 Bảng 6.5: Các số đo sọ dùng để tính độ dày mô mềm theo phương pháp dùng mạng nơ-ron 120 vii DANH MỤC CÁC HÌNH VẼ Hình 1.1: Qui trình dựng mô hình ba chiều khuôn mặt từ hộp sọ Hình 2.1: Dựng thủ công khuôn mặt từ hộp sọ Hình 2.2: Một hệ thống chồng khít ảnh lên hộp sọ 10 Hình 2.3: Dựng khuôn mặt dựa giải phẫu 11 Hình 2.4: Dựng khuôn mặt dựa độ dày mô mềm 11 Hình 2.5: Ví dụ biểu diễn bề mặt khuôn mặt lưới đa giác 13 Hình 2.6: Ví dụ biểu diễn bề mặt khuôn mặt bề mặt s-pline 15 Hình 3.1: Dựng mô hình ba chiều khuôn mặt từ ảnh dựa vào hiệu chỉnh ảnh 19 Hình 3.2: Ảnh bảng ca-rô để hiệu chỉnh máy quay 19 Hình 3.3: Dựng mô hình ba chiều khuôn mặt từ ảnh dùng bảng ca-rô để hiệu chỉnh máy quay 20 Hình 3.4: Dựng mô hình ba chiều khuôn mặt từ thiết lập nguồn sáng chụp ảnh 21 Hình 3.5: Dựng mô hình ba chiều khuôn mặt dựa vào mô hình ba chiều khuôn mặt mẫu 22 Hình 3.6: Dựng mô hình ba chiều sọ từ ảnh 27 Hình 3.7: Tính điểm đặc trưng sọ ba chiều 29 Hình 3.8: Một số điểm đặc trưng sọ ba chiều 29 Hình 3.9: Lỗi trượt điều chỉnh điểm ba chiều 30 Hình 3.10: Mối quan hệ điểm hai chiều ba chiều 33 Hình 3.11: Đánh giá sai số trượt điều chỉnh đặc trưng sọ ba chiều 35 Hình 3.12: Mô hình ba chiều sọ mẫu 36 Hình 3.13: Xác định điểm đặc trưng mô hình ba chiều sọ mẫu 36 Hình 3.14: Chụp ảnh sọ quét 39 Hình 3.15: Hộp sọ quét trước (trái) sau (phải) đánh dấu thêm nhãn 39 Hình 3.16: Đối sánh đặc trưng SIFT 40 Hình 3.17: Đối sánh đặc trưng HARRIS 40 Hình 3.18: Lỗi trượt ảnh hộp sọ thứ 41 Hình 3.19: Lỗi trượt ảnh hộp sọ thứ hai 41 viii PHỤ LỤC - BIẾN ĐỔI BỀ MẶT BA CHIỀU DỰA VÀO HÀM BÁN KÍNH CƠ SỞ Để dựng mô hình ba chiều khuôn mặt kết quả, sử dụng mô hình ba chiều khuôn mặt mẫu dạng lưới tam giác Xác định điểm đặc trưng mô hình ba chiều khuôn mặt cần xây dựng, tương ứng với đó, xác định điểm đặc trưng mô hình ba chiều khuôn mặt mẫu Biến đổi tập điểm đặc trưng mô hình ba chiều khuôn mặt mẫu cho khớp đặc trưng mô hình ba chiều khuôn mặt cần dựng lại Sau đó, dựa biến đổi thực biến đổi toàn mô hình ba chiều khuôn mặt mẫu để có mô hình ba chiều khuôn mặt cần xây dựng Đây toán nội suy liệu rời rạc Bài toán nội suy liệu rời rạc: Cho tập liệu (xi,yi) với i = 1,n¯ , xi ∈ Rs , yi ∈ R tìm hàm liên tục Pf thỏa mãn Pf(xi) = yi,∀i = 1, n (6.7) Bài toán giải cách xấp xỉ hàm Pf tổ hợp tuyến tính hệ hàm sở tức (6.8) Việc xác định hàm Pf dẫn tới việc xác định hệ số ck 6.8 Từ 6.7 6.8 ta có (6.9) Biến đổi 6.9 dạng ma trận ta có Ac = y (6.10) Trong đó, Aij = Bj(xi),i,j = n, c = (c1,c2, ,cn)T , y = (y1, ,yn)T Bài toán có lời giải và ma trận A không suy biến Biến đổi dựa vào hàm bán kính sở trình bày cho lời giải toán 102 Biến đổi dựa vào hàm bán kính sở Mairhuber [48] đưa định nghĩa tồn không gian Haar Định nghĩa 6.2: Cho miền $ ∈ Rs với s >= không gian hàm hữu hạn chiều tuyến tính B ∈ C($) có sở {B1,B2, ,Bn}, B gọi không gian Haar $ det(Bk(xj)) 6= hay det(A) 6= 106 Với tập khác biệt x1, ,xn $ Aij = Bj, i,j = 1, ,n Định lý 6.1: Nếu miền $ ∈ Rs với s >= chứa điểm nằm không tồn không gian Haar hàm liên tục trừ không gian chiều Định lý cho thấy, không gian chiều ta nội suy liệu đa thức bậc n − từ liệu n điểm rời rạc Tuy nhiên, không gian nhiều chiều phép nội suy không Sự tồn không gian Haar bảo đảm nội suy liệu bậc n Nói cách khác, xác định ma trận A không suy biến đảm bảo nghiệm toán xác định Hardy [28] đề xuất hàm bán kính sở loại phụ thuộc liệu, có tính khoảng cách đối xứng tâm để giải vấn đề ma trận A không suy biến Do vậy, dùng RBF bảo đảm nội suy liệu Định nghĩa 6.3: Hàm φ : Rs −→ R liên tục xác định dương mà hàm chẵn thỏa mãn (6.11) với n điểm đôi khác x1, ,xn ∈ RS c = (c1, ,cn)T ∈ Rn Hàm φ gọi xác định dương chặt dấu 6.11 xảy ra, c = (0, ,0)T Nếu hàm sở hàm xác định dương chặt, ma trận nội suy xây dựng từ hàm sở ma trận nội suy dương chặt Tính chất quan trọng loại ma trận giá trị riêng ma trận dương ma trận không suy biến Định nghĩa 6.4: Hàm φ : Rs −→ R gọi hàm bán kính tồn hàm biến ϕ : [0,+∞) −→ R thỏa mãn φ(x) = ϕ(r) (6.12) Với r = ||x|| ||.|| chuẩn Hàm ϕ tương ứng gọi hàm bán kính sở Hàm ϕ xác định dương (chặt) hàm φ xác định dương (chặt) Bảng 6.1 biểu diễn số dạng hàm bán kính sở Mạng RBF mạng nơ-ron nhân tạo sử dụng hàm bán kính sở hàm kích hoạt Đó kết hợp tuyến tính hàm bán kính sở Kiến trúc mạng RBF thường có ba tầng: tầng vào, tầng ẩn, tầng Hàm ϕ : Rn −→ R mạng biểu diễn sau: (6.13) 107 Bảng 6.1: Một số hàm bán kính sở STT Tên hàm Gaussian Multiquadric Inversequadric Polyharmonic spline Thin plate spline Biểu diễn φ(r) = rk k = 1,3,5, φ(r) = rkln(r) k = 2,4,6, φ(r) = r2ln(r) Trong N số nơ ron tầng ẩn, ci vec-tơ tâm cho nơ ron thứ i ,và trọng số tuyến tính để tính đầu ρ hàm bán kính sở, trường hợp hàm Gaussian ρ(||x − ci||) = e−β||x−ci||2 (6.14) Trọng số ai, ci, β xác định với mục đích tối ưu việc khớp hàm ϕ liệu Trong mạng RBF, ba loại tham số cần cập nhật cho loại toán cụ thể là: vec-tơ tâm ci, trọng số tuyến tính cho tầng wi tham số βi hàm RBF Người ta định nghĩa hàm mục tiêu chọn tham số cho tối thiểu hàm mục tiêu Hàm mục tiêu thường định nghĩa hàm bình phương tối thiểu (6.15) Trong Kt(w) = [y(t) − ϕ(x(t),w)]2 Hàm tối thiểu có mục tiêu tối ưu độ xác (6.16) Trong trường hợp đầu hàm nội suy có nhiều tiêu chuẩn hàm mục tiêu cộng thêm thành phần tương ứng Ví dụ trường hợp hàm nội suy việc đảm bảo độ xác phải trơn, ta định nghĩa hàm mục tiêu sau (6.17) 108 Trong (6.18) Thành phần S tối ưu cực đại tính trơn hàm nội suy đầu λ tham số kiểm soát (regularization) 109 PHỤ LỤC - MỘT SỐ PHÉP TOÁN Toán tử giả nghịch đảo Cho trước ma trận A, ma trận A+ gọi ma trận giả nghịch đảo A A+ thỏa mãn tiêu chuẩn sau đây: ASdfjkl; -(i): AA+A = A -(ii): A+AA+ = A+ -(iii): (AA+)∗ = AA+ -(iv): (A+A)∗ = A+A M∗ ma trận chuyển vị liên hợp ma trận M Để lấy chuyển vị liên hợp ma trận M, trước hết ta tiến hành chuyển vị ma trận M sau tiến hành liên hợp phức cho phần tử ma trận chuyển vị M∗[i,j] = M¯ [i,j] Ma trận phản đối xứng Cho vec-tơ ba chiều e = [e1,e2,e3]T ma trận phản đối xứng e định nghĩa sau: Ma trận Mn×n xác định dương zT Mz>0 với vec-tơ thực z Ma trận Hessian Ma trận Hessian ma trận vuông biểu diễn đạo hàm cấp phần hàm Cho hàm giá trị thực f(x1,x2, ,xn), ma trận Hessian H hàm f biểu diễn sau Laplacian of Gaussian - LoG Toán tử Laplace với nhân Gaussian σ (6.19) Đạo hàm phần theo x 110 (6.20) Đạo hàm bậc phần theo x (6.21) Tương tự với đạo hàm phần theo y Sau LoG định nghĩa sau: (6.22) Difference of Gaussian - DoG Toán tử Laplace với hàm nhân Gaussian σ1 (6.23) Toán tử Laplace vơi hàm nhân Gaussian σ2 (6.24) DoG định nghĩa sau: DoG = Gσ1(x,y) − Gσ2(x,y) (6.25) Gaussian curvature Toán tử hình dạng: vi phân df đồ Gauss f Hai cực cong chính: điểm bề mặt giá trị riêng toán tử hình dạng điểm Gaussian curvature: tích hai cực cong κ1 κ2 điểm K = κ1.κ2 (6.26) Hệ số cực trị Các cực cong lớn nhỏ κmax κmin đỉnh tam giác T tính từ véc-tơ pháp tuyến cạnh Véc-tơ pháp tuyến cạnh nội suy từ pháp tuyến đỉnh Gọi S(p) tất tam giác có chung đỉnh p (Hình 6.3), A(x) diện tích hình x Hệ số cực trị đỉnh định nghĩa sau: 111 (6.27) κmax¯ κmin¯ véc-tơ riêng κmax κmin tương ứng Hình 6.3: Các tam giác chung đỉnh p Trọng số cạnh tam giác Đối với phương pháp SOD, trọng số cạnh tam giác e tính theo công thức sau: (6.28) ni nj pháp tuyến bề mặt hai tam giác có cạnh kề e (Hình 6.4) Hình 6.4: Hai tam giác kề chung cạnh e Đối với phương pháp ESOD, tính trọng số cho cạnh e giống công thức 6.28, ni nj pháp tuyến hai đỉnh đối diện hai tam giác kề cạnh e (Hình 6.5) Hình 6.5: Hai đỉnh đối diện cạnh e hai tam giác kề 112 Đối với phương pháp BFP, với số cạnh chuỗi tam giác kề tam giác có cạnh e, xấp xỉ đa thức p(u) (Hình 6.6) Trọng số cạnh e tính sau: w(e) = pn(e) (6.29) Hình 6.6: Xấp xỉ đa thức Đối với phương pháp ABBFP, số cạnh chuỗi tam giác kề bên trái tam giác chứa cạnh e, xấp xỉ đa thức pl(u), số cạnh chuỗi tam giác kề bên phải tam giác chứa cạnh e, xấp xỉ đa thức pr(u) (Hình 6.7) Trọng số cạnh e tính theo công thức sau: (6.30) Hình 6.7: Xấp xỉ đa thức trái phải cạnh e Phép nhân chập ba chiều Gọi IM×N×K liệu quét ba chiều sau phân đoạn, HP×Q×S mặt nạ ba chiều IM’×N×K = I ∗H kết phép nhân chập liệu I mặt nạ H I0 tính sau, vị trí (x,y,z): 113 M/2 N/2 K/2 I0(x,y,z) = X X X I(x + i,y + j,z + k)H(i,j,k) (6.31) i=−M/2 j=−N/2 k=−K/2 Ví dụ, với ảnh I cho mặt nạ H3×3×3 cho trước Hình 6.8, vị trí ảnh I0 tính sau minh họa hình Ma trận mômen bậc hai Hình 6.8: Nhân chập I0 = I ∗ H Cho ảnh I[p] p cặp số nguyên vị trí điểm ảnh Với điểm ảnh p có cửa sổ w[r] kích cỡ r = {−m m}×{−m m} cửa sổ trọng số Các trọng số cửa sổ gán cho tổng Ma trận mômen bậc hai định nghĩa sau: Mặt phẳng Frankfurt Sọ đặt tư Frankfurt tư bờ bình tai bờ ổ mắt nằm mặt phẳng song song với mặt phẳng ngang So sánh hai tập điểm ba chiều không lực lượng Bài toán so sánh hai tập điểm ba chiều không kích cỡ thường dùng để đánh giá tập điểm ba chiều xây dựng lại Các tập điểm ba chiều xây dựng lại so 114 với tập điểm ba chiều chuẩn tập điểm ba chiều thu nhận cách thức khác quét ba chiều Cho điểm p bề mặt S, khoảng cách điểm p bề mặt S e(p,S) tính sau: (6.32) Trong d() khoảng cách Ơ-clit hai điểm không gian ba chiều Khoảng cách trung bình hai bề mặt S1 S2 (Hình 6.9) tính theo công thức sau: (6.33) Hình 6.9: Hai bề mặt khác Khoảng cách lớn hai bề mặt S1 S2 tính sau: (6.34) Những khoảng cách tính đối xứng (Hình 6.10) Hình 6.10: Khoảng cách không đối xứng 115 PHỤ LỤC - CÁC SỐ ĐO NHÂN TRẮC Bảng 6.2: Các số đo sọ STT Các số đo sọ dai_so Kí hiệu Mô tả g_op Là khoảng cách điểm glabella opisthocranion rong_so eu_eu Là khoảng cách điểm eurion cao_so ba_b en_en en_en Là khoảng cách điểm basion bregma Là khoảng cách điểm endocanthion rong_mat zy_zy Là khoảng cách điểm zygion rong_tran ft_ft Là khoảng cách điểm frontotemporale cao_mui prn_sn Là khoảng cách điểm pronasale subnasale dai_xuong_mui n_rhi rong_mui al_al Là khoảng cách điểm nasion rhinion Là khoảng cách điểm alare 10 rong_hoc_mui ln_ln Là khoảng cách điểm lateral nasal 11 molar_molar ml_ml Là khoảng cách điểm molar 12 chi_so_mui 13 cao_trung_binh 14 cchi_so_cao_dai chi_so_mui = rong_mui/cao_mui _ chi_so_cao_dai = cao_so/dai_so Bảng 6.3: Mốc đo độ dày mô mềm Kí Vị trí hiệu STT Tên mốc đo Opisthocranion op Điểm sau vùng chẩm, ụ chẩm Vertex v Điểm cao đầu Trichion tr Điểm nằm đường chân tóc trán Glabella g Nasion n Điểm nằm khớp trán mũi Rhinion rhi Điểm chỗ hai xương mũi khớp Điểm nhô trán đầu lông mày Số điểm Pronasion prn Điểm nhô đầu mũi, đỉnh mũi Subnasale sn Điểm mũi tiếp giáp với nhân trung Stomion sto Điểm ranh giới môi 10 Labiale inferius li Điểm bờ môi 11 Sublabiale sl Điểm bờ môi 12 Metal Điểm nhô cao cằm 13 Meton Điểm nếp gấp cằm - môi 14 Supraobitale sor Điểm cao phía ổ mắt 15 Orbitale or Điểm thấp bờ ổ mắt 16 Endocanthion en Điểm góc mắt (đầu mắt) 17 Exocanthion ex Điểm góc mắt (đuôi mắt) 18 Porion po Điểm sau vùng chẩm, ụ chẩm 19 Alare al Điểm hốc mũi 20 Zygion zy Điểm cung gò má 21 Lateral nasal Điểm cánh mũi 22 Gonion Điểm góc hàm 23 Zygomatic-arch Điểm nhô cao gò má 24 Mid master Điểm má, điểm cắn 25 Bregma b Điểm nhô mặt bên đầu 26 Eurion eu Điểm sau vùng chẩm, ụ chẩm 27 Basion ba Điểm trước lỗ chẩm 28 Frontotemporale ft Điểm trước gờ thái dương 29 Molar ml Điểm chân giáp hàm nanh 30 Gnathion gn go Điểm cằm 117 Bảng 6.4: Công thức tính độ dày mô mềm theo phương pháp hồi qui tuyến tính STT Tên độ dày mô Kí mềm hiệu mô mềm Opisthocranion op Vertex v Trichion tr Glabella g Nasion n Rhinion rhi Pronasion prn Subnasale sn Stomion sto 10 Labiale inferius li 11 Sublabiale sl 12 Metal 13 Meton 14 Supraobitale sor 15 16 17 18 19 20 Orbitale Endocanthion Exocanthion Porion Alare Zygion Phương trình Y = 0.1239∗ rong_mui +2.4462 Y = 9.3∗ rong_tran/rong_o −1.19 Y = 0.0728∗ cao_so −4.6447 Y = 0.0733∗ rong_tran −2.2482 Y = −0.0624∗ cao_so +12.148 Y = 0.0271∗ cao_so −1.071 Y = 0.2381∗ dai_xuong_mui +8.154 Y = 16.8∗ chi_so_mui +2.1036 Y = 5.71∗ chi_so_cao_dai −0.7315 Y = 10.1∗ cao_trung_binh +4.8278 Y = 13.39∗ cao_trung_binh +0.0004 Số điểm 1 1 1 1 1 1 or Y = 15.82∗ cao_trung_binh −2.1139 Y = 0.0798∗ rong_tran −1.7147 Y = 0.084∗ en_en +2.6781(p) Y = 0.0839∗ en_en +2.7975(t) Y = 0.0512∗ cao_so −2.4011(p) en Y = 0.0557∗ cao_so −2.9922(t) Y = 0.1088∗ cao_so −8.8266(p) ex Y = 0.1307∗ cao_so −11.599(t) Y = 0.0522∗ cao_so −3.2308(p) po Y = 0.0546∗ cao_so −3.4705(t) Y = 0.0758∗ rong_mat +2.5118(p) al Y = 0.0547∗ rong_mat +4.8088(t) Y = 2.89∗ chi_so_mui +5.7944(p) zy Y = 3.24∗ chi_so_mui +5.5103(t) Y = 0.759∗ dai_xuong_mui +3.3014(p) Y = 0.0853∗ dai_xuong_mui +3.1505(t) 118 2 21 22 Lateral nasal Y = 3.68∗ chi_so_mui +3.9502(p) Gonion Y = 4.16∗ chi_so_mui +3.5363(t) Y = 0.0251∗ dai_so −0.5042(p) 23 Zygomatic-arch 24 Mid master go Y = 0.0553∗ en_en −5.4722(t) Y = 0.0707∗ dai_xuong_mui +3.49(p) Y = 0.0701∗ dai_xuong_mui +3.5197(t) Y = 0.138∗ rong_so −0.1312(p) Y = 0.1343∗ rong_so +0.3014(t) 119 2 Bảng 6.5: Các số đo sọ dùng để tính độ dày mô mềm theo phương pháp dùng mạng nơ-ron STT Độ dày mô mềm Kí hiệu Opisthocranion op Các số đo sọ rong_mui Vertex v rong_tran, rong_so Trichion tr cao_so, dai_xuong_mui, rong_tran Glabella g cao_so, cao_mui, rong_tran Nasion n cao_so, molar_molar, dai_xuong_mui Rhinion rhi cao_so, molar_molar, rong_mui Pronasion prn dai_xuong_mui Subnasale sn chi_so_mui Stomion sto chi_so_cao_dai li cao_trung_binh sl cao_trung_binh 10 11 Labiale inferius Sublabiale 12 Metal cao_trung_binh 13 Meton rong_tran 14 Supraobitale sor en_en 15 Orbitale or cao_so 16 Endocanthion en cao_so 17 Exocanthion ex cao_so 18 Porion po rong_mat 19 Alare al chi_so_mui 20 Zygion zy dai_xuong_mui 21 Lateral nasal 22 Gonion 23 24 chi_so_mui go dai_so,en_en Zygomaticarch Mid master dai_xuong_mui rong_so 120

Ngày đăng: 05/11/2016, 14:21

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
2. Abate A. F., Nappi M., Ricciardi S., Tortora G., (2004), “Faces: 3D facial reconstruction from ancient skulls using content based image retrieval”, Journal of Visual Languages and Computing, pp. 373–389 Sách, tạp chí
Tiêu đề: Faces: 3D facialreconstruction from ancient skulls using content based image retrieval”,"Journalof Visual Languages and Computing
Tác giả: Abate A. F., Nappi M., Ricciardi S., Tortora G
Năm: 2004
3. Adhyapak Satyajit Anil, Nasser Kehtarnavaz, Mihai Nadin, (2007), “Stereo matching via selective multiple windows”, Journal of Electronic Imaging, 16(1), pp. 1-14 Sách, tạp chí
Tiêu đề: Stereomatching via selective multiple windows”,"Journal of Electronic Imaging
Tác giả: Adhyapak Satyajit Anil, Nasser Kehtarnavaz, Mihai Nadin
Năm: 2007
4. Ahlberg J., (2001), Candide-3 – an updated parameterized face, Report No.LiTHISY-R-2326, Dept. of Electrical Engineering, Link¨oping University, Sweden Sách, tạp chí
Tiêu đề: Candide-3 – an updated parameterized face
Tác giả: Ahlberg J
Năm: 2001
5. Altemus L. A., (1963), “Comparative integumental relationships”, Angle Orthodontics, 33(3), pp. 217-221 Sách, tạp chí
Tiêu đề: Comparative integumental relationships”, "AngleOrthodontics
Tác giả: Altemus L. A
Năm: 1963
6. Anderson Bjo¨rn, Martin Valfridson, (2005), Digital 3D facial reconstruction based on computed tomography, Master thesis, Link¨oping University, Norrko¨ping, Sweden Sách, tạp chí
Tiêu đề: Digital 3D facial reconstructionbased on computed tomography
Tác giả: Anderson Bjo¨rn, Martin Valfridson
Năm: 2005
7. Archer K. M., (1997), Craniofacial reconstruction using hierarchical bspline interpolation, Master thesis, University of British Columbia Department of Electrical and Computer Engineering, Canada Sách, tạp chí
Tiêu đề: Craniofacial reconstruction using hierarchical bsplineinterpolation
Tác giả: Archer K. M
Năm: 1997
8. Baya H., Essa A., Tuytelaars T., Van Gool L., (2008), “Speeded-up robust features (surf)”, Computer Vision Image Understanding 110(3), pp. 346 - 359 Sách, tạp chí
Tiêu đề: Speeded-up robustfeatures (surf)”, "Computer Vision Image Understanding
Tác giả: Baya H., Essa A., Tuytelaars T., Van Gool L
Năm: 2008
9. Biederman I., Kalocsai P., (1998), Neural and psychophysical analysis of object and face recognition, In Face Recognition: From Theory to Applications. NATO ASI Series F, Springer-Verlag, Berlin, Germany Sách, tạp chí
Tiêu đề: Neural and psychophysical analysis of objectand face recognition, In Face Recognition: From Theory to Applications
Tác giả: Biederman I., Kalocsai P
Năm: 1998
10. Blanz Volker, Romdhani S., Vetter T., (2002), Face identification across different poses and illuminations with a 3D morphable model, In Pro. of the 7 th European Conference on Computer Vision-Part IV, ISBN:3-540-43748-7, pp.3–19 Sách, tạp chí
Tiêu đề: Face identification acrossdifferent poses and illuminations with a 3D morphable model
Tác giả: Blanz Volker, Romdhani S., Vetter T
Năm: 2002
11. Blanz Volker, Kristina Scherbaum, Hans-Perter Seidl, (2007), Fitting a morphable model to 3D scans of faces, In Pro. of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1-8 Sách, tạp chí
Tiêu đề: Fitting amorphable model to 3D scans of faces
Tác giả: Blanz Volker, Kristina Scherbaum, Hans-Perter Seidl
Năm: 2007
12. Blanz Volker, Thomas Vetter, (1999), A morphable model for the sysnthesis of 3D faces, In Pro. of the 26th annual conference on Computer graphics and interactive techniques, ACM SIGGRAPH, ISBN:0-201-48560-5, pp. 187–194 Sách, tạp chí
Tiêu đề: A morphable model for the sysnthesis of3D faces
Tác giả: Blanz Volker, Thomas Vetter
Năm: 1999
14. Breuer P., Kim K. I., Kienzle W. Blanz, V., Sholkopf B., (2008), Automatic 3D face reconstruction from single images or video, In Pro. of the IEEE international Conference on Automatic Face and Gesture Recognition, pp 1-8 Sách, tạp chí
Tiêu đề: Automatic 3Dface reconstruction from single images or video
Tác giả: Breuer P., Kim K. I., Kienzle W. Blanz, V., Sholkopf B
Năm: 2008
15. Bullock David William, (1996), Computer assisted 3D craniofacial reconstruction, Master thesis, Computer Science, Simon Fraser University, Canada Sách, tạp chí
Tiêu đề: Computer assisted 3D craniofacialreconstruction
Tác giả: Bullock David William
Năm: 1996
16. Canny J., (1986), “A computational approach to edge detection”, IEEE transaction on Pattern Analysis and Marchine Intellegence, TPAMI 8(6), pp.679–698 Sách, tạp chí
Tiêu đề: A computational approach to edge detection”, "IEEEtransaction on Pattern Analysis and Marchine Intellegence, TPAMI
Tác giả: Canny J
Năm: 1986
17. Claes P., Vandermeulen D., De Greef S., Willems G., Suetens P., (2006), Cranio-facial reconstruction using a combined statistical model of face shape and soft tissue depths: methodology and validation, Forensic Science International, Cambridge University Press, pp. 147–158 Sách, tạp chí
Tiêu đề: Cranio-facial reconstruction using a combined statistical model of face shapeand soft tissue depths: methodology and validation
Tác giả: Claes P., Vandermeulen D., De Greef S., Willems G., Suetens P
Năm: 2006
18. Cohen Elaine, Richard F. Riesenfeld và Gershon Elber, (2001), Geometric modeling with splines, CRC Press, ISBN 9781568811376 Sách, tạp chí
Tiêu đề: Geometricmodeling with splines
Tác giả: Cohen Elaine, Richard F. Riesenfeld và Gershon Elber
Năm: 2001
19. Coons S. A., (1967), Surfaces for computer aided design of space forms, In state of the Art in Facial animation: SIGGRAPH 1990 course notes No 26, pp. 86–106 Sách, tạp chí
Tiêu đề: Surfaces for computer aided design of space forms
Tác giả: Coons S. A
Năm: 1967
20. Demarsin K., Vanderstraeten D., Volodine T., Roose D., (2007), “Detection of closed sharp edges in point clouds using normal estimation and graph theory”, Journal Computer-Aided Design 39(4), pp. 276–283 Sách, tạp chí
Tiêu đề: Detection ofclosed sharp edges in point clouds using normal estimation and graph theory”,"Journal Computer-Aided Design
Tác giả: Demarsin K., Vanderstraeten D., Volodine T., Roose D
Năm: 2007
21. Enciso R., Li J., Fidaleo D. A., Kim T. Y., Noh J.Y., Neumann U., (1999) , Synthesis of 3D faces, In Proc. of the 1st USF International Workshop on Digital and Computational Video, pp. 8–15 Sách, tạp chí
Tiêu đề: Synthesis of 3D faces
13. BouguetJean Yves, (2003), Camera calibration toolbox for matlab, http://www.vision.caltech.edu/bouguetj/calib_doc/ Link

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w